1
|
Judy RM, Sheedy CJ, Gardner BM. Insights into the Structure and Function of the Pex1/Pex6 AAA-ATPase in Peroxisome Homeostasis. Cells 2022; 11:2067. [PMID: 35805150 PMCID: PMC9265785 DOI: 10.3390/cells11132067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023] Open
Abstract
The AAA-ATPases Pex1 and Pex6 are required for the formation and maintenance of peroxisomes, membrane-bound organelles that harbor enzymes for specialized metabolism. Together, Pex1 and Pex6 form a heterohexameric AAA-ATPase capable of unfolding substrate proteins via processive threading through a central pore. Here, we review the proposed roles for Pex1/Pex6 in peroxisome biogenesis and degradation, discussing how the unfolding of potential substrates contributes to peroxisome homeostasis. We also consider how advances in cryo-EM, computational structure prediction, and mechanisms of related ATPases are improving our understanding of how Pex1/Pex6 converts ATP hydrolysis into mechanical force. Since mutations in PEX1 and PEX6 cause the majority of known cases of peroxisome biogenesis disorders such as Zellweger syndrome, insights into Pex1/Pex6 structure and function are important for understanding peroxisomes in human health and disease.
Collapse
Affiliation(s)
| | | | - Brooke M. Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; (R.M.J.); (C.J.S.)
| |
Collapse
|
2
|
Argyriou C, Polosa A, Song JY, Omri S, Steele B, Cécyre B, McDougald DS, Di Pietro E, Bouchard JF, Bennett J, Hacia JG, Lachapelle P, Braverman NE. AAV-mediated PEX1 gene augmentation improves visual function in the PEX1-Gly844Asp mouse model for mild Zellweger spectrum disorder. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:225-240. [PMID: 34703844 PMCID: PMC8516995 DOI: 10.1016/j.omtm.2021.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/01/2021] [Indexed: 12/01/2022]
Abstract
Patients with Zellweger spectrum disorder (ZSD) commonly present with vision loss due to mutations in PEX genes required for peroxisome assembly and function. Here, we evaluate PEX1 retinal gene augmentation therapy in a mouse model of mild ZSD bearing the murine equivalent (PEX1-p[Gly844Asp]) of the most common human mutation. Experimental adeno-associated virus 8.cytomegalovirus.human PEX1.hemagglutinin (AAV8.CMV.HsPEX1.HA) and control AAV8.CMV.EGFP vectors were administered by subretinal injection in contralateral eyes of early (5-week-old)- or later (9-week-old)-stage retinopathy cohorts. HsPEX1.HA protein was expressed in the retina with no gross histologic side effects. Peroxisomal metabolic functions, assessed by retinal C26:0 lysophosphatidylcholine (lyso-PC) levels, were partially normalized after therapeutic vector treatment. Full-field flash electroretinogram (ffERG) analyses at 8 weeks post-injection showed a 2-fold improved retinal response in the therapeutic relative to control vector-injected eyes. ffERG improved by 1.6- to 2.5-fold in the therapeutic vector-injected eyes when each cohort reached 25 weeks of age. At 32 weeks of age, the average ffERG response was double in the therapeutic relative to control vector-injected eyes in both cohorts. Optomotor reflex analyses trended toward improvement. These proof-of-concept studies represent the first application of gene augmentation therapy to treat peroxisome biogenesis disorders and support the potential for retinal gene delivery to improve vision in these patients.
Collapse
Affiliation(s)
- Catherine Argyriou
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Anna Polosa
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Ji Yun Song
- Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samy Omri
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Bradford Steele
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bruno Cécyre
- School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Devin S McDougald
- Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erminia Di Pietro
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph G Hacia
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pierre Lachapelle
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nancy E Braverman
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
3
|
Lotz-Havla AS, Woidy M, Guder P, Schmiesing J, Erdmann R, Waterham HR, Muntau AC, Gersting SW. Edgetic Perturbations Contribute to Phenotypic Variability in PEX26 Deficiency. Front Genet 2021; 12:726174. [PMID: 34804114 PMCID: PMC8600046 DOI: 10.3389/fgene.2021.726174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes share metabolic pathways with other organelles and peroxisomes are embedded into key cellular processes. However, the specific function of many peroxisomal proteins remains unclear and restricted knowledge of the peroxisomal protein interaction network limits a precise mapping of this network into the cellular metabolism. Inborn peroxisomal disorders are autosomal or X-linked recessive diseases that affect peroxisomal biogenesis (PBD) and/or peroxisomal metabolism. Pathogenic variants in the PEX26 gene lead to peroxisomal disorders of the full Zellweger spectrum continuum. To investigate the phenotypic complexity of PEX26 deficiency, we performed a combined organelle protein interaction screen and network medicine approach and 1) analyzed whether PEX26 establishes interactions with other peroxisomal proteins, 2) deciphered the PEX26 interaction network, 3) determined how PEX26 is involved in further processes of peroxisomal biogenesis and metabolism, and 4) showed how variant-specific disruption of protein-protein interactions (edgetic perturbations) may contribute to phenotypic variability in PEX26 deficient patients. The discovery of 14 novel protein-protein interactions for PEX26 revealed a hub position of PEX26 inside the peroxisomal interactome. Analysis of edgetic perturbations of PEX26 variants revealed a strong correlation between the number of affected protein-protein interactions and the molecular phenotype of matrix protein import. The role of PEX26 in peroxisomal biogenesis was expanded encompassing matrix protein import, division and proliferation, and membrane assembly. Moreover, the PEX26 interaction network intersects with cellular lipid metabolism at different steps. The results of this study expand the knowledge about the function of PEX26 and refine genotype-phenotype correlations, which may contribute to our understanding of the underlying disease mechanism of PEX26 deficiency.
Collapse
Affiliation(s)
- Amelie S Lotz-Havla
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Mathias Woidy
- University Children's Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Guder
- University Children's Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessica Schmiesing
- University Children's Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Erdmann
- Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, Bochum, Germany
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ania C Muntau
- Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Søren W Gersting
- University Children's Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Niwa H, Miyauchi-Nanri Y, Okumoto K, Mukai S, Noi K, Ogura T, Fujiki Y. A newly isolated Pex7-binding, atypical PTS2 protein P7BP2 is a novel dynein-type AAA+ protein. J Biochem 2018; 164:437-447. [PMID: 30204880 DOI: 10.1093/jb/mvy073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
A newly isolated binding protein of peroxisomal targeting signal type 2 (PTS2) receptor Pex7, termed P7BP2, is transported into peroxisomes by binding to the longer isoform of Pex5p, Pex5pL, via Pex7p. The binding to Pex7p and peroxisomal localization of P7BP2 depends on the cleavable PTS2 in the N-terminal region, suggesting that P7BP2 is a new PTS2 protein. By search on human database, three AAA+ domains are found in the N-terminal half of P7BP2. Protein sequence alignment and motif search reveal that in the C-terminal region P7BP2 contains additional structural domains featuring weak but sufficient homology to AAA+ domain. P7BP2 behaves as a monomer in gel-filtration chromatography and the single molecule observed under atomic force microscope shapes a disc-like ring. Collectively, these results suggest that P7BP2 is a novel dynein-type AAA+ family protein, of which domains are arranged into a pseudo-hexameric ring structure.
Collapse
Affiliation(s)
- Hajime Niwa
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yasuhiro Miyauchi-Nanri
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Kentaro Noi
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
5
|
MacLean GE, Argyriou C, Di Pietro E, Sun X, Birjandian S, Saberian P, Hacia JG, Braverman NE. Zellweger spectrum disorder patient-derived fibroblasts with the PEX1-Gly843Asp allele recover peroxisome functions in response to flavonoids. J Cell Biochem 2018; 120:3243-3258. [PMID: 30362618 DOI: 10.1002/jcb.27591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/08/2018] [Indexed: 01/03/2023]
Abstract
Zellweger spectrum disorder (ZSD) results from biallelic mutations in PEX genes required for peroxisome biogenesis. PEX1-G843D is a common hypomorphic allele in the patient population that is associated with milder disease. In prior work using a PEX1-G843D/null patient fibroblast line expressing a green fluorescent protein (GFP) reporter with a peroxisome-targeting signal (GFP-PTS1), we demonstrated that treatments with the chemical chaperone betaine and flavonoid acacetin diacetate recovered peroxisome functions. To identify more effective compounds for preclinical investigation, we evaluated 54 flavonoids using this cell-based phenotype assay. Diosmetin showed the most promising combination of potency and efficacy (EC50 2.5 µM). All active 5',7'-dihydroxyflavones showed greater average efficacy than their corresponding flavonols, whereas the corresponding flavanones, isoflavones, and chalcones tested were inactive. Additional treatment with the proteostasis regulator bortezomib increased the percentage of import-rescued cells over treatment with flavonoids alone. Cotreatments of diosmetin and betaine showed the most robust additive effects, as confirmed by three independent functional assays in primary PEX1-G843D patient cells, but neither agent was active alone or in combination in patient cells homozygous for the PEX1 c.2097_2098insT null allele. Moreover, diosmetin treatment increased PEX1, PEX6, and PEX5 protein levels in PEX1-G843D patient cells, but none of these proteins increased in PEX1 null cells. We propose that diosmetin acts as a pharmacological chaperone that improves the stability, conformation, and functions of PEX1/PEX6 exportomer complexes required for peroxisome assembly. We suggest that diosmetin, in clinical use for chronic venous disease, and related flavonoids warrant further preclinical investigation for the treatment of PEX1-G843D-associated ZSD.
Collapse
Affiliation(s)
- Gillian E MacLean
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Catherine Argyriou
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Erminia Di Pietro
- Department of Pediatrics, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Xuting Sun
- Department of Biotechnology, McGill University, Montreal, Quebec, Canada
| | - Sara Birjandian
- Department of Biotechnology, McGill University, Montreal, Quebec, Canada
| | - Panteha Saberian
- Department of Biotechnology, McGill University, Montreal, Quebec, Canada
| | - Joseph G Hacia
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, Los Angeles, California
| | - Nancy E Braverman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Pediatrics, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Guder P, Lotz-Havla AS, Woidy M, Reiß DD, Danecka MK, Schatz UA, Becker M, Ensenauer R, Pagel P, Büttner L, Muntau AC, Gersting SW. Isoform-specific domain organization determines conformation and function of the peroxisomal biogenesis factor PEX26. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:518-531. [PMID: 30366024 DOI: 10.1016/j.bbamcr.2018.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Peroxisomal biogenesis factor PEX26 is a membrane anchor for the multi-subunit PEX1-PEX6 protein complex that controls ubiquitination and dislocation of PEX5 cargo receptors for peroxisomal matrix protein import. PEX26 associates with the peroxisomal translocation pore via PEX14 and a splice variant (PEX26Δex5) of unknown function has been reported. Here, we demonstrate PEX26 homooligomerization mediated by two heptad repeat domains adjacent to the transmembrane domain. We show that isoform-specific domain organization determines PEX26 oligomerization and impacts peroxisomal β-oxidation and proliferation. PEX26 and PEX26Δex5 displayed different patterns of interaction with PEX2-PEX10 or PEX13-PEX14 complexes, which relate to distinct pre-peroxisomes in the de novo synthesis pathway. Our data support an alternative PEX14-dependent mechanism of peroxisomal membrane association for the splice variant, which lacks a transmembrane domain. Structure-function relationships of PEX26 isoforms explain an extended function in peroxisomal homeostasis and these findings may improve our understanding of the broad phenotype of PEX26-associated human disorders.
Collapse
Affiliation(s)
- Philipp Guder
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Amelie S Lotz-Havla
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Mathias Woidy
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dunja D Reiß
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Marta K Danecka
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ulrich A Schatz
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Marc Becker
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; Labor Becker Olgemöller und Kollegen, 81671 Munich, Germany
| | - Regina Ensenauer
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; Experimental Pediatrics, Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Pagel
- Lehrstuhl für Genomorientierte Bioinformatik, Technische Universität, 85350 Freising, Germany; numares GmbH, Josef-Engert-Str. 9, 93053 Regensburg, Germany
| | - Lars Büttner
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Ania C Muntau
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Søren W Gersting
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
7
|
Mukai S, Matsuzaki T, Fujiki Y. The cytosolic peroxisome-targeting signal (PTS)-receptors, Pex7p and Pex5pL, are sufficient to transport PTS2 proteins to peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:441-449. [PMID: 30296498 DOI: 10.1016/j.bbamcr.2018.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022]
Abstract
Proteins harboring peroxisome-targeting signal type-2 (PTS2) are recognized in the cytosol by mobile PTS2 receptor Pex7p and associate with a longer isoform Pex5pL of the PTS1 receptor. Trimeric PTS2 protein-Pex7p-Pex5pL complexes are translocated to peroxisomes in mammalian cells. However, it remains unclear whether Pex5pL and Pex7p are sufficient cytosolic components in transporting of PTS2 proteins to peroxisomes. Here, we construct a semi-intact cell import system to define the cytosolic components required for the peroxisomal PTS2 protein import and show that the PTS2 pre-import complexes comprising Pex7p, Pex5p, and Hsc70 isolated from the cytosol of pex14 Chinese hamster ovary cell mutant ZP161 is import-competent. PTS2 reporter proteins are transported to peroxisomes by recombinant Pex7p and Pex5pL in semi-intact cells devoid of the cytosol. Furthermore, PTS2 proteins are translocated to peroxisomes in the presence of a non-hydrolyzable ATP analogue, adenylyl imidodiphosphate, and N-ethylmaleimide, suggesting that ATP-dependent chaperones including Hsc70 are dispensable for PTS2 protein import. Taken together, we suggest that Pex7p and Pex5pL are the minimal cytosolic factors in the transport of PTS2 proteins to peroxisomes.
Collapse
Affiliation(s)
- Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Takashi Matsuzaki
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
8
|
Schwerter DP, Grimm I, Platta HW, Erdmann R. ATP-driven processes of peroxisomal matrix protein import. Biol Chem 2017; 398:607-624. [PMID: 27977397 DOI: 10.1515/hsz-2016-0293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022]
Abstract
In peroxisomal matrix protein import two processes directly depend on the binding and hydrolysis of ATP, both taking place at the late steps of the peroxisomal import cycle. First, ATP hydrolysis is required to initiate a ubiquitin-transfer cascade to modify the import (co-)receptors. These receptors display a dual localization in the cytosol and at the peroxisomal membrane, whereas only the membrane bound fraction receives the ubiquitin modification. The second ATP-dependent process of the import cycle is carried out by the two AAA+-proteins Pex1p and Pex6p. These ATPases form a heterohexameric complex, which is recruited to the peroxisomal import machinery by the membrane anchor protein Pex15p. The Pex1p/Pex6p complex recognizes the ubiquitinated import receptors, pulls them out of the membrane and releases them into the cytosol. There the deubiquitinated receptors are provided for further rounds of import. ATP binding and hydrolysis are required for Pex1p/Pex6p complex formation and receptor export. In this review, we summarize the current knowledge on the peroxisomal import cascade. In particular, we will focus on the ATP-dependent processes, which are so far best understood in the model organism Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Daniel P Schwerter
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum
| | - Immanuel Grimm
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum
| |
Collapse
|
9
|
Peroxisomal Membrane and Matrix Protein Import Using a Semi-Intact Mammalian Cell System. Methods Mol Biol 2017; 1595:213-219. [PMID: 28409465 DOI: 10.1007/978-1-4939-6937-1_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peroxisomes are essential intracellular organelles that catalyze a number of essential metabolic pathways including β-oxidation of very long chain fatty acids, synthesis of plasmalogen, bile acids, and generation and degradation of hydrogen peroxide. These peroxisomal functions are accomplished by strictly and spatiotemporally regulated compartmentalization of the enzymes catalyzing these reactions. Defects in peroxisomal protein import result in inherited peroxisome biogenesis disorders in humans. Peroxisomal matrix and membrane proteins are synthesized on free ribosomes and transported to peroxisomes in a manner dependent on their specific targeting signals and their receptors. Peroxisomal protein import can be analyzed using a semi-intact assay system, in which targeting efficiency is readily monitored by immunofluorescence microscopy. Furthermore, cytosolic factors required for peroxisomal protein import can be manipulated, suggesting that the semi-intact system is a useful and convenient system to uncover the molecular mechanisms of peroxisomal protein import.
Collapse
|
10
|
Nucleotide-dependent assembly of the peroxisomal receptor export complex. Sci Rep 2016; 6:19838. [PMID: 26842748 PMCID: PMC4740771 DOI: 10.1038/srep19838] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/30/2015] [Indexed: 01/27/2023] Open
Abstract
Pex1p and Pex6p are two AAA-ATPases required for biogenesis of peroxisomes. Both proteins form a hetero-hexameric complex in an ATP-dependent manner, which has a dual localization in the cytosol and at the peroxisomal membrane. At the peroxisomal membrane, the complex is responsible for the release of the import receptor Pex5p at the end of the matrix protein import cycle. In this study, we analyzed the recruitment of the AAA-complex to its anchor protein Pex15p at the peroxisomal membrane. We show that the AAA-complex is properly assembled even under ADP-conditions and is able to bind efficiently to Pex15p in vivo. We reconstituted binding of the Pex1/6p-complex to Pex15p in vitro and show that Pex6p mediates binding to the cytosolic part of Pex15p via a direct interaction. Analysis of the isolated complex revealed a stoichiometry of Pex1p/Pex6p/Pex15p of 3:3:3, indicating that each Pex6p molecule of the AAA-complex binds Pex15p. Binding of the AAA-complex to Pex15p in particular and to the import machinery in general is stabilized when ATP is bound to the second AAA-domain of Pex6p and its hydrolysis is prevented. The data indicate that receptor release in peroxisomal protein import is associated with a nucleotide-depending Pex1/6p-cycle of Pex15p-binding and release.
Collapse
|
11
|
Grimm I, Erdmann R, Girzalsky W. Role of AAA(+)-proteins in peroxisome biogenesis and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:828-37. [PMID: 26453804 DOI: 10.1016/j.bbamcr.2015.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 11/16/2022]
Abstract
Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.
Collapse
Affiliation(s)
- Immanuel Grimm
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| | - Wolfgang Girzalsky
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| |
Collapse
|
12
|
The Design and Structure of Outer Membrane Receptors from Peroxisomes, Mitochondria, and Chloroplasts. Structure 2015; 23:1783-1800. [DOI: 10.1016/j.str.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 08/10/2015] [Indexed: 01/03/2023]
|
13
|
Kao YT, Bartel B. Elevated growth temperature decreases levels of the PEX5 peroxisome-targeting signal receptor and ameliorates defects of Arabidopsis mutants with an impaired PEX4 ubiquitin-conjugating enzyme. BMC PLANT BIOLOGY 2015; 15:224. [PMID: 26377801 PMCID: PMC4574000 DOI: 10.1186/s12870-015-0605-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/06/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND Peroxisomes house critical metabolic reactions. For example, fatty acid β-oxidation enzymes, which are essential during early seedling development, are peroxisomal. Peroxins (PEX proteins) are needed to bring proteins into peroxisomes. Most matrix proteins are delivered to peroxisomes by PEX5, a receptor that forms transient pores to escort proteins across the peroxisomal membrane. After cargo delivery, a peroxisome-tethered ubiquitin-conjugating enzyme (PEX4) and peroxisomal ubiquitin-protein ligases mono- or polyubiquitinate PEX5 for recycling back to the cytosol or for degradation, respectively. Arabidopsis pex mutants β-oxidize fatty acids inefficiently and therefore fail to germinate or grow less vigorously. These defects can be partially alleviated by providing a fixed carbon source, such as sucrose, in the growth medium. Despite extensive characterization of peroxisome biogenesis in Arabidopsis grown in non-challenged conditions, the effects of environmental stressors on peroxisome function and pex mutant dysfunction are largely unexplored. RESULTS We surveyed the impact of growth temperature on a panel of pex mutants and found that elevated temperature ameliorated dependence on external sucrose and reduced PEX5 levels in the pex4-1 mutant. Conversely, growth at low temperature exacerbated pex4-1 physiological defects and increased PEX5 levels. Overexpressing PEX5 also worsened pex4-1 defects, implying that PEX5 lingering on the peroxisomal membrane when recycling is impaired impedes peroxisome function. Growth at elevated temperature did not reduce the fraction of membrane-associated PEX5 in pex4-1, suggesting that elevated temperature did not restore PEX4 enzymatic function in the mutant. Moreover, preventing autophagy in pex4-1 did not restore PEX5 levels at high temperature. In contrast, MG132 treatment increased PEX5 levels, implicating the proteasome in degrading PEX5, especially at high temperature. CONCLUSIONS We conclude that growth at elevated temperature increases proteasomal degradation of PEX5 to reduce overall PEX5 levels and ameliorate pex4-1 physiological defects. Our results support the hypothesis that efficient retrotranslocation of PEX5 after cargo delivery is needed not only to make PEX5 available for further rounds of cargo delivery, but also to prevent the peroxisome dysfunction that results from PEX5 lingering in the peroxisomal membrane.
Collapse
Affiliation(s)
- Yun-Ting Kao
- Biochemistry and Cell Biology Program, Department of BioSciences, Rice University, Houston, TX, USA.
| | - Bonnie Bartel
- Biochemistry and Cell Biology Program, Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
14
|
Platta HW, Brinkmeier R, Reidick C, Galiani S, Clausen MP, Eggeling C. Regulation of peroxisomal matrix protein import by ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:838-49. [PMID: 26367801 DOI: 10.1016/j.bbamcr.2015.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/02/2023]
Abstract
Peroxisomes are organelles that play an important role in many cellular tasks. The functionality of peroxisomes depends on the proper import of their matrix proteins. Peroxisomal matrix proteins are imported posttranslationally in a folded, sometimes even oligomeric state. They harbor a peroxisomal targeting sequence (PTS), which is recognized by dynamic PTS-receptors in the cytosol. The PTS-receptors ferry the cargo to the peroxisomal membrane, where they become part of a transient import pore and then release the cargo into the peroxisomal lumen. Subsequentially, the PTS-receptors are ubiquitinated in order to mark them for the export-machinery, which releases them back to the cytosol. Upon deubiquitination, the PTS-receptors can facilitate further rounds of cargo import. Because the ubiquitination of the receptors is an essential step in the import cycle, it also represents a central regulatory element that governs peroxisomal dynamics. In this review we want to give an introduction to the functional role played by ubiquitination during peroxisomal protein import and highlight the mechanistic concepts that have emerged based on data derived from different species since the discovery of the first ubiquitinated peroxin 15years ago. Moreover, we discuss future tasks and the potential of using advanced technologies for investigating further details of peroxisomal protein transport.
Collapse
Affiliation(s)
- Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Rebecca Brinkmeier
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Mathias P Clausen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom.
| |
Collapse
|
15
|
Tamura S, Matsumoto N, Takeba R, Fujiki Y. AAA peroxins and their recruiter Pex26p modulate the interactions of peroxins involved in peroxisomal protein import. J Biol Chem 2014; 289:24336-46. [PMID: 25016021 DOI: 10.1074/jbc.m114.588038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pex1p and Pex6p are required for the relocation of the import receptor Pex5p from the peroxisomal membrane to the cytosol. We herein show that mammalian Pex26p directly binds to Pex14p, the initial docking receptor of Pex5p, and interacts with Pex5p via Pex14p. The binding affinity of Pex26p to Pex14p is altered by Pex5p. Further evidence suggests that the N-terminal region in Pex26p acts as a scaffold protein to recruit Pex14p·Pex5p complex together with Pex1p·Pex6p complexes on peroxisomes. Pex26p binding to Pex14p was suppressed by overexpression of Pex1p and Pex6p in an ATP-dependent manner, whereas Pex14p was not competed out by Pex1p and Pex6p from Pex26p mutant defective in peroxisomal matrix protein import. These results suggested that peroxisome biogenesis requires Pex1p- and Pex6p-regulated dissociation of Pex14p from Pex26p. Pex1p homo-oligomer directly binds to Pex5p as assessed by a surface plasmon resonance-based assay. Moreover, cytosolic Pex1p is likely to maintain the functional oligomer of Pex5p. Taken together, in the peroxisomal protein import, AAA peroxins modulate the interaction between Pex26p and Pex14p on peroxisome membrane as well as Pex5p oligomer in the cytosol.
Collapse
Affiliation(s)
- Shigehiko Tamura
- Faculty of Arts and Science, Kyushu University, Fukuoka 812-8581, Japan and Graduate School of Systems Life Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | - Naomi Matsumoto
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | - Ryota Takeba
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | - Yukio Fujiki
- From the Department of Biology, Faculty of Sciences, and
| |
Collapse
|
16
|
Platta HW, Hagen S, Reidick C, Erdmann R. The peroxisomal receptor dislocation pathway: to the exportomer and beyond. Biochimie 2013; 98:16-28. [PMID: 24345375 DOI: 10.1016/j.biochi.2013.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/05/2013] [Indexed: 12/29/2022]
Abstract
The biogenesis of peroxisomes is an ubiquitin-dependent process. In particular, the import of matrix proteins into the peroxisomal lumen requires the modification of import receptors with ubiquitin. The matrix proteins are synthesized on free polyribosomes in the cytosol and are recognized by import receptors via a peroxisomal targeting sequence (PTS). Subsequent to the transport of the receptor/cargo-complex to the peroxisomal membrane and the release of the cargo into the peroxisomal lumen, the PTS-receptors are exported back to the cytosol for further rounds of matrix protein import. The exportomer represents the molecular machinery required for the retrotranslocation of the PTS-receptors. It comprises enzymes for the ubiquitination as well as for the ATP-dependent extraction of the PTS-receptors from the peroxisomal membrane. Furthermore, recent evidence indicates a mechanistic interconnection of the ATP-dependent removal of the PTS-receptors with the translocation of the matrix protein into the organellar lumen. Interestingly, the components of the peroxisomal exportomer seem also to be involved in cellular tasks that are distinct from the ubiquitination and dislocation of the peroxisomal PTS-receptors. This includes work that indicates a central function of this machinery in the export of peroxisomal matrix proteins in plants, while a subset of exportomer components is involved in the meiocyte formation in some fungi, the peroxisome-chloroplast contact during photorespiration in plants and possibly even the selective degradation of peroxisomes via pexophagy. In this review, we want to discuss the central role of the exportomer during matrix protein import, but also highlight distinct roles of exportomer constituents in additional cellular processes. This article is part of a Special Issue entitled: Peroxisomes: biogenesis, functions and diseases.
Collapse
Affiliation(s)
- Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Stefanie Hagen
- Systembiochemie, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Systembiochemie, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| |
Collapse
|
17
|
Hasan S, Platta HW, Erdmann R. Import of proteins into the peroxisomal matrix. Front Physiol 2013; 4:261. [PMID: 24069002 PMCID: PMC3781343 DOI: 10.3389/fphys.2013.00261] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/03/2013] [Indexed: 12/03/2022] Open
Abstract
Peroxisomes constitute a dynamic compartment in all nucleated cells. They fulfill diverse metabolic tasks in response to environmental changes and cellular demands. This adaptation is implemented by modulation of the enzyme content of the organelles, which is accomplished by dynamically operating peroxisomal protein transport machineries. Soluble import receptors recognize their newly synthesized cargo proteins in the cytosol and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the matrix, where the receptor is ubiquitinated and exported back to the cytosol for further rounds of matrix protein import. This review discusses the recent progress in our understanding of the peroxisomal matrix protein import and its regulation by ubiquitination events as well as the current view on the translocation mechanism of folded proteins into peroxisomes. This article is part of a Special Issue entitled: Origin and spatiotemporal dynamics of the peroxisomal endomembrane system.
Collapse
Affiliation(s)
- Sohel Hasan
- Systembiochemie, Medizinische Fakultät, Ruhr-Universität Bochum Bochum, Germany
| | | | | |
Collapse
|
18
|
Ma C, Hagstrom D, Polley SG, Subramani S. Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5. J Biol Chem 2013; 288:27220-27231. [PMID: 23902771 DOI: 10.1074/jbc.m113.492694] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In its role as a mobile receptor for peroxisomal matrix cargo containing a peroxisomal targeting signal called PTS1, the protein Pex5 shuttles between the cytosol and the peroxisome lumen. Pex5 binds PTS1 proteins in the cytosol via its C-terminal tetratricopeptide domains and delivers them to the peroxisome lumen, where the receptor·cargo complex dissociates. The cargo-free receptor is exported to the cytosol for another round of import. How cargo release and receptor recycling are regulated is poorly understood. We found that Pex5 functions as a dimer/oligomer and that its protein interactions with itself (homo-oligomeric) and with Pex8 (hetero-oligomeric) control the binding and release of cargo proteins. These interactions are controlled by a redox-sensitive amino acid, cysteine 10 of Pex5, which is essential for the formation of disulfide bond-linked Pex5 forms, for high affinity cargo binding, and for receptor recycling. Disulfide bond-linked Pex5 showed the highest affinity for PTS1 cargo. Upon reduction of the disulfide bond by dithiothreitol, Pex5 transitioned to a noncovalent dimer, concomitant with the partial release of PTS1 cargo. Additionally, dissipation of the redox balance between the cytosol and the peroxisome lumen caused an import defect. A hetero-oligomeric interaction between the N-terminal domain (amino acids 1-110) of Pex5 and a conserved motif at the C terminus of Pex8 further facilitates cargo release, but only under reducing conditions. This interaction is also important for the release of PTS1 proteins. We suggest a redox-regulated model for Pex5 function during the peroxisomal matrix protein import cycle.
Collapse
Affiliation(s)
- Changle Ma
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, La Jolla, California 92093-0322
| | - Danielle Hagstrom
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, La Jolla, California 92093-0322
| | - Soumi Guha Polley
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, La Jolla, California 92093-0322
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, La Jolla, California 92093-0322.
| |
Collapse
|
19
|
Platta HW, Hagen S, Erdmann R. The exportomer: the peroxisomal receptor export machinery. Cell Mol Life Sci 2013; 70:1393-411. [PMID: 22983384 PMCID: PMC11113987 DOI: 10.1007/s00018-012-1136-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/30/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
Abstract
Peroxisomes constitute a dynamic compartment of almost all eukaryotic cells. Depending on environmental changes and cellular demands peroxisomes can acquire diverse metabolic roles. The compartmentalization of peroxisomal matrix enzymes is a prerequisite to carry out their physiologic function. The matrix proteins are synthesized on free ribosomes in the cytosol and are ferried to the peroxisomal membrane by specific soluble receptors. Subsequent to cargo release into the peroxisomal matrix, the receptors are exported back to the cytosol to facilitate further rounds of matrix protein import. This dislocation step is accomplished by a remarkable machinery, which comprises enzymes required for the ubiquitination as well as the ATP-dependent extraction of the receptor from the membrane. Interestingly, receptor ubiquitination and dislocation are the only known energy-dependent steps in the peroxisomal matrix protein import process. The current view is that the export machinery of the receptors might function as molecular motor not only in the dislocation of the receptors but also in the import step of peroxisomal matrix protein by coupling ATP-dependent removal of the peroxisomal import receptor with cargo translocation into the organelle. In this review we will focus on the architecture and function of the peroxisomal receptor export machinery, the peroxisomal exportomer.
Collapse
Affiliation(s)
- Harald W. Platta
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Stefanie Hagen
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
20
|
Saffian D, Grimm I, Girzalsky W, Erdmann R. ATP-dependent assembly of the heteromeric Pex1p-Pex6p-complex of the peroxisomal matrix protein import machinery. J Struct Biol 2012; 179:126-32. [PMID: 22710083 DOI: 10.1016/j.jsb.2012.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/01/2012] [Accepted: 06/07/2012] [Indexed: 01/27/2023]
Abstract
The peroxisomal matrix protein import is facilitated by soluble receptor molecules which cycle between cytosol and the peroxisomal membrane. At the end of the receptor cycle, the import receptors are exported back to the cytosol in an ATP-dependent manner catalyzed by Pex1p and Pex6p, two AAA (ATPases associated with various cellular activities) type ATPases. Pex1p and Pex6p interact and form a heteromeric complex. In order to gain more insight into the stoichiometry and mechanism of assembly of the complex, we heterologously expressed and purified Saccharomyces cerevisiae Pex1p and Pex6p. Size exclusion chromatography studies of the recombinant proteins demonstrate that they form a hexameric complex in a one-to-one ratio of both AAA-proteins. The recombinant AAA-complex exhibits an ATPase activity with a k(m) of 0.17 mM and V(max) of 0.35 nmol min(-1) μg(-1). In the presence of N-ethylmaleimide, ATPase activity of the peroxisomal AAA-complex is drastically decreased and the complex dissociates. Disassembly of the complex into its Pex1p and Pex6p subunits is also observed upon ATP-depletion, indicating that formation of the Pex1p/Pex6p-complex requires the presence of ATP.
Collapse
Affiliation(s)
- Delia Saffian
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | |
Collapse
|
21
|
Bonekamp NA, Sampaio P, de Abreu FV, Lüers GH, Schrader M. Transient complex interactions of mammalian peroxisomes without exchange of matrix or membrane marker proteins. Traffic 2012; 13:960-78. [PMID: 22435684 DOI: 10.1111/j.1600-0854.2012.01356.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 03/18/2012] [Accepted: 03/21/2012] [Indexed: 11/29/2022]
Abstract
Peroxisomes and mitochondria show a much closer interrelationship than previously anticipated. They co-operate in the metabolism of fatty acids and reactive oxygen species, but also share components of their fission machinery. If peroxisomes - like mitochondria - also fuse in mammalian cells is a matter of debate and was not yet systematically investigated. To examine potential peroxisomal fusion and interactions in mammalian cells, we established an in vivo fusion assay based on hybridoma formation by cell fusion. Fluorescence microscopy in time course experiments revealed a merge of different peroxisomal markers in fused cells. However, live cell imaging revealed that peroxisomes were engaged in transient and long-term contacts, without exchanging matrix or membrane markers. Computational analysis showed that transient peroxisomal interactions are complex and can potentially contribute to the homogenization of the peroxisomal compartment. However, peroxisomal interactions do not increase after fatty acid or H(2) O(2) treatment. Additionally, we provide the first evidence that mitochondrial fusion proteins do not localize to peroxisomes. We conclude that mammalian peroxisomes do not fuse with each other in a mechanism similar to mitochondrial fusion. However, they show an extensive degree of interaction, the implication of which is discussed.
Collapse
Affiliation(s)
- Nina A Bonekamp
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | | |
Collapse
|
22
|
Grimm I, Saffian D, Platta HW, Erdmann R. The AAA-type ATPases Pex1p and Pex6p and their role in peroxisomal matrix protein import in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:150-8. [DOI: 10.1016/j.bbamcr.2011.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/02/2011] [Accepted: 09/03/2011] [Indexed: 12/25/2022]
|
23
|
Fujiki Y, Nashiro C, Miyata N, Tamura S, Okumoto K. New insights into dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p in shuttling of PTS1-receptor Pex5p during peroxisome biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:145-9. [PMID: 22079764 DOI: 10.1016/j.bbamcr.2011.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/24/2011] [Accepted: 10/24/2011] [Indexed: 01/25/2023]
Abstract
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders such as Zellweger syndrome. Two AAA peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for PBDs of complementation groups 1 and 4, respectively. PEX26 responsible for peroxisome biogenesis disorders of complementation group 8 codes for C-tail-anchored type-II membrane peroxin Pex26p, the recruiter of Pex1p-Pex6p complexes to peroxisomes. Pex1p is targeted to peroxisomes in a manner dependent on ATP hydrolysis, while Pex6p targeting requires ATP but not its hydrolysis. Pex1p and Pex6p are most likely regulated in their peroxisomal localization onto Pex26p via conformational changes by ATPase cycle. Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome targeting signal type-1 and shuttles between the cytosol and peroxisomes. AAA peroxins are involved in the export from peroxisomes of Pex5p. Pex5p is ubiquitinated at the conserved cysteine11 in a form associated with peroxisomes. Pex5p with a mutation of the cysteine11 to alanine, termed Pex5p-C11A, abrogates peroxisomal import of proteins harboring peroxisome targeting signals 1 and 2 in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, hence suggesting an essential role of the cysteine residue in the export of Pex5p.
Collapse
Affiliation(s)
- Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|