1
|
Klemm RW, Carvalho P. Lipid Droplets Big and Small: Basic Mechanisms That Make Them All. Annu Rev Cell Dev Biol 2024; 40:143-168. [PMID: 39356808 DOI: 10.1146/annurev-cellbio-012624-031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Lipid droplets (LDs) are dynamic storage organelles with central roles in lipid and energy metabolism. They consist of a core of neutral lipids, such as triacylglycerol, which is surrounded by a monolayer of phospholipids and specialized surface proteins. The surface composition determines many of the LD properties, such as size, subcellular distribution, and interaction with partner organelles. Considering the diverse energetic and metabolic demands of various cell types, it is not surprising that LDs are highly heterogeneous within and between cell types. Despite their diversity, all LDs share a common biogenesis mechanism. However, adipocytes have evolved specific adaptations of these basic mechanisms, enabling the regulation of lipid and energy metabolism at both the cellular and organismal levels. Here, we discuss recent advances in the understanding of both the general mechanisms of LD biogenesis and the adipocyte-specific adaptations controlling these fascinating organelles.
Collapse
Affiliation(s)
- Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom;
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
2
|
Li K, Feng KC, Simon M, Fu Y, Galanakis D, Mueller S, Rafailovich MH. Molecular Basis for Surface-Initiated Non-Thrombin-Generated Clot Formation Following Viral Infection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30703-30714. [PMID: 38848451 DOI: 10.1021/acsami.4c02918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
In this paper, we propose a model that connects two standard inflammatory responses to viral infection, namely, elevation of fibrinogen and the lipid drop shower, to the initiation of non-thrombin-generated clot formation. In order to understand the molecular basis for the formation of non-thrombin-generated clots following viral infection, human epithelial and Madin-Darby Canine Kidney (MDCK, epithelial) cells were infected with H1N1, OC43, and adenovirus, and conditioned media was collected, which was later used to treat human umbilical vein endothelial cells and human lung microvascular endothelial cells. After direct infection or after exposure to conditioned media from infected cells, tissue surfaces of both epithelial and endothelial cells, exposed to 8 mg/mL fibrinogen, were observed to initiate fibrillogenesis in the absence of thrombin. No fibers were observed after direct viral exposure of the endothelium or when the epithelium cells were exposed to SARS-CoV-2 isolated spike proteins. Heating the conditioned media to 60 °C had no effect on fibrillogenesis, indicating that the effect was not enzymatic but rather associated with relatively thermally stable inflammatory factors released soon after viral infection. Spontaneous fibrillogenesis had previously been reported and interpreted as being due to the release of the alpha C domains due to strong interactions of the interior of the fibrinogen molecule in contact with hydrophobic material surfaces rather than cleavage of the fibrinopeptides. Contact angle goniometry and immunohistochemistry were used to demonstrate that the lipids produced within the epithelium and released in the conditioned media, probably after the death of infected epithelial cells, formed a hydrophobic residue responsible for fibrillogenesis. Hence, the standard inflammatory response constitutes the ideal conditions for surface-initiated clot formation.
Collapse
Affiliation(s)
- Kao Li
- School of Biomedicine and Nursing, Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, Shandong, China
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kuan-Che Feng
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Marcia Simon
- Department of Oral Biology and Pathology, Stony Brook University Medical Center, Stony Brook, New York 11794, United States
| | - Yuyang Fu
- Dongying Stem Cell Bank Medical Technology Co., Ltd., Dongying 257000, Shandong, China
| | - Dennis Galanakis
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, New York 11720, United States
| | | | - Miriam H Rafailovich
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
3
|
Ibayashi M, Tsukamoto S. Lipid droplet biogenesis in the ovary. Reprod Med Biol 2024; 23:e12618. [PMID: 39677329 PMCID: PMC11646352 DOI: 10.1002/rmb2.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Background Lipid droplets (LDs) are organelles consisting of a central core of neutral lipids covered by a single layer of phospholipids and are found in most eukaryotic cells. Accumulating evidence suggests that LDs not only store neutral lipids but also coordinate with other organelles for lipid metabolism within cells. Methods This review focuses on the synthesis of LDs during follicular development and highlights the factors involved in the regulation of LD biogenesis within the ovary. Main Findings In the mammalian ovary, the presence of LDs has long been recognized mainly by morphological analysis. However, their distribution in the ovary varies according to the region and cell type; for example, LDs are abundant in the medulla, which has a rich blood vessel network, in interstitial cells, which are the site of steroid production, and surrounding growing follicles, while they are poor in granulosa cells within follicles. LDs are also enriched in the corpus luteum after ovulation and massively accumulate in atretic follicles during follicular growth. Furthermore, LD synthesis is synchronized with angiogenesis during follicular development. Conclusion Addressing the functional link between LD biogenesis and angiogenesis is essential for understanding the molecular basis underlying LD biology, as well as the ovarian dysfunction with metabolic disorders.
Collapse
Affiliation(s)
- Megumi Ibayashi
- Laboratory Animal and Bioresource Sciences SectionNational Institutes for Quantum Science and TechnologyChibaJapan
- Kato Ladies ClinicShinjuku‐kuTokyoJapan
| | - Satoshi Tsukamoto
- Laboratory Animal and Bioresource Sciences SectionNational Institutes for Quantum Science and TechnologyChibaJapan
| |
Collapse
|
4
|
Ibayashi M, Aizawa R, Mitsui J, Tsukamoto S. Lipid droplet synthesis is associated with angiogenesis in mouse ovarian follicles†. Biol Reprod 2023; 108:492-503. [PMID: 36579469 DOI: 10.1093/biolre/ioac223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/21/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Lipid droplets (LDs) are endoplasmic reticulum (ER)-derived organelles comprising a core of neutral lipids surrounded by a phospholipid monolayer. Lipid droplets play important roles in lipid metabolism and energy homeostasis. Mammalian ovaries have been hypothesized to use neutral lipids stored in LDs to produce the hormones and nutrients necessary for rapid follicular development; however, our understanding of LD synthesis remains incomplete. In this study, we generated transgenic reporter mice that express mCherry fused to HPos, a minimal peptide that localizes specifically to nascent LDs synthesized at the ER. With this tool for visualizing initial LD synthesis in ovaries, we found that LDs are synthesized continuously in theca cells but rarely in inner granulosa cells (Gc) during early follicular development. Administration of exogenous gonadotropin enhances LD synthesis in the Gc, suggesting that LD synthesis is hormonally regulated. In contrast, we observed copious LD synthesis in the corpus luteum, and excessive LDs accumulation in atretic follicles. Furthermore, we demonstrated that LD synthesis is synchronized with angiogenesis around the follicle and that suppressing angiogenesis caused defective LD biosynthesis in developing follicles. Overall, our study is the first to demonstrate a spatiotemporally regulated interplay between LD synthesis and neovascularization during mammalian follicular development.
Collapse
Affiliation(s)
- Megumi Ibayashi
- Laboratory Animal and Genome Sciences Section, National Institutes for Quantum Science and Technology, Anagawa, Chiba, Japan
| | - Ryutaro Aizawa
- Laboratory Animal and Genome Sciences Section, National Institutes for Quantum Science and Technology, Anagawa, Chiba, Japan
| | - Junichiro Mitsui
- Laboratory Animal and Genome Sciences Section, National Institutes for Quantum Science and Technology, Anagawa, Chiba, Japan
- Department of Comprehensive Reproductive Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institutes for Quantum Science and Technology, Anagawa, Chiba, Japan
| |
Collapse
|
5
|
Campbell LE, Anderson AM, Chen Y, Johnson SM, McMahon CE, Liu J. Identification of motifs and mechanisms for lipid droplet targeting of the lipolytic inhibitors G0S2 and HIG2. J Cell Sci 2022; 135:285951. [PMID: 36420951 PMCID: PMC10112975 DOI: 10.1242/jcs.260236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
G0S2 and HIG2 are two selective inhibitors of ATGL (also known as PNPLA2), the key enzyme for intracellular lipolysis. Whereas G0S2 regulates triglyceride (TG) mobilization in adipocytes and hepatocytes, HIG2 functions to enhance intracellular TG accumulation under hypoxic conditions. A homologous hydrophobic domain (HD) is shared by G0S2 and HIG2 (also known as HILPDA) for binding to ATGL. However, the determinants of their lipid droplet (LD) localization are unknown. Here, we study how G0S2 and HIG2 are targeted to LDs, and identify both ATGL-independent and -dependent mechanisms. Structural prediction and studies in cells reveal that ATGL-independent localization of G0S2 to both the endoplasmic reticulum (ER) and LDs is mediated by a hairpin structure consisting of two hydrophobic sequences. Positively charged residues in the hinge region play a crucial role in sorting G0S2, which initially localizes to ER, to LDs. Interestingly, the role of these positive charges becomes dispensable when ATGL is co-expressed. In comparison, HIG2, which lacks a similar hairpin structure, is dependent on ATGL for its full LD targeting. Thus, our studies identify specific structural features and mechanisms for mediating accumulation of these two ATGL inhibitors on LDs.
Collapse
Affiliation(s)
- Latoya E Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,College of Health Solutions, Arizona State University, Tempe, AZ 85281, USA
| | - Aaron M Anderson
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA
| | - Scott M Johnson
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Cailin E McMahon
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic in Rochester, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Leznicki P, Schneider HO, Harvey JV, Shi WQ, High S. Co-translational biogenesis of lipid droplet integral membrane proteins. J Cell Sci 2022; 135:272279. [PMID: 34558621 PMCID: PMC8627552 DOI: 10.1242/jcs.259220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Membrane proteins destined for lipid droplets (LDs), a major intracellular storage site for neutral lipids, are inserted into the endoplasmic reticulum (ER) and then trafficked to LDs where they reside in a hairpin loop conformation. Here, we show that LD membrane proteins can be delivered to the ER either co- or post-translationally and that their membrane-embedded region specifies pathway selection. The co-translational route for LD membrane protein biogenesis is insensitive to a small molecule inhibitor of the Sec61 translocon, Ipomoeassin F, and instead relies on the ER membrane protein complex (EMC) for membrane insertion. This route may even result in a transient exposure of the short N termini of some LD membrane proteins to the ER lumen, followed by putative topological rearrangements that would enable their transmembrane segment to form a hairpin loop and N termini to face the cytosol. Our study reveals an unexpected complexity to LD membrane protein biogenesis and identifies a role for the EMC during their co-translational insertion into the ER. Summary: Insertion of many lipid droplet membrane proteins into the ER is co-translational, mediated by the ER membrane protein complex and may involve topology reorientation.
Collapse
Affiliation(s)
- Pawel Leznicki
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | | | - Jada V Harvey
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Wei Q Shi
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
7
|
The Chlamydia trachomatis inclusion membrane protein CT006 associates with lipid droplets in eukaryotic cells. PLoS One 2022; 17:e0264292. [PMID: 35192658 PMCID: PMC8863265 DOI: 10.1371/journal.pone.0264292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Chlamydia trachomatis causes genital and ocular infections in humans. This bacterial pathogen multiplies exclusively within host cells in a characteristic vacuole (inclusion) and delivers proteins such as inclusion membrane proteins (Incs) into the host cell. Here, we identified CT006 as a novel C. trachomatis protein that when expressed ectopically eukaryotic cells can associate with lipid droplets (LDs). A screen using Saccharomyces cerevisiae identified two Incs causing vacuolar protein sorting defects and seven Incs showing tropism for eukaryotic organelles. Ectopic expression in yeast and mammalian cells of genes encoding different fragments of CT006 revealed tropism for the endoplasmic reticulum and LDs. We identified a LD-targeting region within the first 88 amino acid residues of CT006, and positively charged residues important for this targeting. Comparing with the parental wild-type strain, cells infected by a newly generated C. trachomatis strain overproducing CT006 with a double hemagglutinin tag showed a slight increase in the area occupied by LDs within the inclusion region. However, we could not correlate this effect with the LD-targeting regions within CT006. We further showed that both the amino and carboxy-terminal regions of CT006, flanking the Inc-characteristic bilobed hydrophobic domain, are exposed to the host cell cytosol during C. trachomatis infection, supporting their availability to interact with host cell targets. Altogether, our data suggest that CT006 might participate in the interaction of LDs with C. trachomatis inclusions.
Collapse
|
8
|
Lalioti V, Beznoussenko GV, Mironov AA, Sandoval IV. The E-Syt3 cleavage and traffic uncovers the primordial cisterna, a new organelle that mothers the lipid droplets in the adipocyte. Traffic 2021; 23:21-41. [PMID: 34693607 DOI: 10.1111/tra.12823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/21/2021] [Indexed: 12/27/2022]
Abstract
Extended synaptotagmins are endoplasmic reticulum proteins consisting of an SMP domain and multiple C2 domains that bind phospholipids and Ca2+ . E-Syts create contact junctions between the ER and plasma membrane (PM) to facilitate the exchange of glycerophospholipids between the apposed membranes. We find in the differentiating adipocyte that the E-Syt3 carboxyl domain is cleaved by a multi-step mechanism that includes removing the C2C domain. Confocal and live-cell time-lapse studies show that truncated E-Syt3ΔC2C, as well as endogenous E-Syt3 and the coat protein PLIN1, target the LDs from an annular, single giant ER cisterna. Inhibition of the proteasome blocks the proteolytic cleavage of Esyt3 and E-Syt3ΔC2C and causes the E-Syt3ΔC2C retention in the giant cisterna. The Esyt3 and PLIN1 distributions and LDs biogenesis show that the primordial cisterna, as we call it, is the birth and nurturing site of LDs in the adipocyte. Isoproterenol-induced lipolysis results in loss of cytoplasmic LDs and reappearance of the primordial cisterna. Electron microscopy and 3D-electron tomography studies show that the primordial cisterna consists of a tightly packed network of varicose tubules with extensively blistered membranes. Rounds of homotypic fusions from nascent to mature LDs play a central role in LD growth. The knockdown of E-Syt3 inhibits LD biogenesis. The identification of the primordial cisterna, an organelle that substitutes the randomly scattered ER foci that mother the LDs in non-adipose cells, sets the stage for a better understanding of LD biogenesis in the adipocyte.
Collapse
Affiliation(s)
- Vasiliki Lalioti
- Centro de Biología Molecular Severo Ochoa, Department of Cell Biology and Immunology, Physiological and Pathological Processes, Madrid, Spain
| | - Galina V Beznoussenko
- Laboratory of Electron Microscopy, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Alexander A Mironov
- Laboratory of Electron Microscopy, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Ignacio V Sandoval
- Centro de Biología Molecular Severo Ochoa, Department of Cell Biology and Immunology, Physiological and Pathological Processes, Madrid, Spain
| |
Collapse
|
9
|
ANKRD22 is an N-myristoylated hairpin-like monotopic membrane protein specifically localized to lipid droplets. Sci Rep 2021; 11:19233. [PMID: 34584137 PMCID: PMC8478909 DOI: 10.1038/s41598-021-98486-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
The membrane topology and intracellular localization of ANKRD22, a novel human N-myristoylated protein with a predicted single-pass transmembrane domain that was recently reported to be overexpressed in cancer, were examined. Immunofluorescence staining of COS-1 cells transfected with cDNA encoding ANKRD22 coupled with organelle markers revealed that ANKRD22 localized specifically to lipid droplets (LD). Analysis of the intracellular localization of ANKRD22 mutants C-terminally fused to glycosylatable tumor necrosis factor (GLCTNF) and assessment of their susceptibility to protein N-glycosylation revealed that ANKRD22 is synthesized on the endoplasmic reticulum (ER) membrane as an N-myristoylated hairpin-like monotopic membrane protein with the amino- and carboxyl termini facing the cytoplasm and then sorted to LD. Pro98 located at the center of the predicted membrane domain was found to be essential for the formation of the hairpin-like monotopic topology of ANKRD22. Moreover, the hairpin-like monotopic topology, and positively charged residues located near the C-terminus were demonstrated to be required for the sorting of ANKRD22 from ER to LD. Protein N-myristoylation was found to positively affect the LD localization. Thus, multiple factors, including hairpin-like monotopic membrane topology, C-terminal positively charged residues, and protein N-myristoylation cooperatively affected the intracellular targeting of ANKRD22 to LD.
Collapse
|
10
|
Abstract
Lipid droplets (LDs) are endoplasmic reticulum-derived organelles that consist of a core of neutral lipids encircled by a phospholipid monolayer decorated with proteins. As hubs of cellular lipid and energy metabolism, LDs are inherently involved in the etiology of prevalent metabolic diseases such as obesity and nonalcoholic fatty liver disease. The functions of LDs are regulated by a unique set of associated proteins, the LD proteome, which includes integral membrane and peripheral proteins. These proteins control key activities of LDs such as triacylglycerol synthesis and breakdown, nutrient sensing and signal integration, and interactions with other organelles. Here we review the mechanisms that regulate the composition of the LD proteome, such as pathways that mediate selective and bulk LD protein degradation and potential connections between LDs and cellular protein quality control.
Collapse
Affiliation(s)
- Melissa A Roberts
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA;
| | - James A Olzmann
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA; .,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
11
|
Bertsch P, Bergfreund J, Windhab EJ, Fischer P. Physiological fluid interfaces: Functional microenvironments, drug delivery targets, and first line of defense. Acta Biomater 2021; 130:32-53. [PMID: 34077806 DOI: 10.1016/j.actbio.2021.05.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Fluid interfaces, i.e. the boundary layer of two liquids or a liquid and a gas, play a vital role in physiological processes as diverse as visual perception, oral health and taste, lipid metabolism, and pulmonary breathing. These fluid interfaces exhibit a complex composition, structure, and rheology tailored to their individual physiological functions. Advances in interfacial thin film techniques have facilitated the analysis of such complex interfaces under physiologically relevant conditions. This allowed new insights on the origin of their physiological functionality, how deviations may cause disease, and has revealed new therapy strategies. Furthermore, the interactions of physiological fluid interfaces with exogenous substances is crucial for understanding certain disorders and exploiting drug delivery routes to or across fluid interfaces. Here, we provide an overview on fluid interfaces with physiological relevance, namely tear films, interfacial aspects of saliva, lipid droplet digestion and storage in the cell, and the functioning of lung surfactant. We elucidate their structure-function relationship, discuss diseases associated with interfacial composition, and describe therapies and drug delivery approaches targeted at fluid interfaces. STATEMENT OF SIGNIFICANCE: Fluid interfaces are inherent to all living organisms and play a vital role in various physiological processes. Examples are the eye tear film, saliva, lipid digestion & storage in cells, and pulmonary breathing. These fluid interfaces exhibit complex interfacial compositions and structures to meet their specific physiological function. We provide an overview on physiological fluid interfaces with a focus on interfacial phenomena. We elucidate their structure-function relationship, discuss diseases associated with interfacial composition, and describe novel therapies and drug delivery approaches targeted at fluid interfaces. This sets the scene for ocular, oral, or pulmonary surface engineering and drug delivery approaches.
Collapse
|
12
|
Brink JTR, Fourie R, Sebolai O, Albertyn J, Pohl CH. The role of lipid droplets in microbial pathogenesis. J Med Microbiol 2021; 70. [PMID: 34184983 DOI: 10.1099/jmm.0.001383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nonpolar lipids present in cells are mainly triacylglycerols and steryl esters. When cells are provided with an abundance of nutrients, these storage lipids accumulate. As large quantities of nonpolar lipids cannot be integrated into membranes, they are isolated from the cytosolic environment in lipid droplets. As specialized, inducible cytoplasmic organelles, lipid droplets have functions beyond the regulation of lipid metabolism, in cell signalling and activation, membrane trafficking and control of inflammatory mediator synthesis and secretion. Pathogens, including fungi, viruses, parasites, or intracellular bacteria can induce and may benefit from lipid droplets in infected cells. Here we review biogenesis of lipid droplets as well as the role of lipid droplets in the pathogenesis of selected viruses, bacteria, protists and yeasts.
Collapse
Affiliation(s)
- Jacobus T R Brink
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Ruan Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Olihile Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
13
|
The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces. MEMBRANES 2021; 11:membranes11040265. [PMID: 33917451 PMCID: PMC8067514 DOI: 10.3390/membranes11040265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022]
Abstract
Lipid droplets (LDs) are ubiquitously expressed organelles; the only intracellular organelles that contain a lipid monolayer rather than a bilayer. Proteins localize and bind to this monolayer as they do to intracellular lipid bilayers. The mechanism by which cytosolic LD binding proteins recognize, and bind, to this lipid interface remains poorly understood. Amphipathic α-helix bundles form a common motif that is shared between cytosolic LD binding proteins (e.g., perilipins 2, 3, and 5) and apolipoproteins, such as apoE and apoLp-III, found on lipoprotein particles. Here, we use pendant drop tensiometry to expand our previous work on the C-terminal α-helix bundle of perilipin 3 and the full-length protein. We measure the recruitment and insertion of perilipin 3 at mixed lipid monolayers at an aqueous-phospholipid-oil interface. We find that, compared to its C-terminus alone, the full-length perilipin 3 has a higher affinity for both a neat oil/aqueous interface and a phosphatidylcholine (PC) coated oil/aqueous interface. Both the full-length protein and the C-terminus show significantly more insertion into a fully unsaturated PC monolayer, contrary to our previous results at the air-aqueous interface. Additionally, the C-terminus shows a preference for lipid monolayers containing phosphatidylethanolamine (PE), whereas the full-length protein does not. These results strongly support a model whereby both the N-terminal 11-mer repeat region and C-terminal amphipathic α-helix bundle domains of perilipin 3 have distinct lipid binding, and potentially biological roles.
Collapse
|
14
|
Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation. Nat Commun 2021; 12:931. [PMID: 33568658 PMCID: PMC7875971 DOI: 10.1038/s41467-021-21035-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/06/2021] [Indexed: 01/30/2023] Open
Abstract
Caveolae are spherically shaped nanodomains of the plasma membrane, generated by cooperative assembly of caveolin and cavin proteins. Cavins are cytosolic peripheral membrane proteins with negatively charged intrinsically disordered regions that flank positively charged α-helical regions. Here, we show that the three disordered domains of Cavin1 are essential for caveola formation and dynamic trafficking of caveolae. Electrostatic interactions between disordered regions and α-helical regions promote liquid-liquid phase separation behaviour of Cavin1 in vitro, assembly of Cavin1 oligomers in solution, generation of membrane curvature, association with caveolin-1, and Cavin1 recruitment to caveolae in cells. Removal of the first disordered region causes irreversible gel formation in vitro and results in aberrant caveola trafficking through the endosomal system. We propose a model for caveola assembly whereby fuzzy electrostatic interactions between Cavin1 and caveolin-1 proteins, combined with membrane lipid interactions, are required to generate membrane curvature and a metastable caveola coat.
Collapse
|
15
|
Abstract
Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools to CAV1 function are generally less well understood, and this is also the case in the context of cancer. This review will summarize literature available on the role of CAV1 in cancer, highlighting particularly our understanding of the canonical (CAV1 in the plasma membrane) and non-canonical pathways (CAV1 in organelles and exosomes) linked to the dual role of the protein as a tumor suppressor and promoter of metastasis. With this in mind, we will focus on recently emerging concepts linking CAV1 function to the regulation of intracellular organelle communication within the same cell where CAV1 is expressed. However, we now know that CAV1 can be released from cells in exosomes and generate systemic effects. Thus, we will also elaborate on how CAV1 participates in intracellular communication between organelles as well as signaling between cells (non-canonical pathways) in cancer.
Collapse
|
16
|
Leyland B, Zarka A, Didi-Cohen S, Boussiba S, Khozin-Goldberg I. High Resolution Proteome of Lipid Droplets Isolated from the Pennate Diatom Phaeodactylum tricornutum (Bacillariophyceae) Strain pt4 provides mechanistic insights into complex intracellular coordination during nitrogen deprivation. JOURNAL OF PHYCOLOGY 2020; 56:1642-1663. [PMID: 32779202 DOI: 10.1111/jpy.13063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 07/12/2020] [Indexed: 05/08/2023]
Abstract
Lipid droplets (LDs) are an organelle conserved amongst all eukaryotes, consisting of a neutral lipid core surrounded by a polar lipid monolayer. Many species of microalgae accumulate LDs in response to stress conditions, such as nitrogen starvation. Here, we report the isolation and proteomic profiling of LD proteins from the model oleaginous pennate diatom Phaeodactylum tricornutum, strain Pt4 (UTEX 646). We also provide a quantitative description of LD morphological ontogeny, and fatty acid content. Novel cell disruption and LD isolation methods, combined with suspension-trapping and nanoflow liquid chromatography coupled to high resolution mass spectrometry, yielded an unprecedented number of LD proteins. Predictive annotation of the LD proteome suggests a broad assemblage of proteins with diverse functions, including lipid metabolism and vesicle trafficking, as well as ribosomal and proteasomal machinery. These proteins provide mechanistic insights into LD processes, and evidence for interactions between LDs and other organelles. We identify for the first time several key steps in diatom LD-associated triacylglycerol biosynthesis. Bioinformatic analyses of the LD proteome suggests multiple protein targeting mechanisms, including amphipathic helices, post-translational modifications, and translocation machinery. This work corroborates recent findings from other strains of P. tricornutum, other diatoms, and other eukaryotic organisms, suggesting that the fundamental proteins orchestrating LDs are conserved, and represent an ancient component of the eukaryotic endomembrane system. We postulate a comprehensive model of nitrogen starvation-induced diatom LDs on a molecular scale, and provide a wealth of candidates for metabolic engineering, with the potential to eventually customize LD contents.
Collapse
Affiliation(s)
- Ben Leyland
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Be'er Sheva, 84990, Israel
| | - Aliza Zarka
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Be'er Sheva, 84990, Israel
| | - Shoshana Didi-Cohen
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Be'er Sheva, 84990, Israel
| | - Sammy Boussiba
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Be'er Sheva, 84990, Israel
| | - Inna Khozin-Goldberg
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Be'er Sheva, 84990, Israel
| |
Collapse
|
17
|
New friends for seipin — Implications of seipin partner proteins in the life cycle of lipid droplets. Semin Cell Dev Biol 2020; 108:24-32. [DOI: 10.1016/j.semcdb.2020.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/20/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
|
18
|
A Role for Caveolin-3 in the Pathogenesis of Muscular Dystrophies. Int J Mol Sci 2020; 21:ijms21228736. [PMID: 33228026 PMCID: PMC7699313 DOI: 10.3390/ijms21228736] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Caveolae are the cholesterol-rich small invaginations of the plasma membrane present in many cell types including adipocytes, endothelial cells, epithelial cells, fibroblasts, smooth muscles, skeletal muscles and cardiac muscles. They serve as specialized platforms for many signaling molecules and regulate important cellular processes like energy metabolism, lipid metabolism, mitochondria homeostasis, and mechano-transduction. Caveolae can be internalized together with associated cargo. The caveolae-dependent endocytic pathway plays a role in the withdrawal of many plasma membrane components that can be sent for degradation or recycled back to the cell surface. Caveolae are formed by oligomerization of caveolin proteins. Caveolin-3 is a muscle-specific isoform, whose malfunction is associated with several diseases including diabetes, cancer, atherosclerosis, and cardiovascular diseases. Mutations in Caveolin-3 are known to cause muscular dystrophies that are collectively called caveolinopathies. Altered expression of Caveolin-3 is also observed in Duchenne’s muscular dystrophy, which is likely a part of the pathological process leading to muscle weakness. This review summarizes the major functions of Caveolin-3 in skeletal muscles and discusses its involvement in the pathology of muscular dystrophies.
Collapse
|
19
|
Lange Y, Steck TL. Active cholesterol 20 years on. Traffic 2020; 21:662-674. [PMID: 32930466 DOI: 10.1111/tra.12762] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
This review considers the following hypotheses, some well-supported and some speculative. Almost all of the sterol molecules in plasma membranes are associated with bilayer phospholipids in complexes of varied strength and stoichiometry. These complexes underlie many of the material properties of the bilayer. The small fraction of cholesterol molecules exceeding the binding capacity of the phospholipids is thermodynamically active and serves diverse functions. It circulates briskly among the cell membranes, particularly through contact sites linking the organelles. Active cholesterol provides the upstream feedback signal to multiple mechanisms governing plasma membrane homeostasis, pegging the sterol level to a threshold set by its phospholipids. Active cholesterol could also be the cargo for various inter-organelle transporters and the form excreted from cells by reverse transport. Furthermore, it is integral to the function of caveolae; a mediator of Hedgehog regulation; and a ligand for the binding of cytolytic toxins to membranes. Active cholesterol modulates a variety of plasma membrane proteins-receptors, channels and transporters-at least in vitro.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
20
|
Ma Y, Karki S, Brown PM, Lin DD, Podszun MC, Zhou W, Belyaeva OV, Kedishvili NY, Rotman Y. Characterization of essential domains in HSD17B13 for cellular localization and enzymatic activity. J Lipid Res 2020; 61:1400-1409. [PMID: 32973038 DOI: 10.1194/jlr.ra120000907] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human genetic studies recently identified an association of SNPs in the 17-β hydroxysteroid dehydrogenase 13 (HSD17B13) gene with alcoholic and nonalcoholic fatty liver disease development. Mutant HSD17B13 variants devoid of enzymatic function have been demonstrated to be protective from cirrhosis and liver cancer, supporting the development of HSD17B13 as a promising therapeutic target. Previous studies have demonstrated that HSD17B13 is a lipid droplet (LD)-associated protein. However, the critical domains that drive LD targeting or determine the enzymatic activity have yet to be defined. Here we used mutagenesis to generate multiple truncated and point-mutated proteins and were able to demonstrate in vitro that the N-terminal hydrophobic domain, PAT-like domain, and a putative α-helix/β-sheet/α-helix domain in HSD17B13 are all critical for LD targeting. Similarly, we characterized the predicted catalytic, substrate-binding, and homodimer interaction sites and found them to be essential for the enzymatic activity of HSD17B13, in addition to our previous identification of amino acid P260 and cofactor binding site. In conclusion, we identified critical domains and amino acid sites that are essential for the LD localization and protein function of HSD17B13, which may facilitate understanding of its function and targeting of this protein to treat chronic liver diseases.
Collapse
Affiliation(s)
- Yanling Ma
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA.,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA
| | - Suman Karki
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Philip M Brown
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA.,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA
| | - Dennis D Lin
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA.,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA
| | - Maren C Podszun
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA.,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA
| | - Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, MD, USA
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Yaron Rotman
- Liver and Energy Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA .,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Eck F, Phuyal S, Smith MD, Kaulich M, Wilkinson S, Farhan H, Behrends C. ACSL3 is a novel GABARAPL2 interactor that links ufmylation and lipid droplet biogenesis. J Cell Sci 2020; 133:jcs243477. [PMID: 32843575 DOI: 10.1242/jcs.243477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
While studies of the autophagy-related (ATG) genes in knockout models have led to an explosion of knowledge about the functions of autophagy components, the exact roles of LC3 and GABARAP family proteins (human ATG8 equivalents) are still poorly understood. A major drawback in understanding their roles is that the available interactome data has largely been acquired using overexpression systems. To overcome these limitations, we employed CRISPR/Cas9-based genome-editing to generate a panel of cells in which human ATG8 genes were tagged at their natural chromosomal locations with an N-terminal affinity epitope. This cellular resource was employed to map endogenous GABARAPL2 protein complexes using interaction proteomics. This approach identified the ER-associated protein and lipid droplet (LD) biogenesis factor ACSL3 as a stabilizing GABARAPL2-binding partner. GABARAPL2 bound ACSL3 in a manner dependent on its LC3-interacting regions, whose binding site in GABARAPL2 was required to recruit the latter to the ER. Through this interaction, the UFM1-activating enzyme UBA5 became anchored at the ER. Furthermore, ACSL3 depletion and LD induction affected the abundance of several ufmylation components and ER-phagy. Together these data allow us to define ACSL3 as a novel regulator of the enigmatic UFM1 conjugation pathway.
Collapse
Affiliation(s)
- Franziska Eck
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University München, Feodor-Lynen Strasse 17, 81377 Munich, Germany
| | - Santosh Phuyal
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Matthew D Smith
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Simon Wilkinson
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Hesso Farhan
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University München, Feodor-Lynen Strasse 17, 81377 Munich, Germany
| |
Collapse
|
22
|
Pol A, Morales-Paytuví F, Bosch M, Parton RG. Non-caveolar caveolins – duties outside the caves. J Cell Sci 2020; 133:133/9/jcs241562. [DOI: 10.1242/jcs.241562] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Caveolae are invaginations of the plasma membrane that are remarkably abundant in adipocytes, endothelial cells and muscle. Caveolae provide cells with resources for mechanoprotection, can undergo fission from the plasma membrane and can regulate a variety of signaling pathways. Caveolins are fundamental components of caveolae, but many cells, such as hepatocytes and many neurons, express caveolins without forming distinguishable caveolae. Thus, the function of caveolins goes beyond their roles as caveolar components. The membrane-organizing and -sculpting capacities of caveolins, in combination with their complex intracellular trafficking, might contribute to these additional roles. Furthermore, non-caveolar caveolins can potentially interact with proteins normally excluded from caveolae. Here, we revisit the non-canonical roles of caveolins in a variety of cellular contexts including liver, brain, lymphocytes, cilia and cancer cells, as well as consider insights from invertebrate systems. Non-caveolar caveolins can determine the intracellular fluxes of active lipids, including cholesterol and sphingolipids. Accordingly, caveolins directly or remotely control a plethora of lipid-dependent processes such as the endocytosis of specific cargoes, sorting and transport in endocytic compartments, or different signaling pathways. Indeed, loss-of-function of non-caveolar caveolins might contribute to the common phenotypes and pathologies of caveolin-deficient cells and animals.
Collapse
Affiliation(s)
- Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Frederic Morales-Paytuví
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | - Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Robert G. Parton
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ), Brisbane, Queensland 4072, Australia
- Centre for Microscopy and Microanalysis (CMM) IMB, The University of Queensland (UQ), Brisbane, Queensland 4072, Australia
| |
Collapse
|
23
|
Dhiman R, Caesar S, Thiam AR, Schrul B. Mechanisms of protein targeting to lipid droplets: A unified cell biological and biophysical perspective. Semin Cell Dev Biol 2020; 108:4-13. [PMID: 32201131 DOI: 10.1016/j.semcdb.2020.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/23/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022]
Abstract
Lipid droplets (LDs), or oil bodies in plants, are specialized organelles that primarily serve as hubs of cellular metabolic energy storage and consumption. These ubiquitous cytoplasmic organelles are derived from the endoplasmic reticulum (ER) and consist of a hydrophobic neutral lipid core - mainly consisting of triglycerides and sterol esters - that is encircled by a phospholipid monolayer. The dynamic metabolic functions of the LDs are mainly executed and regulated by proteins on the monolayer surface. However, its unique architecture puts some structural constraints on the types of proteins that can associate with LDs. The lipid monolayer is decorated with either peripheral proteins or with integral membrane proteins that adopt a monotopic topology. Due to its oil-water interface, which is energetically costly, the LD surface happens to be favorable to the recruitment of many proteins involved in metabolic but also non-metabolic functions. We only started very recently to understand biophysical and biochemical principles controlling protein targeting to LDs. This review aims to summarize the most recent findings regarding this topic and proposes directions that will potentially lead to a better understanding of LD surface characteristics, as compared to bilayer membranes, and how that impacts protein-LD interactions.
Collapse
Affiliation(s)
- Ravi Dhiman
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421 Homburg, Saar, Germany
| | - Stefanie Caesar
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421 Homburg, Saar, Germany
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.
| | - Bianca Schrul
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421 Homburg, Saar, Germany.
| |
Collapse
|
24
|
Abstract
Lipid droplets are storage organelles at the centre of lipid and energy homeostasis. They have a unique architecture consisting of a hydrophobic core of neutral lipids, which is enclosed by a phospholipid monolayer that is decorated by a specific set of proteins. Originating from the endoplasmic reticulum, lipid droplets can associate with most other cellular organelles through membrane contact sites. It is becoming apparent that these contacts between lipid droplets and other organelles are highly dynamic and coupled to the cycles of lipid droplet expansion and shrinkage. Importantly, lipid droplet biogenesis and degradation, as well as their interactions with other organelles, are tightly coupled to cellular metabolism and are critical to buffer the levels of toxic lipid species. Thus, lipid droplets facilitate the coordination and communication between different organelles and act as vital hubs of cellular metabolism.
Collapse
Affiliation(s)
- James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California-Berkeley, Berkeley, CA, USA.
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Zhang C, Liu P. The New Face of the Lipid Droplet: Lipid Droplet Proteins. Proteomics 2018; 19:e1700223. [DOI: 10.1002/pmic.201700223] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/13/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Congyan Zhang
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pingsheng Liu
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
26
|
Harnessing yeast organelles for metabolic engineering. Nat Chem Biol 2017; 13:823-832. [DOI: 10.1038/nchembio.2429] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 05/23/2016] [Indexed: 11/08/2022]
|
27
|
Bersuker K, Olzmann JA. Establishing the lipid droplet proteome: Mechanisms of lipid droplet protein targeting and degradation. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [PMID: 28627435 DOI: 10.1016/j.bbalip.2017.06.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipid droplets (LDs) are ubiquitous, endoplasmic reticulum (ER)-derived organelles that mediate the sequestration of neutral lipids (e.g. triacylglycerol and sterol esters), providing a dynamic cellular storage depot for rapid lipid mobilization in response to increased cellular demands. LDs have a unique ultrastructure, consisting of a core of neutral lipids encircled by a phospholipid monolayer that is decorated with integral and peripheral proteins. The LD proteome contains numerous lipid metabolic enzymes, regulatory scaffold proteins, proteins involved in LD clustering and fusion, and other proteins of unknown functions. The cellular role of LDs is inherently determined by the composition of its proteome and alteration of the LD protein coat provides a powerful mechanism to adapt LDs to fluctuating metabolic states. Here, we review the current understanding of the molecular mechanisms that govern LD protein targeting and degradation. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Kirill Bersuker
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
28
|
Thul PJ, Tschapalda K, Kolkhof P, Thiam AR, Oberer M, Beller M. Lipid droplet subset targeting of the Drosophila protein CG2254/dmLdsdh1. J Cell Sci 2017; 130:3141-3157. [DOI: 10.1242/jcs.199661] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 07/26/2017] [Indexed: 01/02/2023] Open
Abstract
Lipid droplets (LDs) are the principal organelles of lipid storage. They consist of a hydrophobic core of storage lipids, surrounded by a phospholipid monolayer with proteins attached. While some of these proteins are essential to regulate cellular and organismic lipid metabolism, key questions concerning LD protein function, such as their targeting to LDs, are still unanswered. Intriguingly, some proteins are restricted to LD subsets by an as yet unknown mechanism. This finding makes LD targeting even more complex.
Here, we characterize the Drosophila protein CG2254 which targets LD subsets in cultured cells and different larval Drosophila tissues, where the prevalence of LD subsets appears highly dynamic. We find that an amphipathic amino acid stretch mediates CG2254 LD localization. Additionally, we identified a juxtaposed sequence stretch limiting CG2254 localization to LD subsets. This sequence is sufficient to restrict a chimeric protein - consisting of the subset targeting sequence introduced to an otherwise pan LD localized protein sequence - to LD subsets. Based on its subcellular localization and annotated function, we suggest to rename CG2254 to Lipid droplet subset dehydrogenase 1 (Ldsdh1).
Collapse
Affiliation(s)
- Peter J. Thul
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kirsten Tschapalda
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Petra Kolkhof
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Abdou Rachid Thiam
- Laboratoire de Physique Statistique, Ecole Normale Superieure, PSL Research University, Universite de Paris Diderot Sorbonne Paris-Cite, Paris, France
| | - Monika Oberer
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Austria
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
29
|
Chen Y, Frost S, Byrne JA. Dropping in on the lipid droplet- tumor protein D52 (TPD52) as a new regulator and resident protein. Adipocyte 2016; 5:326-32. [PMID: 27617178 DOI: 10.1080/21623945.2016.1148835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
Lipid droplets are essential for both the storage and retrieval of excess cellular nutrients, and their biology is regulated by a diverse range of cellular proteins, some of which function at the lipid droplet. Numerous studies have characterized lipid droplet proteomes in different organisms and cell types, and RNAi whole genome screening studies have examined the genetic regulation of lipid storage in C. elegans and D. melanogaster. While tumor protein D52 (TPD52) did not emerge from earlier studies as a strong candidate, exogenous expression of human TPD52 in cultured cells resulted in significantly increased numbers of lipid droplets, and oleic acid supplementation increased TPD52 detection at both lipid droplets and the Golgi apparatus. These results suggest that direct testing of proteins that are infrequently but recurrently identified in proteomic and RNAi screening studies may identify novel lipid droplet regulators. While the analysis of these possibly lower-abundance or itinerant lipid droplet proteins may be more technically challenging, such proteins could facilitate a more detailed interrogation of emerging aspects of lipid droplet biology.
Collapse
|
30
|
Ruggiano A, Mora G, Buxó L, Carvalho P. Spatial control of lipid droplet proteins by the ERAD ubiquitin ligase Doa10. EMBO J 2016; 35:1644-55. [PMID: 27357570 PMCID: PMC4969576 DOI: 10.15252/embj.201593106] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 06/02/2016] [Indexed: 01/20/2023] Open
Abstract
The endoplasmic reticulum (ER) plays a central role in the biogenesis of most membrane proteins. Among these are proteins localized to the surface of lipid droplets (LDs), fat storage organelles delimited by a phospholipid monolayer. The LD monolayer is often continuous with the membrane of the ER allowing certain membrane proteins to diffuse between the two organelles. In these connected organelles, how some proteins concentrate specifically at the surface of LDs is not known. Here, we show that the ERAD ubiquitin ligase Doa10 controls the levels of some LD proteins. Their degradation is dependent on the localization to the ER and appears independent of the folding state. Moreover, we show that by degrading the ER pool of these LD proteins, ERAD contributes to restrict their localization to LDs. The signals for LD targeting and Doa10‐mediated degradation overlap, indicating that these are competing events. This spatial control of protein localization is a novel function of ERAD that might contribute to generate functional diversity in a continuous membrane system.
Collapse
Affiliation(s)
- Annamaria Ruggiano
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gabriel Mora
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Buxó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Pedro Carvalho
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
31
|
Mirheydari M, Rathnayake SS, Frederick H, Arhar T, Mann EK, Cocklin S, Kooijman EE. Insertion of perilipin 3 into a glycero(phospho)lipid monolayer depends on lipid headgroup and acyl chain species. J Lipid Res 2016; 57:1465-76. [PMID: 27256689 DOI: 10.1194/jlr.m068205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 12/27/2022] Open
Abstract
Lipid droplets (LDs) are organelles that contribute to various cellular functions that are vital for life. Aside from acting as a neutral lipid storage depot, they are also involved in building new membranes, synthesis of steroid hormones, and cell signaling. Many aspects of LD structure and function are not yet well-understood. Here we investigate the interaction of perilipin 3, a member of the perilipin family of LD binding proteins, and three N-terminal truncation mutants with lipid monolayers. The interaction is studied as a function of surface pressure for a series of systematically chosen lipids. We find that the C terminus of perilipin 3 has different insertion behavior from that of the longer truncation mutants and the full-length protein. Inclusion of N-terminal sequences with the C terminus decreases the ability of the protein construct to insert in lipid monolayers. Coupling of anionic lipids to negative spontaneous curvature facilitates protein interaction and insertion. The C terminus shows strong preference for lipids with more saturated fatty acids. This work sheds light on the LD binding properties and function of the different domains of perilipin 3.
Collapse
Affiliation(s)
- Mona Mirheydari
- Departments of Physics, Kent State University, Kent, OH 44242
| | | | - Hannah Frederick
- Chemistry and Biochemistry, Kent State University, Kent, OH 44242
| | - Taylor Arhar
- Department of Chemistry and Biochemistry, Loyola Marymount University, Los Angeles, CA 90045
| | | | - Simon Cocklin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | | |
Collapse
|
32
|
Gidda SK, Park S, Pyc M, Yurchenko O, Cai Y, Wu P, Andrews DW, Chapman KD, Dyer JM, Mullen RT. Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells. PLANT PHYSIOLOGY 2016; 170:2052-71. [PMID: 26896396 PMCID: PMC4825156 DOI: 10.1104/pp.15.01977] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/18/2016] [Indexed: 05/19/2023]
Abstract
Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols in seeds, their biogenesis and function in nonseed tissues are poorly understood. Recently, we identified a class of plant-specific, lipid droplet-associated proteins (LDAPs) that are abundant components of LDs in nonseed cell types. Here, we characterized the three LDAPs in Arabidopsis (Arabidopsis thaliana) to gain insight to their targeting, assembly, and influence on LD function and dynamics. While all three LDAPs targeted specifically to the LD surface, truncation analysis of LDAP3 revealed that essentially the entire protein was required for LD localization. The association of LDAP3 with LDs was detergent sensitive, but the protein bound with similar affinity to synthetic liposomes of various phospholipid compositions, suggesting that other factors contributed to targeting specificity. Investigation of LD dynamics in leaves revealed that LD abundance was modulated during the diurnal cycle, and characterization of LDAP misexpression mutants indicated that all three LDAPs were important for this process. LD abundance was increased significantly during abiotic stress, and characterization of mutant lines revealed that LDAP1 and LDAP3 were required for the proper induction of LDs during heat and cold temperature stress, respectively. Furthermore, LDAP1 was required for proper neutral lipid compartmentalization and triacylglycerol degradation during postgerminative growth. Taken together, these studies reveal that LDAPs are required for the maintenance and regulation of LDs in plant cells and perform nonredundant functions in various physiological contexts, including stress response and postgerminative growth.
Collapse
Affiliation(s)
- Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - Sunjung Park
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - Michal Pyc
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - Olga Yurchenko
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - Yingqi Cai
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - Peng Wu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - David W Andrews
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - Kent D Chapman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - John M Dyer
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| |
Collapse
|
33
|
Targeting Fat: Mechanisms of Protein Localization to Lipid Droplets. Trends Cell Biol 2016; 26:535-546. [PMID: 26995697 DOI: 10.1016/j.tcb.2016.02.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
Abstract
How proteins specifically localize to the phospholipid monolayer surface of lipid droplets (LDs) is being unraveled. We review here the major known pathways of protein targeting to LDs and suggest a classification framework based on the localization origin for the protein. Class I proteins often have a membrane-embedded, hydrophobic 'hairpin' motif, and access LDs from the endoplasmic reticulum (ER) either during LD formation or after formation via ER-LD membrane bridges. Class II proteins access the LD surface from the cytosol and bind through amphipathic helices or other hydrophobic domains. Other proteins require lipid modifications or protein-protein interactions to bind to LDs. We summarize knowledge for targeting and removal of the different classes, and highlight areas needing investigation.
Collapse
|
34
|
Lange Y, Steck TL. Active membrane cholesterol as a physiological effector. Chem Phys Lipids 2016; 199:74-93. [PMID: 26874289 DOI: 10.1016/j.chemphyslip.2016.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 02/05/2023]
Abstract
Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, 1653 W. Congress Parkway, Chicago, IL 60612, USA.
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
35
|
Turnover of the actomyosin complex in zebrafish embryos directs geometric remodelling and the recruitment of lipid droplets. Sci Rep 2015; 5:13915. [PMID: 26355567 PMCID: PMC4650301 DOI: 10.1038/srep13915] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022] Open
Abstract
Lipid droplets (LDs), reservoirs of cholesterols and fats, are organelles that
hydrolyse lipids in the cell. In zebrafish embryos, the actomyosin complex and
filamentous microtubules control the periodic regulation of the LD geometry.
Contrary to the existing hypothesis that LD transport involves the
kinesin-microtubule system, we find that their recruitment to the blastodisc depends
on the actomyosin turnover and is independent of the microtubules. For the first
time we report the existence of two distinct states of LDs, an inactive and an
active state, that occur periodically, coupled weakly to the cleavage cycles. LDs
are bigger, more circular and more stable in the inactive state in which the
geometry of the LDs is maintained by actomyosin as well as microtubules. The active
state has smaller and irregularly shaped LDs that show shape fluctuations that are
linked to actin depolymerization. Because most functions of LDs employ surface
interactions, our findings on the LD geometry and its regulation bring new insights
to the mechanisms associated with specific functions of LDs, such as their storage
capacity for fats or proteins, lipolysis etc.
Collapse
|
36
|
Ariotti N, Rae J, Leneva N, Ferguson C, Loo D, Okano S, Hill MM, Walser P, Collins BM, Parton RG. Molecular Characterization of Caveolin-induced Membrane Curvature. J Biol Chem 2015; 290:24875-90. [PMID: 26304117 DOI: 10.1074/jbc.m115.644336] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 01/07/2023] Open
Abstract
The generation of caveolae involves insertion of the cholesterol-binding integral membrane protein caveolin-1 (Cav1) into the membrane, however, the precise molecular mechanisms are as yet unknown. We have speculated that insertion of the caveolin scaffolding domain (CSD), a conserved amphipathic region implicated in interactions with signaling proteins, is crucial for caveola formation. We now define the core membrane-juxtaposed region of Cav1 and show that the oligomerization domain and CSD are protected by tight association with the membrane in both mature mammalian caveolae and a model prokaryotic system for caveola biogenesis. Cryoelectron tomography reveals the core membrane-juxtaposed domain to be sufficient to maintain oligomerization as defined by polyhedral distortion of the caveolar membrane. Through mutagenesis we demonstrate the importance of the membrane association of the oligomerization domain/CSD for defined caveola biogenesis and furthermore, highlight the functional significance of the intramembrane domain and the CSD for defined caveolin-induced membrane deformation. Finally, we define the core structural domain of Cav1, constituting only 66 amino acids and of great potential to nanoengineering applications, which is required for caveolin-induced vesicle formation in a bacterial system. These results have significant implications for understanding the role of Cav1 in caveola formation and in regulating cellular signaling events.
Collapse
Affiliation(s)
- Nicholas Ariotti
- From the University of Queensland, Institute for Molecular Bioscience, Queensland 4072, Australia
| | - James Rae
- From the University of Queensland, Institute for Molecular Bioscience, Queensland 4072, Australia
| | - Natalya Leneva
- From the University of Queensland, Institute for Molecular Bioscience, Queensland 4072, Australia
| | - Charles Ferguson
- From the University of Queensland, Institute for Molecular Bioscience, Queensland 4072, Australia
| | - Dorothy Loo
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland,Australia, and
| | - Satomi Okano
- From the University of Queensland, Institute for Molecular Bioscience, Queensland 4072, Australia
| | - Michelle M Hill
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland,Australia, and
| | - Piers Walser
- From the University of Queensland, Institute for Molecular Bioscience, Queensland 4072, Australia
| | - Brett M Collins
- From the University of Queensland, Institute for Molecular Bioscience, Queensland 4072, Australia
| | - Robert G Parton
- From the University of Queensland, Institute for Molecular Bioscience, Queensland 4072, Australia, the University of Queensland, Centre for Microscopy and Microanalysis, Brisbane, Queensland 4072, Australia
| |
Collapse
|
37
|
Gao Q, Goodman JM. The lipid droplet-a well-connected organelle. Front Cell Dev Biol 2015; 3:49. [PMID: 26322308 PMCID: PMC4533013 DOI: 10.3389/fcell.2015.00049] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/24/2015] [Indexed: 12/19/2022] Open
Abstract
Our knowledge of inter-organellar communication has grown exponentially in recent years. This review focuses on the interactions that cytoplasmic lipid droplets have with other organelles. Twenty-five years ago droplets were considered simply particles of coalesced fat. Ten years ago there were hints from proteomics studies that droplets might interact with other structures to share lipids and proteins. Now it is clear that the droplets interact with many if not most cellular structures to maintain cellular homeostasis and to buffer against insults such as starvation. The evidence for this statement, as well as probes to understand the nature and results of droplet interactions, are presented.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
38
|
Kory N, Thiam AR, Farese RV, Walther TC. Protein Crowding Is a Determinant of Lipid Droplet Protein Composition. Dev Cell 2015; 34:351-63. [PMID: 26212136 PMCID: PMC4536137 DOI: 10.1016/j.devcel.2015.06.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/21/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023]
Abstract
Lipid droplets (LDs) are lipid storage organelles that grow or shrink, depending on the availability of metabolic energy. Proteins recruited to LDs mediate many metabolic functions, including phosphatidylcholine and triglyceride synthesis. How the LD protein composition is tuned to the supply and demand for lipids remains unclear. We show that LDs, in contrast to other organelles, have limited capacity for protein binding. Consequently, macromolecular crowding plays a major role in determining LD protein composition. During lipolysis, when LDs and their surfaces shrink, some, but not all, proteins become displaced. In vitro studies show that macromolecular crowding, rather than changes in monolayer lipid composition, causes proteins to fall off the LD surface. As predicted by a crowding model, proteins compete for binding to the surfaces of LDs. Moreover, the LD binding affinity determines protein localization during lipolysis. Our findings identify protein crowding as an important principle in determining LD protein composition.
Collapse
Affiliation(s)
- Nora Kory
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Abdou-Rachid Thiam
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA; Laboratoire de Physique Statistique, École Normale Supérieure de Paris, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - Robert V Farese
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
39
|
Papadopoulos C, Orso G, Mancuso G, Herholz M, Gumeni S, Tadepalle N, Jüngst C, Tzschichholz A, Schauss A, Höning S, Trifunovic A, Daga A, Rugarli EI. Spastin binds to lipid droplets and affects lipid metabolism. PLoS Genet 2015; 11:e1005149. [PMID: 25875445 PMCID: PMC4395272 DOI: 10.1371/journal.pgen.1005149] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 03/17/2015] [Indexed: 11/30/2022] Open
Abstract
Mutations in SPAST, encoding spastin, are the most common cause of autosomal dominant hereditary spastic paraplegia (HSP). HSP is characterized by weakness and spasticity of the lower limbs, owing to progressive retrograde degeneration of the long corticospinal axons. Spastin is a conserved microtubule (MT)-severing protein, involved in processes requiring rearrangement of the cytoskeleton in concert to membrane remodeling, such as neurite branching, axonal growth, midbody abscission, and endosome tubulation. Two isoforms of spastin are synthesized from alternative initiation codons (M1 and M87). We now show that spastin-M1 can sort from the endoplasmic reticulum (ER) to pre- and mature lipid droplets (LDs). A hydrophobic motif comprised of amino acids 57 through 86 of spastin was sufficient to direct a reporter protein to LDs, while mutation of arginine 65 to glycine abolished LD targeting. Increased levels of spastin-M1 expression reduced the number but increased the size of LDs. Expression of a mutant unable to bind and sever MTs caused clustering of LDs. Consistent with these findings, ubiquitous overexpression of Dspastin in Drosophila led to bigger and less numerous LDs in the fat bodies and increased triacylglycerol levels. In contrast, Dspastin overexpression increased LD number when expressed specifically in skeletal muscles or nerves. Downregulation of Dspastin and expression of a dominant-negative variant decreased LD number in Drosophila nerves, skeletal muscle and fat bodies, and reduced triacylglycerol levels in the larvae. Moreover, we found reduced amount of fat stores in intestinal cells of worms in which the spas-1 homologue was either depleted by RNA interference or deleted. Taken together, our data uncovers an evolutionarily conserved role of spastin as a positive regulator of LD metabolism and open up the possibility that dysfunction of LDs in axons may contribute to the pathogenesis of HSP. Hereditary spastic paraplegia (HSP) is a genetically heterogeneous neurological disease characterized by weakness and spasticity of the lower limbs, caused by progressive retrograde degeneration of the corticospinal axons, the longest in the central nervous system. The most commonly mutated gene in autosomal dominant forms of HSP, SPAST, encodes for spastin, a microtubule-severing protein. Spastin has been implicated in several processes involving remodeling of membrane structures. We now show that the longest spastin form, spastin-M1, harbors a lipid droplet targeting sequence, which allows targeting of the protein to the surface of lipid droplets, the organelles where cells store neutral lipids. Furthermore, we demonstrate that depletion of the homologous spastin proteins in both flies and worms affects lipid droplet number and triacylglycerol content. Our study adds to recent discoveries that implicate other HSP proteins in lipid droplet and lipid metabolism, and strongly suggests that lipid droplet dysfunction in neurons should be investigated to understand pathogenesis of HSP.
Collapse
Affiliation(s)
- Chrisovalantis Papadopoulos
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Genny Orso
- "E. MEDEA" Scientific Institute, Conegliano, Italy
| | - Giuseppe Mancuso
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Marija Herholz
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Nimesha Tadepalle
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Christian Jüngst
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Anne Tzschichholz
- Institute for Biochemistry I, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Stefan Höning
- Institute for Biochemistry I, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andrea Daga
- "E. MEDEA" Scientific Institute, Conegliano, Italy
| | - Elena I. Rugarli
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
40
|
Hashemi HF, Goodman JM. The life cycle of lipid droplets. Curr Opin Cell Biol 2015; 33:119-24. [PMID: 25703629 DOI: 10.1016/j.ceb.2015.02.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 01/14/2023]
Abstract
Proteomic studies have revealed many potential functions of cytoplasmic lipid droplets, and recent activity has confirmed that these bona fide organelles are central not only for lipid storage and metabolism, but for development, immunity, and pathogenesis by several microbes. There has been a burst of recent activity on the assembly, maintenance and turnover of lipid droplets that reveals fresh insights. This review summarizes several novel findings in initiation of lipid droplet assembly, protein targeting, droplet fusion, and turnover of droplets through lipophagy.
Collapse
Affiliation(s)
- Hayaa F Hashemi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, United States
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, United States.
| |
Collapse
|
41
|
Lucken-Ardjomande Häsler S, Vallis Y, Jolin HE, McKenzie AN, McMahon HT. GRAF1a is a brain-specific protein that promotes lipid droplet clustering and growth, and is enriched at lipid droplet junctions. J Cell Sci 2014; 127:4602-19. [PMID: 25189622 PMCID: PMC4215711 DOI: 10.1242/jcs.147694] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lipid droplets are found in all cell types. Normally present at low levels in the brain, they accumulate in tumours and are associated with neurodegenerative diseases. However, little is known about the mechanisms controlling their homeostasis in the brain. We found that GRAF1a, the longest GRAF1 isoform (GRAF1 is also known as ARHGAP26), was enriched in the brains of neonates. Endogenous GRAF1a was found on lipid droplets in oleic-acid-fed primary glial cells. Exclusive localization required a GRAF1a-specific hydrophobic segment and two membrane-binding regions, a BAR and a PH domain. Overexpression of GRAF1a promoted lipid droplet clustering, inhibited droplet mobility and severely perturbed lipolysis following the chase of cells overloaded with fatty acids. Under these conditions, GRAF1a concentrated at the interface between lipid droplets. Although GRAF1-knockout mice did not show any gross abnormal phenotype, the total lipid droplet volume that accumulated in GRAF1(-/-) primary glia upon incubation with fatty acids was reduced compared to GRAF1(+/+) cells. These results provide additional insights into the mechanisms contributing to lipid droplet growth in non-adipocyte cells, and suggest that proteins with membrane sculpting BAR domains play a role in droplet homeostasis.
Collapse
Affiliation(s)
| | - Yvonne Vallis
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Helen E Jolin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Andrew N McKenzie
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Harvey T McMahon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
42
|
Pol A, Gross SP, Parton RG. Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. ACTA ACUST UNITED AC 2014; 204:635-46. [PMID: 24590170 PMCID: PMC3941045 DOI: 10.1083/jcb.201311051] [Citation(s) in RCA: 361] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipid droplets (LDs) are ubiquitous dynamic organelles that store and supply lipids in all eukaryotic and some prokaryotic cells for energy metabolism, membrane synthesis, and production of essential lipid-derived molecules. Interest in the organelle's cell biology has exponentially increased over the last decade due to the link between LDs and prevalent human diseases and the discovery of new and unexpected functions of LDs. As a result, there has been significant recent progress toward understanding where and how LDs are formed, and the specific lipid pathways that coordinate LD biogenesis.
Collapse
Affiliation(s)
- Albert Pol
- Equip de Compartiments Cellulars i Senyalització, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | | | | |
Collapse
|
43
|
Kassan A, Herms A, Fernández-Vidal A, Bosch M, Schieber NL, Reddy BJN, Fajardo A, Gelabert-Baldrich M, Tebar F, Enrich C, Gross SP, Parton RG, Pol A. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. ACTA ACUST UNITED AC 2014; 203:985-1001. [PMID: 24368806 PMCID: PMC3871434 DOI: 10.1083/jcb.201305142] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acyl-CoA synthetase 3 is recruited early to lipid droplet assembly sites on the ER, where it is required for efficient lipid droplet nucleation and lipid storage. Control of lipid droplet (LD) nucleation and copy number are critical, yet poorly understood, processes. We use model peptides that shift from the endoplasmic reticulum (ER) to LDs in response to fatty acids to characterize the initial steps of LD formation occurring in lipid-starved cells. Initially, arriving lipids are rapidly packed in LDs that are resistant to starvation (pre-LDs). Pre-LDs are restricted ER microdomains with a stable core of neutral lipids. Subsequently, a first round of “emerging” LDs is nucleated, providing additional lipid storage capacity. Finally, in proportion to lipid concentration, new rounds of LDs progressively assemble. Confocal microscopy and electron tomography suggest that emerging LDs are nucleated in a limited number of ER microdomains after a synchronized stepwise process of protein gathering, lipid packaging, and recognition by Plin3 and Plin2. A comparative analysis demonstrates that the acyl-CoA synthetase 3 is recruited early to the assembly sites, where it is required for efficient LD nucleation and lipid storage.
Collapse
Affiliation(s)
- Adam Kassan
- Equip de Senyalització i Proliferació Cellular, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
On the formation of lipid droplets in human adipocytes: the organization of the perilipin-vimentin cortex. PLoS One 2014; 9:e90386. [PMID: 24587346 PMCID: PMC3938729 DOI: 10.1371/journal.pone.0090386] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/29/2014] [Indexed: 12/22/2022] Open
Abstract
We report on the heterogeneity and diversity of lipid droplets (LDs) in early stages of adipogenesis by elucidating the cell and molecular biology of amphiphilic and cytoskeletal proteins regulating and stabilizing the generation of LDs in human adipose cells. A plethora of distinct and differently sized LDs was detected by a brief application of adipocyte differentiation medium and additional short treatment with oleic acid. Using these cells and highly specific antibodies for LD-binding proteins of the perilipin (PLIN) family, we could distinguish between endogenously derived LDs (endogenous LDs) positive for perilipin from exogenously induced LDs (exogenous LDs) positive for adipophilin, TIP47 and S3-12. Having optimized these stimulation conditions, we used early adipogenic differentiation stages to investigate small-sized LDs and concentrated on LD-protein associations with the intermediate-sized filament (IF) vimentin. This IF protein was described earlier to surround lipid globules, showing spherical, cage-like structures. Consequently - by biochemical methods, by immunofluorescence microscopy and by electron- and immunoelectron microscopy - various stages of emerging lipid globules were revealed with perilipin as linking protein between LDs and vimentin. For this LD-PLIN-Vimentin connection, a model is now proposed, suggesting an interaction of proteins via opposed charged amino acid domains respectively. In addition, multiple sheaths of smooth endoplasmic reticulum cisternae surrounding concentrically nascent LDs are shown. Based on our comprehensive localization studies we present and discuss a novel pathway for the LD formation.
Collapse
|
45
|
Dictyostelium discoideum Dgat2 can substitute for the essential function of Dgat1 in triglyceride production but not in ether lipid synthesis. EUKARYOTIC CELL 2014; 13:517-26. [PMID: 24562909 DOI: 10.1128/ec.00327-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Triacylglycerol (TAG), the common energy storage molecule, is formed from diacylglycerol and a coenzyme A-activated fatty acid by the action of an acyl coenzyme A:diacylglycerol acyltransferase (DGAT). In order to conduct this step, most organisms rely on more than one enzyme. The two main candidates in Dictyostelium discoideum are Dgat1 and Dgat2. We show, by creating single and double knockout mutants, that the endoplasmic reticulum (ER)-localized Dgat1 enzyme provides the predominant activity, whereas the lipid droplet constituent Dgat2 contributes less activity. This situation may be opposite from what is seen in mammalian cells. Dictyostelium Dgat2 is specialized for the synthesis of TAG, as is the mammalian enzyme. In contrast, mammalian DGAT1 is more promiscuous regarding its substrates, producing diacylglycerol, retinyl esters, and waxes in addition to TAG. The Dictyostelium Dgat1, however, produces TAG, wax esters, and, most interestingly, also neutral ether lipids, which represent a significant constituent of lipid droplets. Ether lipids had also been found in mammalian lipid droplets, but the role of DGAT1 in their synthesis was unknown. The ability to form TAG through either Dgat1 or Dgat2 activity is essential for Dictyostelium to grow on bacteria, its natural food substrate.
Collapse
|
46
|
Abstract
Across all kingdoms of life, cells store energy in a specialized organelle, the lipid droplet. In general, it consists of a hydrophobic core of triglycerides and steryl esters surrounded by only one leaflet derived from the endoplasmic reticulum membrane to which a specific set of proteins is bound. We have chosen the unicellular organism Dictyostelium discoideum to establish kinetics of lipid droplet formation and degradation and to further identify the lipid constituents and proteins of lipid droplets. Here, we show that the lipid composition is similar to what is found in mammalian lipid droplets. In addition, phospholipids preferentially consist of mainly saturated fatty acids, whereas neutral lipids are enriched in unsaturated fatty acids. Among the novel protein components are LdpA, a protein specific to Dictyostelium, and Net4, which has strong homologies to mammalian DUF829/Tmem53/NET4 that was previously only known as a constituent of the mammalian nuclear envelope. The proteins analyzed so far appear to move from the endoplasmic reticulum to the lipid droplets, supporting the concept that lipid droplets are formed on this membrane.
Collapse
|
47
|
Fakieh MH, Drake PJM, Lacey J, Munck JM, Motley AM, Hettema EH. Intra-ER sorting of the peroxisomal membrane protein Pex3 relies on its luminal domain. Biol Open 2013; 2:829-37. [PMID: 23951409 PMCID: PMC3744075 DOI: 10.1242/bio.20134788] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/29/2013] [Indexed: 11/23/2022] Open
Abstract
Pex3 is an evolutionarily conserved type III peroxisomal membrane protein required for peroxisome formation. It is inserted into the ER membrane and sorted via an ER subdomain (the peroxisomal ER, or pER) to peroxisomes. By constructing chimeras between Pex3 and the type III ER membrane protein Sec66, we have been able to separate the signals that mediate insertion of Pex3 into the ER from those that mediate sorting within the ER to the pER subdomain. The N-terminal 17-amino acid segment of Pex3 contains two signals that are each sufficient for sorting to the pER: a chimeric protein containing the N-terminal domain of Pex3 fused to the transmembrane and cytoplasmic segments of Sec66 sorts to the pER in wild type cells, and does not colocalise with peroxisomes. Subsequent transport to existing peroxisomes requires the Pex3 transmembrane segment. When expressed in Drosophila S2R+ cells, ScPex3 targeting to peroxisomes is dependent on the intra-ER sorting signals in the N-terminal segment. The N-terminal segments of both human and Drosophila Pex3 contain intra-ER sorting information and can replace that of ScPex3. Our analysis has uncovered the signals within Pex3 required for the various steps of its transport to peroxisomes. Our generation of versions of Pex3 that are blocked at each stage along its transport pathway provides a tool to dissect the mechanism, as well as the molecular machinery required at each step of the pathway.
Collapse
Affiliation(s)
- Mohammad H Fakieh
- Department of Molecular Biology and Biotechnology, University of Sheffield , Western Bank, Sheffield S10 2TN , UK
| | | | | | | | | | | |
Collapse
|
48
|
Murugesan S, Goldberg EB, Dou E, Brown WJ. Identification of diverse lipid droplet targeting motifs in the PNPLA family of triglyceride lipases. PLoS One 2013; 8:e64950. [PMID: 23741432 PMCID: PMC3669214 DOI: 10.1371/journal.pone.0064950] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 04/19/2013] [Indexed: 12/13/2022] Open
Abstract
Members of the Patatin-like Phospholipase Domain containing Protein A (PNPLA) family play key roles in triglyceride hydrolysis, energy metabolism, and lipid droplet (LD) homoeostasis. Here we report the identification of two distinct LD targeting motifs (LTM) for PNPLA family members. Transient transfection of truncated versions of human adipose triglyceride lipase (ATGL, also known as PNPLA2), PNPLA3/adiponutrin, or PNPLA5 (GS2-like) fused to GFP revealed that the C-terminal third of these proteins contains sequences that are sufficient for targeting to LDs. Furthermore, fusing the C-termini of PNPLA3 or PNPLA5 confers LD localization to PNPLA4, which is otherwise cytoplasmic. Analyses of additional mutants in ATGL, PNPLA5, and Brummer Lipase, the Drosophila homolog of mammalian ATGL, identified two different types of LTMs. The first type, in PNPLA5 and Brummer lipase, is a set of loosely conserved basic residues, while the second type, in ATGL, is contained within a stretch of hydrophobic residues. These results show that even closely related members of the PNPLA family employ different molecular motifs to associate with LDs.
Collapse
Affiliation(s)
- Sricharan Murugesan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elysa B. Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Eda Dou
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - William J. Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
49
|
Tanaka T, Kuroda K, Ikeda M, Wakita T, Kato N, Makishima M. Hepatitis C virus NS4B targets lipid droplets through hydrophobic residues in the amphipathic helices. J Lipid Res 2013; 54:881-92. [PMID: 23315449 DOI: 10.1194/jlr.m026443] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lipid droplets (LD) are dynamic storage organelles that are involved in lipid homeostasis. Hepatitis C virus (HCV) is closely associated with LDs. HCV Core and nonstructural (NS) proteins colocalize with LDs and presumably are involved in virion formation at that site. We demonstrated that HCV NS4B, an integral membrane protein in endoplasmic reticulum (ER), strongly targeted LDs. Confocal imaging studies showed that NS4B localized at the margins of LDs. Biochemical fractionation of HCV-replicating cells suggested that NS4B existed in membranes associated with LDs rather than on the LD surface membrane itself. The N- and C-terminal cytosolic domains of NS4B showed targeting of LDs, with the former being much stronger. In both domains, activity was present in the region containing an amphipathic α-helix, in which 10 hydrophobic residues were identified as putative determinants for targeting LDs. JFH1 mutants with alanine substitutions for the hydrophobic residues were defective for virus replication. W43A mutant with a single alanine substitution showed loss of association of NS4B with LDs and severely reduced release of infectious virions compared with wild-type JFH1. NS4B plays a crucial role in virus replication at the site of virion formation, namely, the microenvironment associated with LDs.
Collapse
Affiliation(s)
- Torahiko Tanaka
- Division of Biochemistry, Department of Biomedical Sciences and Nihon University School of Medicine, Tokyo 173-8610, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Hölttä-Vuori M, Salo VT, Ohsaki Y, Suster ML, Ikonen E. Alleviation of seipinopathy-related ER stress by triglyceride storage. Hum Mol Genet 2012; 22:1157-66. [PMID: 23250914 DOI: 10.1093/hmg/dds523] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations affecting the N-glycosylation site in Berardinelli-Seip lipodystrophy (BSCL)-associated gene BSCL2/seipin lead to a dominantly inherited spastic paraplegia termed seipinopathy. While the loss of function of seipin leads to severe congenital lipodystrophy, the effects of seipin N-glycosylation mutations on lipid balance in the nervous system are unknown. In this study, we show that expression of seipin N-glycosylation mutant N88S led to decreased triglyceride (TG) content in astrocytoma and motor neuron cell lines. This was corrected by supplementation with exogenous oleic acid. Upon oleic acid loading, seipin N88S protein was relocated from the endoplasmic reticulum (ER) to the surface of lipid droplets and this was paralleled by alleviation of ER stress induced by the mutant protein. This effect was not limited to seipin N88S, as oleic acid loading also reduced tunicamycin-induced ER stress in motor neuron cells. Furthermore, both seipin N88S and tunicamycin-induced ER stress were decreased by inhibiting lipolysis, suggesting that lipid droplets protected neuronal cells from ER stress. In developing zebrafish larvae, seipin N88S expression led to TG imbalance and reduced spontaneous free swimming. Importantly, supplementation with exogenous oleic acid reduced ER stress in the zebrafish head and increased fish motility. We propose that the decreased TG content contributes to the pathology induced by seipin N88S, and that rescuing TG levels may provide a novel therapeutic strategy in seipinopathy.
Collapse
Affiliation(s)
- Maarit Hölttä-Vuori
- Institute of Biomedicine, Anatomy, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|