1
|
Buri MV, Sperandio LP, de Souza KFS, Antunes F, Rezende MM, Melo CM, Pinhal MAS, Barros CC, Fernig DG, Yates EA, Ide JS, Smaili SS, Riske KA, Nader HB, Luis Dos Santos Tersariol I, Lima MA, Judice WAS, Miranda A, Paredes-Gamero EJ. Endocytosis and the Participation of Glycosaminoglycans Are Important to the Mechanism of Cell Death Induced by β-Hairpin Antimicrobial Peptides. ACS APPLIED BIO MATERIALS 2021; 4:6488-6501. [PMID: 35006908 DOI: 10.1021/acsabm.1c00390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cytotoxic mode of action of four antimicrobial peptides (AMPs) (gomesin, tachyplesin, protegrin, and polyphemusin) against a HeLa cell tumor model is discussed. A study of cell death by AMP stimulation revealed some similarities, including annexin-V externalization, reduction of mitochondrial potential, insensitivity against inhibitors of cell death, and membrane permeabilization. Evaluation of signaling proteins and gene expression that control cell death revealed wide variation in the responses to AMPs. However, the ability to cross cell membranes emerged as an important characteristic of AMP-dependent cell death, where endocytosis mediated by dynamin is a common mechanism. Furthermore, the affinity between AMPs and glycosaminoglycans (GAGs) and GAG participation in the cytotoxicity of AMPs were verified. The results show that, despite their primary and secondary structure homology, these peptides present different modes of action, but endocytosis and GAG participation are an important and common mechanism of cytotoxicity for β-hairpin peptides.
Collapse
Affiliation(s)
- Marcus Vinicius Buri
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Letícia Paulino Sperandio
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi Das Cruzes, Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi Das Cruzes 08780-911, São Paulo, Brazil.,Departamento de Farmacologia, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Kamylla F S de Souza
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Fernanda Antunes
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Marina Mastelaro Rezende
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Carina Mucciolo Melo
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Maria A S Pinhal
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil.,Departmento de Bioquímica, Faculdade de Medicina Do ABC, Santo André 09060-870, Brazil
| | - Carlos C Barros
- Departamento de Nutrição, Universidade Federal de Pelotas, R. Gomes Carneiro, No1, Pelotas 96010-610, Rio Grande do Sul, Brazil
| | - David G Fernig
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Edwin A Yates
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil.,Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519, United States
| | - Soraya S Smaili
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Helena B Nader
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | | | - Marcelo Andrade Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Wagner A S Judice
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi Das Cruzes, Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi Das Cruzes 08780-911, São Paulo, Brazil
| | - Antonio Miranda
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil.,Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso Do Sul, Campo Grande 79070-900, Mato Grosso do Sul, Brazil
| |
Collapse
|
2
|
Ghiselli G. Drug-Mediated Regulation of Glycosaminoglycan Biosynthesis. Med Res Rev 2016; 37:1051-1094. [DOI: 10.1002/med.21429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Giancarlo Ghiselli
- Glyconova Srl; Parco Scientifico Silvano Fumero; Via Ribes 5 Colleretto Giacosa, (TO) Italy
| |
Collapse
|
3
|
Cathepsin-L and transglutaminase dependent processing of ps20: A novel mechanism for ps20 regulation via ECM cross-linking. Biochem Biophys Rep 2016; 7:328-337. [PMID: 28955923 PMCID: PMC5613349 DOI: 10.1016/j.bbrep.2016.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 05/16/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Whey-acidic-protein (WAP) four-disulphide core (WFDC) proteins have important roles in the regulation of innate immunity, anti-microbial function, and the inhibition of inflammatory proteases at mucosal surfaces. It was recently demonstrated that the WFDC protein, prostate stromal 20 (ps20), encoded by the WFDC1 gene, is a potent growth inhibitory factor, and shares with other WFDC proteins the ability to modulate wound healing processes and immune responses to viral infections. However, ps20 remains relatively uncharacterised at the protein level. Using a panel of ps20 antibodies for western-blotting (WB), ELISA and immunoaffinity purification, we isolated, biochemically characterised and tested ps20 preparations for three biological properties: (i) interactions with glycosaminoglycans (GAG) (ii) inhibition of cell proliferation, and (iii) transglutaminase2 (TG2) mediated crosslinking of ps20 to fibronectin, a process implicated in wound healing. We show herein that ps20 preparations contain multiple molecular forms including full-length ps20 (resolving at ≈27 kDa), an exon 3 truncated form (≈22 kDa) that lacks aa113-140, and variable amounts of a putatively cleaved lower MW (≈15-17 kDa) species. Untagged purified ps20 preparations containing a mixture of these forms are biologically active in significantly suppressing prostate cell proliferation. We show that one mechanism by which lower LMW forms of ps20 arise is through cathepsin L (CL) cleavage, and confirm that CL cleaves ps20 at the C-terminus, but this does not inhibit its growth inhibitory function. However, CL cleavage abrogated the interaction between ps20 and solid-phase fibronectin. Therefore, we demonstrate for the first time that LMW forms of ps20 that lack a C-terminal immunogenic epitope can arise through CL cleavage and this cleavage impairs multimerisation and potential capacity to cross-link to ECM, but not the capacity of ps20 to inhibit cell proliferation. We propose that ps20 like other WFDC proteins can become associated with GAGs and the ECM. Furthermore, we suggest post-translational processing and cleavage of ps20 is required to generate functional protein species, and TG2 mediated crosslinking and CL cleavage form components of a ps20 regulatory apparatus.
Collapse
Key Words
- CL, cathepsin L
- CM, conditioned media
- CV, column volume
- Cathepsin
- ECM, extracellular matrix
- FL, full length
- GAG, glycosaminoglycan
- Glycosaminoglycan
- HMW, high molecular weight
- LMW, low molecular weight
- MW, molecular weight
- Prostate cancer
- Ps20
- TR, truncated
- Transglutaminase
- WB, western blot
- WFDC1, whey acidic protein four disulphide core 1
- Whey-four-disulphide core
- ps20, prostate stromal 20
- rps20, recombinant ps20
Collapse
|
4
|
Mihov D, Spiess M. Glycosaminoglycans: Sorting determinants in intracellular protein traffic. Int J Biochem Cell Biol 2015; 68:87-91. [PMID: 26327396 DOI: 10.1016/j.biocel.2015.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/29/2015] [Accepted: 08/27/2015] [Indexed: 01/12/2023]
Abstract
Intracellular transport of proteins to their appropriate destinations is crucial for the maintenance of cellular integrity and function. Sorting information is contained either directly in the amino acid sequence or in a protein's post-translational modifications. Glycosaminoglycans (GAGs) are characteristic modifications of proteoglycans. GAGs are long unbranched polysaccharide chains with unique structural and functional properties also contributing to protein sorting in various ways. By deletion or insertion of GAG attachment sites it has been shown that GAGs affect polarized sorting in epithelial cells, targeting to and storage in secretory granules, and endocytosis. Most recently, the role of GAGs as signals for rapid trans-Golgi-to-cell surface transport, dominant over the cytosolic sorting motifs in the core protein, was demonstrated. Here, we provide an overview on existing data on the roles of GAGs on protein and proteoglycan trafficking.
Collapse
Affiliation(s)
- Deyan Mihov
- Biozentrum, University of Basel, Basel, Switzerland.
| | | |
Collapse
|
5
|
Prydz K. Determinants of Glycosaminoglycan (GAG) Structure. Biomolecules 2015; 5:2003-22. [PMID: 26308067 PMCID: PMC4598785 DOI: 10.3390/biom5032003] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/05/2023] Open
Abstract
Proteoglycans (PGs) are glycosylated proteins of biological importance at cell surfaces, in the extracellular matrix, and in the circulation. PGs are produced and modified by glycosaminoglycan (GAG) chains in the secretory pathway of animal cells. The most common GAG attachment site is a serine residue followed by a glycine (-ser-gly-), from which a linker tetrasaccharide extends and may continue as a heparan sulfate, a heparin, a chondroitin sulfate, or a dermatan sulfate GAG chain. Which type of GAG chain becomes attached to the linker tetrasaccharide is influenced by the structure of the protein core, modifications occurring to the linker tetrasaccharide itself, and the biochemical environment of the Golgi apparatus, where GAG polymerization and modification by sulfation and epimerization take place. The same cell type may produce different GAG chains that vary, depending on the extent of epimerization and sulfation. However, it is not known to what extent these differences are caused by compartmental segregation of protein cores en route through the secretory pathway or by differential recruitment of modifying enzymes during synthesis of different PGs. The topic of this review is how different aspects of protein structure, cellular biochemistry, and compartmentalization may influence GAG synthesis.
Collapse
Affiliation(s)
- Kristian Prydz
- Department of Biosciences, University of Oslo, Box 1066, Blindern OSLO 0316, Norway.
| |
Collapse
|
6
|
Mihov D, Raja E, Spiess M. Chondroitin Sulfate Accelerates Trans-Golgi-to-Surface Transport of Proteoglycan Amyloid Precursor Protein. Traffic 2015; 16:853-70. [PMID: 25951880 DOI: 10.1111/tra.12294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 11/28/2022]
Abstract
The amyloid precursor protein (APP) is a membrane protein implicated in the pathogenesis of Alzheimer's disease. APP is a part-time proteoglycan, as splice variants lacking exon 15 are modified by a chondroitin sulfate glycosaminoglycan (GAG) chain. Investigating the effect of the GAG chain on the trafficking of APP in non-polarized cells, we found it to increase the steady-state surface-to-intracellular distribution, to reduce the rate of endocytosis and to accelerate transport kinetics from the trans-Golgi network (TGN) to the plasma membrane. Deletion of the cytosolic domain resulted in delayed surface arrival of GAG-free APP, but did not affect the rapid export kinetics of the proteoglycan form. Protein-free GAG chains showed the same TGN-to-cell surface transport kinetics as proteoglycan APP. Endosome ablation experiments were performed to distinguish between indirect endosomal and direct pathways to the cell surface. Surprisingly, TGN-to-cell surface transport of both GAG-free and proteoglycan APP was found to be indirect via transferrin-positive endosomes. Our results show that GAGs act as alternative sorting determinants in cellular APP transport that are dominant over cytoplasmic signals and involve distinct sorting mechanisms.
Collapse
Affiliation(s)
- Deyan Mihov
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Eva Raja
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| |
Collapse
|
7
|
Nicolson GL. The Fluid—Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40years. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1451-66. [DOI: 10.1016/j.bbamem.2013.10.019] [Citation(s) in RCA: 442] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/08/2013] [Accepted: 10/18/2013] [Indexed: 12/21/2022]
|
8
|
Muenzer J. Early initiation of enzyme replacement therapy for the mucopolysaccharidoses. Mol Genet Metab 2014; 111:63-72. [PMID: 24388732 DOI: 10.1016/j.ymgme.2013.11.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/29/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
Abstract
The mucopolysaccharidoses (MPS), a group of rare genetic disorders caused by defects in glycosaminoglycan (GAG) catabolism, are progressive, multi-systemic diseases with a high burden of morbidity. Enzyme replacement therapy (ERT) is available for MPS I, II, and VI, and may improve walking ability, endurance, and pulmonary function as evidenced by data from pivotal trials and extension studies. Despite these demonstrable benefits, cardiac valve disease, joint disease, and skeletal disease, all of which cause significant morbidity, do not generally improve with ERT if pathological changes are already established. Airway disease improves, but usually does not normalize. These limitations can be well understood by considering the varied functions of GAG in the body. Disruption of GAG catabolism has far-reaching effects due to the triggering of secondary pathogenic cascades. It appears that many of the consequences of these secondary pathogenic events, while they may improve on treatment, cannot be fully corrected even with long-term exposure to enzyme, thereby supporting the treatment of patients with MPS before the onset of clinical disease. This review examines the data from clinical trials and other studies in human patients to explore the limits of ERT as currently used, then discusses the pathophysiology, fetal tissue studies, animal studies, and sibling reports to explore the question of how early to treat an MPS patient with a firm diagnosis. The review is followed by an expert opinion on the rationale for and the benefits of early treatment.
Collapse
Affiliation(s)
- Joseph Muenzer
- Division of Genetics and Metabolism, Department of Pediatrics, CB 7487, Medical School Wing E Room 117, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7487, USA.
| |
Collapse
|
9
|
Abstract
The Fluid-Mosaic Membrane Model of cell membrane structure was based on thermodynamic principals and the available data on component lateral mobility within the membrane plane [Singer SJ, Nicolson GL. The Fluid Mosaic Model of the structure of cell membranes. Science 1972; 175: 720-731]. After more than forty years the model remains relevant for describing the basic nano-scale structures of a variety of biological membranes. More recent information, however, has shown the importance of specialized membrane domains, such as lipid rafts and protein complexes, in describing the macrostructure and dynamics of biological membranes. In addition, membrane-associated cytoskeletal structures and extracellular matrix also play roles in limiting the mobility and range of motion of membrane components and add new layers of complexity and hierarchy to the original model. An updated Fluid-Mosaic Membrane Model is described, where more emphasis has been placed on the mosaic nature of cellular membranes where protein and lipid components are more crowded and limited in their movements in the membrane plane by lipid-lipid, protein-protein and lipid-protein interactions as well as cell-matrix, cell-cell and cytoskeletal interactions. These interactions are important in restraining membrane components and maintaining the unique mosaic organization of cell membranes into functional, dynamic domains.
Collapse
Affiliation(s)
- Garth L Nicolson
- The Institute for Molecular Medicine, Department of Molecular Pathology, Huntington Beach, CA, USA
| |
Collapse
|
10
|
Straube T, von Mach T, Hönig E, Greb C, Schneider D, Jacob R. pH-dependent recycling of galectin-3 at the apical membrane of epithelial cells. Traffic 2013; 14:1014-27. [PMID: 23710780 DOI: 10.1111/tra.12086] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/22/2013] [Accepted: 05/25/2013] [Indexed: 01/16/2023]
Abstract
The β-galactoside binding protein galectin-3 is highly expressed in a variety of epithelial cell lines. Polarized MDCK cells secrete this lectin predominantly into the apical medium by non-classical secretion. Once within the apical extracellular milieu, galectin-3 can re-enter the cell followed by passage through endosomal organelles and modulate apical protein sorting. Here, we could show that galectin-3 is internalized by non-clathrin mediated endocytosis. Within endosomal organelles this pool associates with newly synthesized neurotrophin receptor in the biosynthetic pathway and assists in its membrane targeting. This recycling process is accompanied by transient interaction of galectin-3 with detergent insoluble membrane microdomains in a lactose- and pH-dependent manner. Moreover, in the presence of lactose, apical sorting of the neurotrophin receptor is affected following endosomal deacidification. Taken together, our results suggest that internalized galectin-3 directs the subcellular targeting of apical glycoproteins by membrane recycling.
Collapse
Affiliation(s)
- Tamara Straube
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, D-35033, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Ellis K, Bagwell J, Bagnat M. Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis. ACTA ACUST UNITED AC 2013; 200:667-79. [PMID: 23460678 PMCID: PMC3587825 DOI: 10.1083/jcb.201212095] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The zebrafish notochord vacuole, which has long been known to be important for vertebrate development but poorly classified at a cell biological level, is identified as a specialized lysosome-related organelle that is necessary both early, for embryonic axis elongation, and late, for spine morphogenesis. The notochord plays critical structural and signaling roles during vertebrate development. At the center of the vertebrate notochord is a large fluid-filled organelle, the notochord vacuole. Although these highly conserved intracellular structures have been described for decades, little is known about the molecular mechanisms involved in their biogenesis and maintenance. Here we show that zebrafish notochord vacuoles are specialized lysosome-related organelles whose formation and maintenance requires late endosomal trafficking regulated by the vacuole-specific Rab32a and H+-ATPase–dependent acidification. We establish that notochord vacuoles are required for body axis elongation during embryonic development and identify a novel role in spine morphogenesis. Thus, the vertebrate notochord plays important structural roles beyond early development.
Collapse
Affiliation(s)
- Kathryn Ellis
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
12
|
Scarpa M. Evaluation of idursulfase for the treatment of mucopolysaccharidosis II (Hunter syndrome). Expert Opin Orphan Drugs 2012. [DOI: 10.1517/21678707.2013.738182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Dick G, Akslen-Hoel LK, Grøndahl F, Kjos I, Prydz K. Proteoglycan synthesis and Golgi organization in polarized epithelial cells. J Histochem Cytochem 2012; 60:926-35. [PMID: 22941419 DOI: 10.1369/0022155412461256] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A large number of complex glycosylation mechanisms take place in the Golgi apparatus. In epithelial cells, glycosylated protein molecules are transported to both the apical and the basolateral surface domains. Although the prevailing view is that the Golgi apparatus provides the same lumenal environment for glycosylation of apical and basolateral cargo proteins, there are indications that proteoglycans destined for the two opposite epithelial surfaces are exposed to different conditions in transit through the Golgi apparatus. We will here review data relating proteoglycan and glycoprotein synthesis to characteristics of the apical and basolateral secretory pathways in epithelial cells.
Collapse
Affiliation(s)
- Gunnar Dick
- Department of Molecular Biosciences, University of Oslo, Norway.
| | | | | | | | | |
Collapse
|
14
|
Clarke LA, Winchester B, Giugliani R, Tylki-Szymańska A, Amartino H. Biomarkers for the mucopolysaccharidoses: discovery and clinical utility. Mol Genet Metab 2012; 106:395-402. [PMID: 22658917 DOI: 10.1016/j.ymgme.2012.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 12/18/2022]
Abstract
The mucopolysaccharidoses (MPSs), a group of inherited lysosomal storage diseases, are complex, progressive, multisystem disorders with extreme clinical heterogeneity. The introduction of therapies that target the underlying enzyme deficiency in a number of the MPSs has brought to light the need for biomarkers that would aid in the evaluation of disease burden and as a means to objectively measure therapeutic response in individual patients. It is increasingly recognized that due to the extraordinarily complex pathogenesis of the MPSs, achieving these goals with a single analyte, such as urinary glycosaminoglycans, is unlikely. This recognition has created an impetus for the search for clinically useful biomarkers that reflect the disease pathogenesis and that are stage- or organ-specific. In this review, the current state of MPS biomarker research is discussed, with a focus on clinical utility in the MPSs.
Collapse
Affiliation(s)
- Lorne A Clarke
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
15
|
Hoshi H, Shimawaki K, Takegawa Y, Ohyanagi T, Amano M, Hinou H, Nishimura SI. Molecular shuttle between extracellular and cytoplasmic space allows for monitoring of GAG biosynthesis in human articular chondrocytes. Biochim Biophys Acta Gen Subj 2012; 1820:1391-8. [PMID: 22265686 DOI: 10.1016/j.bbagen.2012.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/20/2011] [Accepted: 01/07/2012] [Indexed: 10/14/2022]
Abstract
BACKGROUND Cell surface proteoglycans play vital functional roles in various biological processes such as cell proliferation, differentiation, adhesion, inflammation, immune response, sustentation of cartilage tissue and intensity of tissues. We show here that serglycin-like synthetic glycopeptides function efficiently as a molecular shuttle to hijack glycosaminoglycan (GAG) biosynthetic pathway within cells across the plasma membrane. METHODS Fluorescence (FITC)-labeled tetrapeptide (H-Ser(1)-Gly(2)-Ser(3)-Gly(4)-OH) carrying Galβ(1➝4)Xylβ1➝ defined as proteoglycan initiator (PGI) monomer and its tandem repeating PGI polymer was employed for direct imaging of cellular uptake and intracellular traffic by confocal laser-scanning microscopy. Novel method for enrichment analysis of GAG-primed PGIs by combined use of anti-FITC antibody and LC/mass spectrometry was established. RESULTS PGI monomer was incorporated promptly into human articular chondrocytes and distributed in whole cytoplasm including ER/Golgi while PGI polymer localized specifically in nucleus. It was demonstrated that PGIs become good substrates for GAG biosynthesis within the cells and high molecular weight GAGs primed by PGIs is chondroitin sulfate involving N-acetyl-d-galactosamine residues substituted by 4-O-sulfate or 6-O-sulfate group as major components. PGIs activated chondrocytes proliferation and induced up-regulation of the expression level of type II collagen, suggesting that PGIs can function as new class cytokine-like molecules to stimulate cell growth. CONCLUSION Synthetic serglycin-type PGIs allow for live cell imaging during proteoglycan biosynthesis and structural characterization of GAG-primed PGIs by an antibody-based enrichment protocol. GENERAL SIGNIFICANCE Novel glycomics designated for investigating proteoglycan biosynthesis, namely real-time GAGomics using synthetic glycopeptides as PGIs, should facilitate greatly dynamic profiling of GAGs in the living cells. This article is part of a Special Issue entitled Glycoproteomics.
Collapse
Affiliation(s)
- Hiroko Hoshi
- Field of Drug Discovery Research, Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Both IgA nephropathy and alcoholic cirrhosis feature abnormally glycosylated IgA1 and soluble CD89–IgA and IgG–IgA complexes: common mechanisms for distinct diseases. Kidney Int 2011; 80:1352-63. [DOI: 10.1038/ki.2011.276] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Hafte T, Fagereng G, Prydz K, Grondahl F, Tveit H. Protein core-dependent glycosaminoglycan modification and glycosaminoglycan-dependent polarized sorting in epithelial Madin-Darby canine kidney cells. Glycobiology 2010; 21:457-66. [DOI: 10.1093/glycob/cwq180] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Abstract
Proteoglycans represent a structurally heterogeneous family of proteins that typically undergo extensive posttranslational modification with sulfated sugar chains. Although historically believed to affect signaling pathways exclusively as growth factor coreceptors, proteoglycans are now understood to initiate and modulate signal transduction cascades independently of other receptors. From within the extracellular matrix, proteoglycans are able to shield protein growth factors from circulating proteases and establish gradients that guide cell migration. Extracellular proteoglycans are also critical in the maintenance of growth factor stores and are thus instrumental in modulating paracrine signaling. At the cell membrane, proteoglycans stabilize ligand-receptor interactions, creating potentiated ternary signaling complexes that regulate cell proliferation, endocytosis, migration, growth factor sensitivity, and matrix adhesion. In some cases, proteoglycans are able to independently activate various signaling cascades, attenuate the signaling of growth factors, or orchestrate multimeric intracellular signaling complexes. Signaling between cells is also modulated by proteoglycan activity at the cell membrane, as exemplified by the proteoglycan requirement for effective synaptogenesis between neurons. Finally, proteoglycans are able to regulate signaling from intracellular compartments, particularly in the context of storage granule formation and maintenance. These proteoglycans are also major determinants of exocytic vesicle fate and other vesicular trafficking pathways. In contrast to the mechanisms underlying classical ligand-receptor signaling, proteoglycan signaling is frequently characterized by ligand promiscuity and low-affinity binding; likewise, these events commonly do not exhibit the same degree of reliance on intermolecular structure or charge configurations as other ligand-receptor interactions. Such unique features often defy conventional mechanisms of signal transduction, and present unique challenges to the study of their indispensable roles within cell signaling networks.
Collapse
|