1
|
Juárez-Barber E, Corachán A, Carbajo-García MC, Faus A, Vidal C, Giles J, Pellicer A, Cervelló I, Ferrero H. Transcriptome analysis of adenomyosis eutopic endometrium reveals molecular mechanisms involved in adenomyosis-related implantation failure and pregnancy disorders. Reprod Biol Endocrinol 2024; 22:10. [PMID: 38195505 PMCID: PMC10775471 DOI: 10.1186/s12958-023-01182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Women with adenomyosis are characterized by having defective decidualization, impaired endometrial receptivity and/or embryo-maternal communication, and implantation failure. However, the molecular mechanisms underlying adenomyosis-related infertility remain unknown, mainly because of the restricted accessibility and the difficult preservation of endometrial tissue in vitro. We have recently shown that adenomyosis patient-derived endometrial organoids, maintain disease-specific features while differentiated into mid-secretory and gestational endometrial phase, overcoming these research barriers and providing a robust platform to study adenomyosis pathogenesis and the associated molecular dysregulation related to implantation and pregnancy disorders. For this reason, we aim to characterize the dysregulated mechanisms in the mid-secretory and gestational endometrium of patients with adenomyosis by RNA-sequencing. METHODS Endometrial organoids were derived from endometrial biopsies collected in the proliferative phase of women with adenomyosis (ADENO) or healthy oocyte donors (CONTROL) (n = 15/group) and differentiated into mid-secretory (-SECorg) and gestational (-GESTorg) phases in vitro. Following RNA-sequencing, the significantly differentially expressed genes (DEGs) (FDR < 0.05) were identified and selected for subsequent functional enrichment analysis and QIAGEN Ingenuity Pathway Analysis (IPA). Statistical differences in gene expression were evaluated with the Student's t-test or Wilcoxon test. RESULTS We identified 1,430 DEGs in ADENO-SECorg and 1,999 DEGs in ADENO-GESTorg. In ADENO-SECorg, upregulated genes included OLFM1, FXYD5, and RUNX2, which are involved in impaired endometrial receptivity and implantation failure, while downregulated genes included RRM2, SOSTDC1, and CHAC2 implicated in recurrent implantation failure. In ADENO-GESTorg, upregulated CXCL14 and CYP24A1 and downregulated PGR were related to pregnancy loss. IPA predicted a significant inhibition of ID1 signaling, histamine degradation, and activation of HMGB1 and Senescence pathways, which are related to implantation failure. Alternatively, IPA predicted an inhibition of D-myo-inositol biosynthesis and VEGF signaling, and upregulation of Rho pathway, which are related to pregnancy loss and preeclampsia. CONCLUSIONS Identifying dysregulated molecular mechanisms in mid-secretory and gestational endometrium of adenomyosis women contributes to the understanding of adenomyosis-related implantation failure and/or pregnancy disorders revealing potential therapeutic targets. Following experimental validation of our transcriptomic and in silico findings, our differentiated adenomyosis patient-derived organoids have the potential to provide a reliable platform for drug discovery, development, and personalized drug screening for affected patients.
Collapse
Affiliation(s)
- Elena Juárez-Barber
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Ana Corachán
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, Valencia, 46010, Spain
| | - María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, Valencia, 46010, Spain
| | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | | | - Juan Giles
- IVI-RMA Valencia, Valencia, 46015, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
- IVI-RMA Rome, Rome, 00197, Italy
| | - Irene Cervelló
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain.
| |
Collapse
|
2
|
Zhao QY, Li QH, Fu YY, Ren CE, Jiang AF, Meng YH. Decidual macrophages in recurrent spontaneous abortion. Front Immunol 2022; 13:994888. [PMID: 36569856 PMCID: PMC9781943 DOI: 10.3389/fimmu.2022.994888] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is defined as two or more pregnancy loss, affecting the happiness index of fertility couples. The mechanisms involved in the occurrence of RSA are not clear to date. The primary problem for the maternal immune system is how to establish and maintain the immune tolerance to the semi-allogeneic fetuses. During the pregnancy, decidual macrophages mainly play an important role in the immunologic dialogue. The purpose of this study is to explore decidual macrophages, and to understand whether there is a connection between these cells and RSA by analyzing their phenotypes and functions. Pubmed, Web of Science and Embase were searched. The eligibility criterion for this review was evaluating the literature about the pregnancy and macrophages. Any disagreement between the authors was resolved upon discussion and if required by the judgment of the corresponding author. We summarized the latest views on the phenotype, function and dysfunction of decidual macrophages to illuminate its relationship with RSA.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu-Han Meng
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
3
|
Bisphenol A Analogues Suppress Spheroid Attachment on Human Endometrial Epithelial Cells through Modulation of Steroid Hormone Receptors Signaling Pathway. Cells 2021; 10:cells10112882. [PMID: 34831106 PMCID: PMC8616109 DOI: 10.3390/cells10112882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Bisphenol A (BPA) is a well-known endocrine disruptor, widely used in various consumer products and ubiquitously found in air, water, food, dust, and sewage leachates. Recently, several countries have restricted the use of BPA and replaced them with bisphenol S (BPS) and bisphenol F (BPF), which have a similar chemical structure to BPA. Compared to BPA, both BPS and BPF have weaker estrogenic effects, but their effects on human reproductive function including endometrial receptivity and embryo implantation still remain largely unknown. We used an in vitro spheroid (blastocyst surrogate) co-culture assay to investigate the effects of BPA, BPS, and BPF on spheroid attachment on human endometrial epithelial cells, and further delineated their role on steroid hormone receptor expression. We also used transcriptomics to investigate the effects of BPA, BPS, and BPF on the transcriptome of human endometrial cells. We found that bisphenol treatment in human endometrial Ishikawa cells altered estrogen receptor alpha (ERα) signaling and upregulated progesterone receptors (PR). Bisphenols suppressed spheroid attachment onto Ishikawa cells, which was reversed by the downregulation of PR through PR siRNA. Overall, we found that bisphenol compounds can affect human endometrial epithelial cell receptivity through the modulation of steroid hormone receptor function leading to impaired embryo implantation.
Collapse
|
4
|
Parasar P, Guru N, Nayak NR. Contribution of macrophages to fetomaternal immunological tolerance. Hum Immunol 2021; 82:325-331. [PMID: 33715911 DOI: 10.1016/j.humimm.2021.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
The semi-allogeneic fetus develops in a uniquely immune tolerant environment within the uterus. For successful pregnancy, both the innate and adaptive immune systems must favor acceptance of the fetal allograft. Macrophages are the second most abundant immune cells after natural killer (NK) cells in the decidua. In coordination with decidual NK cells and dendritic cells, macrophages aid in implantation, vascular remodeling, placental development, immune tolerance to placental cells, and maintenance of tissue homeostasis at the maternal-fetal interface. Decidual macrophages show the classical activated (M1) and alternatively activated (M2) phenotypes under the influence of the local milieu of growth factors and cytokines, and appropriate temporal regulation of the M1/M2 switch is vital for successful pregnancy. Disturbances in the mechanisms that control the M1/M2 balance and associated functions during pregnancy can trigger a spectrum of pregnancy complications ranging from preeclampsia and fetal growth restriction to preterm delivery. This review addresses various mechanisms of tolerance, focusing on the basic biology of macrophages, their plasticity and polarization, and their protective roles at the immune-privileged maternal-fetal interface, including direct and indirect roles in promoting fetomaternal immune tolerance.
Collapse
Affiliation(s)
- P Parasar
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Henry Ford Hospital, Detroit, MI 48202, United States.
| | - N Guru
- Department of Infectious Diseases, School of Medicine, Wayne State University, Detroit, MI 48202, United States
| | - N R Nayak
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Department of Obstetrics and Gynecology, University of Missouri, Kansas City, MO 64108, United States
| |
Collapse
|
5
|
Moore RM, Katri R, Kumar D, Mansour JM, Mercer B, Moore JJ. α-Lipoic acid blocks the GMCSF induced protease/protease inhibitor spectrum associated with fetal membrane weakening in-vitro. Placenta 2020; 97:79-88. [PMID: 32792069 DOI: 10.1016/j.placenta.2020.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION We use an in-vitro human fetal membrane (FM) explant-based model to study inflammation-induced FM weakening, a prerequisite for PPROM. In this system, GMCSF is a critical intermediate, both necessary and sufficient for TNFα and thrombin induced FM weakening. α-Lipoic-acid (LA) blocks TNFα and thrombin, as well as GMCSF-induced weakening. Recently, we reported LA concomitantly blocks GMCSF-induction of MMPs 2, 9 and 10 and inhibition of TIMPs 1-3. The aim of this study was to show that LA blocks GMCSF-induced increases in additional proteases and reductions in additional protease inhibitors. METHODS FM fragments were cultured±LA and then±GMCSF. In other experiments, weak versus strong, fresh FM were cultured without additions. Fragments were strength tested and media analyzed by multiplex protein ELISA for proteases and protease inhibitors. RESULTS GMCSF induced FM weakening and concomitantly increased several Proteases (Cathepsin-S, Proteinase-3, Elastase-2) and decreased several protease inhibitors (NGAL, Cystatin-C, HE4 and Thrombospondin1). LA inhibited GMCSF-induced FM weakening and all enzymatic changes. Untreated weaker versus stronger regions of fresh FM showed comparable differences in proteases and protease inhibitor patterns to GMCSF-stimulated versus controls. CONCLUSION LA blocks GMCSF-induced human FM weakening and associated protease increases and inhibitor decreases. The GMCSF-induced spectrum of protease/protease-inhibitor changes is similar to that in the natural weak FM fragments. In concert with previously reported GMCSF-induced changes in MMPs & TIMPs, these other protease and protease-inhibitor changes presumably facilitate FM weakening and rupture. LA blocks these GMCSF effects and therefore may be a useful agent to prevent PPROM.
Collapse
Affiliation(s)
- R M Moore
- Department of Pediatrics, Case Western Reserve University, MetroHealth Medical Center, 44109, Cleveland, OH, USA
| | - R Katri
- Miami University, MetroHealth Medical Center, 44109, Oxford, OH, USA
| | - D Kumar
- Department of Pediatrics, Case Western Reserve University, MetroHealth Medical Center, 44109, Cleveland, OH, USA
| | - J M Mansour
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 100900 Euclid Ave, 44106, Cleveland, OH, USA
| | - B Mercer
- Department of Reproductive Biology, Case Western Reserve University, MetroHealth Medical Center, 44109, Cleveland, OH, USA
| | - J J Moore
- Department of Pediatrics, Case Western Reserve University, MetroHealth Medical Center, 44109, Cleveland, OH, USA; Department of Reproductive Biology, Case Western Reserve University, MetroHealth Medical Center, 44109, Cleveland, OH, USA.
| |
Collapse
|
6
|
Zhu X, Liu H, Zhang Z, Wei R, Zhou X, Wang Z, Zhao L, Guo Q, Zhang Y, Chu C, Wang L, Li X. MiR-103 protects from recurrent spontaneous abortion via inhibiting STAT1 mediated M1 macrophage polarization. Int J Biol Sci 2020; 16:2248-2264. [PMID: 32549769 PMCID: PMC7294935 DOI: 10.7150/ijbs.46144] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a common complication of early pregnancy. Excessive M1 macrophage was found to be involved in RSA, but the underlying mechanisms remains unclear. MicroRNAs play critical roles in RSA as well as the polarization of macrophages; however, the regulatory effect of miRNAs on M1 differentiation in RSA has not been fully investigated. In this study, miRNA microarray assay revealed that miR-103 was significantly decreased in RAW264.7-derived M1 macrophages upon IFNγ and LPS stimulation. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that in RSA patients, miR-103 expression was decreased substantially, and negatively correlated with that of STAT1. Moreover, down-regulation of miR-103 could sensitively discriminate RSA patients from normal pregnancies (NP) subjects. Experiments in vitro showed that overexpression of miR-103 suppressed M1 polarization by inhibiting STAT1/IRF1 signaling pathway and vice versa. miR-103 regulated STAT1 expression by direct binding to its 3'-UTR. Moreover, our in vivo study demonstrated that overexpressed miR-103 could reduce mice embryo resorption and M1 polarization effectively. Overall, the results suggested that decreased miR-103 was involved in RSA by increasing M1 macrophage polarization via promoting STAT1/IRF1 signaling pathway. miR-103 may be explored as a promising diagnostic marker and therapeutic target for RSA.
Collapse
Affiliation(s)
- Xiaoxiao Zhu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Haiping Liu
- Reproductive Medicine Center, The 960th Hospital of the PLA Joint Logistics Support Force, 25 Wuyingshan Road, Jinan 250031, Shandong, China
| | - Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Ran Wei
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Xianbin Zhou
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Zhaoxia Wang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Lin Zhao
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Qiang Guo
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Yunhong Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 18877 Jingshi Road, Jinan 250062, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Chu Chu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 18877 Jingshi Road, Jinan 250062, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Li Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Xia Li
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 18877 Jingshi Road, Jinan 250062, Shandong, China
| |
Collapse
|
7
|
Jena MK, Nayak N, Chen K, Nayak NR. Role of Macrophages in Pregnancy and Related Complications. Arch Immunol Ther Exp (Warsz) 2019; 67:295-309. [PMID: 31286151 PMCID: PMC7140981 DOI: 10.1007/s00005-019-00552-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
Macrophages (MФs) are the leukocytes produced from differentiation of monocytes and are located in almost all tissues of human body. They are involved in various processes, such as phagocytosis, innate and adaptive immunity, proinflammatory (M1) and anti-inflammatory (M2) activity, depending on the tissue microenvironment. They play a crucial role in pregnancy, and their dysfunction or alteration of polarity is involved in pregnancy disorders, like preeclampsia, recurrent spontaneous abortion, infertility, intrauterine growth restriction, and preterm labor. About 50-60% of decidual leukocytes are natural killer (NK) cells followed by MФs (the second largest population). MФs are actively involved in trophoblast invasion, tissue and vascular remodeling during early pregnancy, besides their role as major antigen-presenting cells in the decidua. These cells have different phenotypes and polarities in different stages of pregnancy. They have also been observed to enhance tumor growth by their anti-inflammatory activity (M2 type) and prevent immunogenic rejection. Targeted alteration of polarity (M1-M2 or vice versa) could be a major focus in the future treatment of pregnancy complications. This review is focused on the role of MФs in pregnancy, their involvement in pregnancy disorders, and decidual MФs as possible therapeutic targets for the treatment of pregnancy complications.
Collapse
Affiliation(s)
- Manoj K Jena
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India.
| | - Neha Nayak
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Nihar R Nayak
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
8
|
Effects of low molecular weight heparin on the polarization and cytokine profile of macrophages and T helper cells in vitro. Sci Rep 2018. [PMID: 29520033 PMCID: PMC5843640 DOI: 10.1038/s41598-018-22418-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Low molecular weight heparin (LMWH) is widely used in recurrent miscarriage treatment. The anti-coagulant effects are established, while immunological effects are not fully known. Our aim was to assess LMWH effects on activation and polarization of central regulatory immune cells from healthy women, and on placenta tissues from women undergoing elective abortions. Isolated blood monocytes and T helper (Th) cells under different activation and polarizing conditions were cultured with or without LMWH. Flow cytometry showed that LMWH exposure induced increased expression of HLA-DR and CD206 in macrophages. This phenotype was associated with increased secretion of Th17-associated CCL20, and decreased secretion of CCL2 (M2-associated) and CCL22 (Th2), as measured by multiplex bead array. In accordance, LMWH exposure to Th cells reduced the proportion of CD25highFoxp3+ regulatory T-cells, intensified IFN-γ secretion and showed a tendency to increase the lymphoblast proportions. Collectively, a mainly pro-inflammatory effect was noted on two essential tolerance-promoting cells. Although the biological significancies of these in vitro findings are uncertain and need to be confirmed in vivo, they suggest the possibility that immunological effects of LMWH may be beneficial mainly at an earlier gestational age to provide an appropriate implantation process in women with recurrent miscarriage.
Collapse
|
9
|
Obayashi Y, Ozaki Y, Goto S, Obayashi S, Suzumori N, Ohyama F, Tone S, Sugiura-Ogasawara M. Role of Indoleamine 2,3-Dioxygenase and Tryptophan 2,3-Dioxygenase in Patients with Recurrent Miscarriage. Am J Reprod Immunol 2015; 75:69-77. [DOI: 10.1111/aji.12434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 09/09/2015] [Indexed: 01/11/2023] Open
Affiliation(s)
- Yuki Obayashi
- Department of Obstetrics and Gynecology; Graduate School of Medical Science; Nagoya City University; Nagoya Aichi Japan
| | - Yasuhiko Ozaki
- Department of Obstetrics and Gynecology; Graduate School of Medical Science; Nagoya City University; Nagoya Aichi Japan
| | - Shinobu Goto
- Department of Obstetrics and Gynecology; Graduate School of Medical Science; Nagoya City University; Nagoya Aichi Japan
| | | | - Nobuhiro Suzumori
- Department of Obstetrics and Gynecology; Graduate School of Medical Science; Nagoya City University; Nagoya Aichi Japan
| | - Fumio Ohyama
- Department of Biochemistry; Kawasaki Medical School; Kurashiki Okayama Japan
| | - Shigenobu Tone
- Department of Biochemistry; Kawasaki Medical School; Kurashiki Okayama Japan
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology; Graduate School of Medical Science; Nagoya City University; Nagoya Aichi Japan
| |
Collapse
|
10
|
Goto S, Ozaki Y, Suzumori N, Yasukochi A, Kawakubo T, Furuno T, Nakanishi M, Yamamoto K, Sugiura-Ogasawara M. Role of cathepsin E in decidual macrophage of patients with recurrent miscarriage. Mol Hum Reprod 2014; 20:454-62. [PMID: 24464956 DOI: 10.1093/molehr/gau008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In a previous study, we reported that the cathepsin-cystatin system caused endometrial dysfunction in early pregnancy. Here, we investigated the existence and contribution of cathepsin E in early pregnancy in patients with recurrent miscarriage (RM). The effect of cathepsin deficiency on fertility and female reproductive organs were also analyzed in CatE(-/-) mice. Human studies were conducted in a hospital setting, with informed consent. Cervical mucus was collected from RM patients in early pregnancy (4-6 gestational weeks, n = 21), and the pregnancy outcome was compared prospectively. The cathepsin E expression in decidua of RM patients (n = 49) and normal pregnant women undergoing elective surgical abortion (n = 24) was measured using SDS-PAGE, and western blot analysis. Decidual macrophages were isolated from RM patients (n = 6) and stimulated by lipopolysaccharide (LPS) and interferon gamma (IFN-γ). Results from the mouse model showed that CatE(-/-) mice were fertile, but the litter number was significantly smaller. The uterus of CatE(-/-) mice showed granulation tissue. In human samples, protease activity of cathepsin E measured with Fluorescence-Quenching Substrate (KYS-1) in cervical mucus of patients who developed miscarriage was markedly decreased compared with patients without RM. The expression of cathepsin E in decidua, semi-quantified by SDS-PAGE, western blot analysis was significantly lower in RM patients compared with patients without RM. By double staining immunofluorescence, the staining of cathepsin E was observed in CD14 or CD68 positive cells in all deciduas. Upon stimulation with LPS and IFN-γ, the expression of cathepsin E in cell lysate of decidual macrophages was markedly reduced in RM patients compared with controls. The results suggested that decreased activity of cathepsin E produced by decidual macrophages might be responsible for the induction of miscarriages in some RM patients.
Collapse
Affiliation(s)
- Shinobu Goto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho, Nagoya, Aichi 467-8601, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Krieg SA, Fan X, Hong Y, Sang QX, Giaccia A, Westphal LM, Lathi RB, Krieg AJ, Nayak NR. Global alteration in gene expression profiles of deciduas from women with idiopathic recurrent pregnancy loss. Mol Hum Reprod 2012; 18:442-50. [PMID: 22505054 DOI: 10.1093/molehr/gas017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recurrent pregnancy loss (RPL) occurs in ∼5% of women. However, the etiology is still poorly understood. Defects in decidualization of the endometrium during early pregnancy contribute to several pregnancy complications, such as pre-eclampsia and intrauterine growth restriction (IUGR), and are believed to be important in the pathogenesis of idiopathic RPL. We performed microarray analysis to identify gene expression alterations in the deciduas of idiopathic RPL patients. Control patients had one antecedent term delivery, but were undergoing dilation and curettage for current aneuploid miscarriage. Gene expression differences were evaluated using both pathway and gene ontology (GO) analysis. Selected genes were validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). A total of 155 genes were found to be significantly dysregulated in the deciduas of RPL patients (>2-fold change, P < 0.05), with 22 genes up-regulated and 133 genes down-regulated. GO analysis linked a large percentage of genes to discrete biological functions, including immune response (23%), cell signaling (18%) and cell invasion (17.1%), and pathway analysis revealed consistent changes in both the interleukin 1 (IL-1) and IL-8 pathways. All genes in the IL-8 pathway were up-regulated while genes in the IL-1 pathway were down-regulated. Although both pathways can promote inflammation, IL-1 pathway activity is important for normal implantation. Additionally, genes known to be critical for degradation of the extracellular matrix, including matrix metalloproteinase 26 and serine peptidase inhibitor Kazal-type 1, were also highly up-regulated. In this first microarray approach to decidual gene expression in RPL patients, our data suggest that dysregulation of genes associated with cell invasion and immunity may contribute significantly to idiopathic recurrent miscarriage.
Collapse
Affiliation(s)
- S A Krieg
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Kansas University Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang WJ, Hao CF, Lin QD. Dysregulation of macrophage activation by decidual regulatory T cells in unexplained recurrent miscarriage patients. J Reprod Immunol 2011; 92:97-102. [PMID: 22015003 DOI: 10.1016/j.jri.2011.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 07/04/2011] [Accepted: 08/11/2011] [Indexed: 10/16/2022]
Abstract
CD4(+)CD25(+) T cells (Treg cells) and macrophages play roles in the maintenance of maternal-fetal immunological tolerance. Treg cells suppress the function of macrophages via mechanisms mediated by cell-cell contact and production of soluble factors. The purpose of this study was to investigate regulation of macrophages by Treg cells within decidua from patients with unexplained recurrent miscarriage (RM) and normal control women during early pregnancy. Treg cells and macrophages were isolated from deciduas of unexplained RM (n=15) and control women (n=15) by magnetic cell separation and co-cultured for six days. Regulation of macrophages by Treg cells was assessed in the presence and absence of neutralizing anti-TGFβ antibodies and in transwell experiments. Expression of CD80, CD86, IL10, and IFNγ by macrophages was measured by flow cytometry or ELISA. Macrophage expression of CD80 and CD86 was higher in deciduas of unexplained RM patients compared with controls whereas the expression of IL10 was lower. There was no difference in the expression of IFNγ by macrophages between the two groups. Treg cells inhibited macrophage expression of CD80, CD86 and IFNγ and increased the expression of IL10. The regulatory effects of Treg cells were abrogated in the presence of neutralizing anti-TGFβ antibodies or by transwell culture. The phenotype of macrophages therefore differed in unexplained RM patients compared with normal early pregnant subjects. Macrophage regulation by Treg cells was shown to be mediated by cell-cell contact and TGFβ and this capacity was decreased in unexplained RM patients.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Reproduction Medical Center, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai 264000, China.
| | | | | |
Collapse
|
13
|
Edwards AK, van den Heuvel MJ, Wessels JM, LaMarre J, Croy BA, Tayade C. Expression of angiogenic basic fibroblast growth factor, platelet derived growth factor, thrombospondin-1 and their receptors at the porcine maternal-fetal interface. Reprod Biol Endocrinol 2011; 9:5. [PMID: 21241502 PMCID: PMC3032667 DOI: 10.1186/1477-7827-9-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 01/17/2011] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Commercial swine breeds in North America undergo two waves of spontaneous fetal loss; one during peri-attachment and another during mid-gestation. Although an exact mechanism for this loss is not known, deficits in vasculature at the attachment sites appear to be a major cause. We hypothesized that a balance between pro-angiogenic and anti-angiogenic factors is needed at the maternal-fetal interface for successful conceptus development. Six selected members of the pro-angiogenic fibroblast growth factor (FGF) and platelet derived growth factor (PDGF) families and anti-angiogenic factor thrombospondin-1 (TSP-1) and its receptor CD36 were quantified and localized at the porcine maternal-fetal interface at early and midgestation time points. METHODS Mesometrial endometrium was collected from non-pregnant gilts (n = 8). Endometrial and chorioallantoic membrane samples were collected from healthy and arresting conceptus attachment sites at gestation day (gd) 20 (n = 8) and gd 50 (n = 8). At gd20 arresting conceptus attachment sites were distinguished by decreased vasculature of the placental membranes and decreased conceptus size. At gd50 arresting conceptuses attachment sites were identified by smaller conceptus length and weight measurements. Quantitative real time PCR was used to determine relative transcript levels of genes of interest, and cellular localization was determined by immunohistochemistry in paraffin embedded endometrial sections. RESULTS At gd20, endometrial samples from arresting conceptuses had elevated transcripts for bFGF, and PDGF-bb than healthy sites (p < 0.05). At gd50, bFGF, FGFR2, and CD36 were more abundant at arresting than at healthy conceptus attachment sites (p < 0.05). Chorioallantoic membrane from arresting conceptus attachment sites at gd20 had elevated transcripts for bFGF, FGFR1, FGFR2 and CD36 compared with healthy sites (p < 0.05). FGFR2 transcripts were more abundant in chorioallantoic membrane from arresting conceptuses at gd 50 (p < 0.05). Immunohistochemical localization of selected pro- and anti-angiogenic factors and receptors revealed their abundance in the luminal epithelium, uterine glands and perivascular areas of endometrium at gd20 and gd50. CONCLUSIONS We provide comprehensive analysis of pro and anti-angiogenic factors at the porcine maternal fetal interface during early and mid-pregnancy. At mRNA levels, the majority of pro-angiogenic factors investigated were elevated at the sites of fetal arrest. These observations contrast with our previous findings of decreased Vascular Endothelial Growth Factor (VEGF) family members at arresting sites, and suggest that the bFGF family functions as a compensatory survival mechanism when major angiogenic proteins are decreasing at the sites of fetal arrest.
Collapse
Affiliation(s)
- Andrew K Edwards
- Department of Biomedical Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Marianne J van den Heuvel
- Department of Biomedical Science, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jocelyn M Wessels
- Department of Biomedical Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jonathan LaMarre
- Department of Biomedical Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - B Anne Croy
- Department of Anatomy and Cell Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Chandrakant Tayade
- Department of Biomedical Science, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Anatomy and Cell Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
14
|
Baston-Büst DM, Götte M, Janni W, Krüssel JS, Hess AP. Syndecan-1 knock-down in decidualized human endometrial stromal cells leads to significant changes in cytokine and angiogenic factor expression patterns. Reprod Biol Endocrinol 2010; 8:133. [PMID: 21044331 PMCID: PMC2988802 DOI: 10.1186/1477-7827-8-133] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 11/02/2010] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Successful embryonic implantation depends on a synchronized embryo-maternal dialogue. Chemokines, such as chemokine ligand 1 (CXCL1), play essential roles in the maternal reproductive tract leading to morphological changes during decidualization, mediating maternal acceptance towards the semi-allograft embryo and induction of angiogenesis. Chemokine binding to their classical G-protein coupled receptors is essentially supported by the syndecan (Sdc) family of heparan sulfate proteoglycans. The aim of this study was to identify the involvement of Sdc-1 at the embryo-maternal interface regarding changes of the chemokine and angiogenic profile of the decidua during the process of decidualization and implantation in human endometrium. METHODS A stable Sdc-1 knock-down was generated in the immortalized human endometrial stromal cell line St-T1 and was named KdS1. The ability of KdS1 to decidualize was proven by Insulin-like growth factor binding 1 (IGFBP1) and prolactin (PRL) confirmation on mRNA level before further experiments were carried out. Dot blot protein analyses of decidualized knock-down cells vs non-transfected controls were performed. In order to imitate embryonic implantation, decidualized KdS1 were then incubated with IL-1beta, an embryo secretion product, vs controls. Statistical analyses were performed applying the Student's t-test with p < 0.05, p < 0.02 and p < 0.01 and one way post-hoc ANOVA test with p < 0.05 as cut-offs for statistical significance. RESULTS The induction of the Sdc-1 knock-down revealed significant changes in cytokine and angiogenic factor expression profiles of dKdS1 vs decidualized controls. Incubation with embryonic IL-1beta altered the expression patterns of KdS1 chemokines and angiogenic factors towards inflammatory-associated molecules and factors involved in matrix regulation. CONCLUSIONS Sdc-1 knock-down in human endometrial stroma cells led to fulminant changes regarding cytokine and angiogenic factor expression profiles upon decidualization and imitation of embryonic contact. Sdc-1 appears to play an important role as a co-receptor and storage factor for many cytokines and angiogenic factors during decidualization and implantation period, supporting proper implantation and angiogenesis by regulation of chemokine and angiogenic factor secretion in favour of the implanting embryo.
Collapse
Affiliation(s)
- Dunja M Baston-Büst
- University Düsseldorf, Medical Faculty, Department of OB/GYN and REI, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Martin Götte
- Department of OB/GYN, Münster University Hospital, Albert-Schweitzer-Str. 33, 48149 Münster, Germany
| | - Wolfgang Janni
- University Düsseldorf, Medical Faculty, Department of OB/GYN and REI, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Jan-Steffen Krüssel
- University Düsseldorf, Medical Faculty, Department of OB/GYN and REI, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Alexandra P Hess
- University Düsseldorf, Medical Faculty, Department of OB/GYN and REI, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
|