1
|
Rossi F, Luppi S, Fejza A, Giolo E, Ricci G, Andreuzzi E. Extracellular matrix and pregnancy: functions and opportunities caught in the net. Reprod Biol Endocrinol 2025; 23:24. [PMID: 39953593 PMCID: PMC11827249 DOI: 10.1186/s12958-025-01348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025] Open
Abstract
The extracellular matrix is a complex network of macromolecules that support the growth and homeostatic development of organisms. By conveying multiple signaling cascades, it impacts on several biological processes and influences the behaviour of numerous cell types. During the endometrial cycle and the key events necessary for a correct embryo implantation and placentation, this bioactive meshwork is substantially modified to favour endometrial receptivity and vascular adaptation, trophoblast cell migration, and immune activation as well. A correct extracellular remodeling is fundamental for the establishment of a physiological pregnancy; indeed, the occurrence of altered matrix modifications associates with gestational disorders such as preeclampsia. In the present review, we will critically evaluate the role of pivotal matrix constituents in regulating the key steps of embryo implantation and placentation, provide up-to-date information concerning their primary mechanisms of action and discuss on their potential as a novel source of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Francesca Rossi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Stefania Luppi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Albina Fejza
- UBT-Higher Education Institution, Kalabria, Street Rexhep Krasniqi Nr. 56, Prishtina, 10000, Kosovo
| | - Elena Giolo
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Eva Andreuzzi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy.
| |
Collapse
|
2
|
Parameshwar PK, Li C, Arnauts K, Jiang J, Rostami S, Campbell BE, Lu H, Rosenzweig DH, Vaillancourt C, Moraes C. Directed biomechanical compressive forces enhance fusion efficiency in model placental trophoblast cultures. Sci Rep 2024; 14:11312. [PMID: 38760496 PMCID: PMC11101427 DOI: 10.1038/s41598-024-61747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
The syncytiotrophoblast is a multinucleated structure that arises from fusion of mononucleated cytotrophoblasts, to sheath the placental villi and regulate transport across the maternal-fetal interface. Here, we ask whether the dynamic mechanical forces that must arise during villous development might influence fusion, and explore this question using in vitro choriocarcinoma trophoblast models. We demonstrate that mechanical stress patterns arise around sites of localized fusion in cell monolayers, in patterns that match computational predictions of villous morphogenesis. We then externally apply these mechanical stress patterns to cell monolayers and demonstrate that equibiaxial compressive stresses (but not uniaxial or equibiaxial tensile stresses) enhance expression of the syndecan-1 and loss of E-cadherin as markers of fusion. These findings suggest that the mechanical stresses that contribute towards sculpting the placental villi may also impact fusion in the developing tissue. We then extend this concept towards 3D cultures and demonstrate that fusion can be enhanced by applying low isometric compressive stresses to spheroid models, even in the absence of an inducing agent. These results indicate that mechanical stimulation is a potent activator of cellular fusion, suggesting novel avenues to improve experimental reproductive modelling, placental tissue engineering, and understanding disorders of pregnancy development.
Collapse
Affiliation(s)
| | - Chen Li
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada
| | - Kaline Arnauts
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada
| | - Junqing Jiang
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada
| | - Sabra Rostami
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada
| | - Benjamin E Campbell
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada
| | - Hongyan Lu
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada
| | - Derek Hadar Rosenzweig
- Department of Surgery, McGill University, Montréal, Québec, Canada
- Injury, Repair and Recovery Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Cathy Vaillancourt
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- Department of Obstetrics and Gynecology, Université de Montréal, and Research Center Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Nord-de-L'Île-de-Montréal, Montréal, Québec, Canada
| | - Christopher Moraes
- Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, Canada.
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada.
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
3
|
Sakahashi Y, Higashisaka K, Isaka R, Izutani R, Seo J, Furuta A, Yamaki-Ushijima A, Tsujino H, Haga Y, Nakashima A, Tsutsumi Y. Silver nanoparticles suppress forskolin-induced syncytialization in BeWo cells. Nanotoxicology 2022; 16:883-894. [PMID: 36595448 DOI: 10.1080/17435390.2022.2162994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Opportunities for the exposure of pregnant women to engineered nanoparticles have been increasing with the expanding use of these materials. Therefore, there are concerns that nanoparticles could have adverse effects on the establishment and maintenance of pregnancy. The effects of nanoparticles on the mother and fetus have been evaluated from this perspective, but there is still little knowledge about the effects on placentation and function acquisition, which are essential for the successful establishment and maintenance of pregnancy. Formation of the syncytiotrophoblast is indispensable for the acquisition of placental function, and impairment of syncytialization inevitably affects pregnancy outcomes. Here, we assessed the effect of nanoparticles on placental formation by using forskolin-treated BeWo cells, a typical in vitro model of trophoblast syncytialization. Immunofluorescence staining analysis revealed that silver nanoparticles with a diameter of 10 nm (nAg10) (at 0.156 µg/mL) significantly decreased the proportion of syncytialized BeWo cells, but gold nanoparticles with a diameter of 10 nm did not. Consistently, only nAg10 (at 0.156 µg/mL) significantly suppressed forskolin-induced elevation of CGB and SDC1 mRNA expression levels and human chorionic gonadotropin β production in a dose-dependent manner; these molecules are all markers of syncytialization. Besides, nAg10 significantly decreased the expression of ERVFRD-1, which encodes proteins associated with cell fusion. Moreover, nAg10 tended to suppress the expression of sFlt-1 e15a, a placental angiogenesis marker. Collectively, our data suggest that nAg10 could suppress formation of the syncytiotrophoblast and that induce placental dysfunction and the following poor pregnancy outcomes.
Collapse
Affiliation(s)
- Yuji Sakahashi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, Japan
| | - Ryo Isaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Rina Izutani
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Jiwon Seo
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Atsushi Furuta
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Akemi Yamaki-Ushijima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Hirofumi Tsujino
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,The Museum of Osaka University, Toyonaka, Osaka, Japan
| | - Yuya Haga
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Ogushi S, Nakanishi T, Kimura T. Cadmium inhibits forskolin-induced differentiation of human placental BeWo cells. J Toxicol Sci 2022; 47:309-315. [PMID: 35908931 DOI: 10.2131/jts.47.309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cadmium (Cd) is an environmental pollutant. Blood Cd levels in pregnant women have been associated with premature births, infant birth size, placenta previa, and placenta accreta. There have been concerns on the reproductive developmental toxicity of Cd. The choriocarcinoma cell line BeWo, a cellular in vitro model for studying syncytial fusion, has been widely used to study the reproductive and developmental toxic effects of pollutants. Here, we examine the inhibitory effect of Cd against forskolin (FSK)-induced BeWo differentiation. Results showed that Cd exposure inhibited the FSK-induced expression of syncytiotrophoblast-related genes LGALS13, ERVFRD1, SDC1, and CGB3. Inhibition of LGALS13 expression was due to the inhibition of the PKA pathway, whereas the inhibition of the other three genes could be due to the inhibition of the other pathways. These findings could help clarify the reproductive and developmental toxicity of Cd.
Collapse
Affiliation(s)
- Shoko Ogushi
- Department of Life Science, Faculty of Science and Engineering, Setsunan University
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University
| | - Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University
| |
Collapse
|
5
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|
6
|
Parameshwar PK, Sagrillo-Fagundes L, Azevedo Portilho N, Pastor WA, Vaillancourt C, Moraes C. Engineered models for placental toxicology: Emerging approaches based on tissue decellularization. Reprod Toxicol 2022; 112:148-159. [PMID: 35840119 DOI: 10.1016/j.reprotox.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
Recent increases in prescriptions and illegal drug use as well as exposure to environmental contaminants during pregnancy have highlighted the critical importance of placental toxicology in understanding and identifying risks to both mother and fetus. Although advantageous for basic science, current in vitro models often fail to capture the complexity of placental response, likely due to their inability to recreate and monitor aspects of the microenvironment including physical properties, mechanical forces and stiffness, protein composition, cell-cell interactions, soluble and physicochemical factors, and other exogenous cues. Tissue engineering holds great promise in addressing these challenges and provides an avenue to better understand basic biology, effects of toxic compounds and potential therapeutics. The key to success lies in effectively recreating the microenvironment. One strategy to do this would be to recreate individual components and then combine them. However, this becomes challenging due to variables present according to conditions such as tissue location, age, health status and lifestyle. The extracellular matrix (ECM) is known to influence cellular fate by working as a storage of factors. Decellularized ECM (dECM) is a recent tool that allows usage of the original ECM in a refurbished form, providing a relatively reliable representation of the microenvironment. This review focuses on using dECM in modified forms such as whole organs, scaffold sheets, electrospun nanofibers, hydrogels, 3D printing, and combinations as building blocks to recreate aspects of the microenvironment to address general tissue engineering and toxicology challenges, thus illustrating their potential as tools for future placental toxicology studies.
Collapse
Affiliation(s)
| | | | - Nathalia Azevedo Portilho
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montréal, Québec, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Cathy Vaillancourt
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada; Department of Obstetrics and Gynecology, Université de Montréal, Montréal, Québec, Canada
| | - Christopher Moraes
- Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, Canada; Department of Chemical Engineering, McGill University, Montréal, Québec, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada; Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
7
|
Oravecz O, Balogh A, Romero R, Xu Y, Juhasz K, Gelencser Z, Xu Z, Bhatti G, Pique-Regi R, Peterfia B, Hupuczi P, Kovalszky I, Murthi P, Tarca AL, Papp Z, Matko J, Than NG. Proteoglycans: Systems-Level Insight into Their Expression in Healthy and Diseased Placentas. Int J Mol Sci 2022; 23:5798. [PMID: 35628608 PMCID: PMC9147780 DOI: 10.3390/ijms23105798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/04/2023] Open
Abstract
Proteoglycan macromolecules play key roles in several physiological processes (e.g., adhesion, proliferation, migration, invasion, angiogenesis, and apoptosis), all of which are important for placentation and healthy pregnancy. However, their precise roles in human reproduction have not been clarified. To fill this gap, herein, we provide an overview of the proteoglycans' expression and role in the placenta, in trophoblast development, and in pregnancy complications (pre-eclampsia, fetal growth restriction), highlighting one of the most important members of this family, syndecan-1 (SDC1). Microarray data analysis showed that of 34 placentally expressed proteoglycans, SDC1 production is markedly the highest in the placenta and that SDC1 is the most upregulated gene during trophoblast differentiation into the syncytiotrophoblast. Furthermore, placental transcriptomic data identified dysregulated proteoglycan genes in pre-eclampsia and in fetal growth restriction, including SDC1, which is supported by the lower concentration of syndecan-1 in maternal blood in these syndromes. Overall, our clinical and in vitro studies, data analyses, and literature search pointed out that proteoglycans, as important components of the placenta, may regulate various stages of placental development and participate in the maintenance of a healthy pregnancy. Moreover, syndecan-1 may serve as a useful marker of syncytialization and a prognostic marker of adverse pregnancy outcomes. Further studies are warranted to explore the role of proteoglycans in healthy and complicated pregnancies, which may help in diagnostic or therapeutic developments.
Collapse
Affiliation(s)
- Orsolya Oravecz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Kata Juhasz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Zsolt Gelencser
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Zhonghui Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Balint Peterfia
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | | | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia;
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women’s Hospital, Parkville, VIC 3502, Australia
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202, USA
| | - Zoltan Papp
- Maternity Private Clinic, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
| | - Janos Matko
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
- Maternity Private Clinic, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| |
Collapse
|
8
|
Chu T, Mouillet JF, Cao Z, Barak O, Ouyang Y, Sadovsky Y. RNA Network Interactions During Differentiation of Human Trophoblasts. Front Cell Dev Biol 2021; 9:677981. [PMID: 34150771 PMCID: PMC8209545 DOI: 10.3389/fcell.2021.677981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
In the human placenta, two trophoblast cell layers separate the maternal blood from the villous basement membrane and fetal capillary endothelial cells. The inner layer, which is complete early in pregnancy and later becomes discontinuous, comprises the proliferative mononuclear cytotrophoblasts, which fuse together and differentiate to form the outer layer of multinucleated syncytiotrophoblasts. Because the syncytiotrophoblasts are responsible for key maternal-fetal exchange functions, tight regulation of this differentiation process is critical for the proper development and the functional role of the placenta. The molecular mechanisms regulating the fusion and differentiation of trophoblasts during human pregnancy remain poorly understood. To decipher the interactions of non-coding RNAs (ncRNAs) in this process, we exposed cultured primary human trophoblasts to standard in vitro differentiation conditions or to conditions known to hinder this differentiation process, namely exposure to hypoxia (O2 < 1%) or to the addition of dimethyl sulfoxide (DMSO, 1.5%) to the culture medium. Using next generation sequencing technology, we analyzed the differential expression of trophoblastic lncRNAs, miRNAs, and mRNAs that are concordantly modulated by both hypoxia and DMSO. Additionally, we developed a model to construct a lncRNA-miRNA-mRNA co-expression network and inferred the functions of lncRNAs and miRNAs via indirect gene ontology analysis. This study improves our knowledge of the interactions between ncRNAs and mRNAs during trophoblast differentiation and identifies key biological processes that may be impaired in common gestational diseases, such as fetal growth restriction or preeclampsia.
Collapse
Affiliation(s)
- Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jean-Francois Mouillet
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Zhishen Cao
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Oren Barak
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yingshi Ouyang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Verma S, Mishra R, Malik A, Chaudhary P, Malhotra SS, Panda AK, Gupta SK. miR-27b-5p inhibits BeWo cells fusion by regulating WNT2B and enzyme involved in progesterone synthesis. Am J Reprod Immunol 2021; 86:e13409. [PMID: 33639023 DOI: 10.1111/aji.13409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
PROBLEM The miRNAs show placenta-specific expression patterns, which alter during pregnancy-related complications. In present study, the role of miR-27b-5p during forskolin-mediated BeWo cells fusion has been investigated. METHOD OF STUDY The fusion of BeWo cells in response to forskolin treatment (25 µM) was studied by desmoplakin I+II staining. Expression profile of miR-27b-5p by qRT-PCR and its targets HSD3β1 and WNT2B by qRT-PCR and in Western blot were studied. The effect of overexpression of miR-27b-5p and silencing of HSD3β1 & WNT2B by siRNA on forskolin-mediated BeWo cells fusion and secretion of hCG and progesterone by ELISA was investigated. RESULTS Time-dependent down-regulation in the expression of miR-27b-5p in forskolin-treated BeWo cells has been confirmed by qRT-PCR. Overexpression of miR-27b-5p significantly inhibits forskolin-mediated BeWo cells fusion as well as hCG & progesterone secretion. HSD3β1 and WNT2B were identified as targets of miR-27b-5p and are up-regulated in forskolin-treated BeWo cells. Overexpression of miR-27b-5p in BeWo cells downregulates their expression. Further, luciferase reporter assay revealed that miR-27b-5p directly target expression of both HSD3β1 and WNT2B. Silencing of both HSD3β1 and WNT2B leads to a significant reduction in forskolin-mediated BeWo cells fusion with concomitant decrease in the secretion of progesterone or/and hCG. Decrease in forskolin-mediated cells fusion observed in miR-27b-5p mimic transfected BeWo cells could be rescued by the overexpression of both HSD3β1 and WNT2B. CONCLUSION These observations suggest that reduced miR-27b-5p in forskolin-treated BeWo cells leads to increased secretion of progesterone and hCG due to loss of repressional control on HSD3β1 and WNT2B.
Collapse
Affiliation(s)
- Sonam Verma
- Reproductive Cell Biology Lab, National Institute of Immunology, New Delhi, India
| | - Richa Mishra
- Reproductive Cell Biology Lab, National Institute of Immunology, New Delhi, India
| | - Ankita Malik
- Reproductive Cell Biology Lab, National Institute of Immunology, New Delhi, India
| | - Piyush Chaudhary
- Reproductive Cell Biology Lab, National Institute of Immunology, New Delhi, India
| | - Sudha Saryu Malhotra
- Reproductive Cell Biology Lab, National Institute of Immunology, New Delhi, India
| | - Amulya K Panda
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Satish Kumar Gupta
- Reproductive Cell Biology Lab, National Institute of Immunology, New Delhi, India
| |
Collapse
|
10
|
Licini C, Avellini C, Picchiassi E, Mensà E, Fantone S, Ramini D, Tersigni C, Tossetta G, Castellucci C, Tarquini F, Coata G, Giardina I, Ciavattini A, Scambia G, Di Renzo GC, Di Simone N, Gesuita R, Giannubilo SR, Olivieri F, Marzioni D. Pre-eclampsia predictive ability of maternal miR-125b: a clinical and experimental study. Transl Res 2021; 228:13-27. [PMID: 32726711 DOI: 10.1016/j.trsl.2020.07.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022]
Abstract
Pre-eclampsia (PE) is a systemic maternal syndrome affecting 2-8% of pregnancies worldwide and involving poor placental perfusion and impaired blood supply to the foetus. It manifests after the 20th week of pregnancy as new-onset hypertension and substantial proteinuria and is responsible for severe maternal and newborn morbidity and mortality. Identifying biomarkers that predict PE onset prior to its establishment would critically help treatment and attenuate outcome severity. MicroRNAs are ubiquitous gene expression modulators found in blood and tissues. Trophoblast cell surface antigen (Trop)-2 promotes cell growth and is involved in several cancers. We assessed the PE predictive ability of maternal miR-125b in the first trimester of pregnancy by measuring its plasma levels in women with normal pregnancies and with pregnancies complicated by PE on the 12th week of gestation. To gain insight into PE pathogenesis we investigated whether Trop-2 is targeted by miR-125b in placental tissue. Data analysis demonstrated a significant association between plasma miR-125b levels and PE, which together with maternal body mass index before pregnancy provided a predictive model with an area under the curve of 0.85 (95% confidence interval, 0.70-1.00). We also found that Trop-2 is a target of miR-125b in placental cells; its localization in the basal part of the syncytiotrophoblast plasma membrane suggests a role for it in the early onset of PE. Altogether, maternal miR-125b proved a promising early biomarker of PE, suggesting that it may be involved in placental development through its action on Trop-2 well before the clinical manifestations of PE.
Collapse
Affiliation(s)
- Caterina Licini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Chiara Avellini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Elena Picchiassi
- Department of Biomedical and Surgical Science, Clinic of Obstetrics and Gynaecology, University of Perugia, 06132 Perugia, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Deborah Ramini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Chiara Tersigni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, 00168 Roma, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Clara Castellucci
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federica Tarquini
- Department of Biomedical and Surgical Science, Clinic of Obstetrics and Gynaecology, University of Perugia, 06132 Perugia, Italy
| | - Giuliana Coata
- Department of Biomedical and Surgical Science, Clinic of Obstetrics and Gynaecology, University of Perugia, 06132 Perugia, Italy
| | - Irene Giardina
- Centre of Perinatal and Reproductive Medicine, University of Perugia, Italy
| | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, 60123 Ancona, Italy
| | - Giovanni Scambia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, 00168 Roma, Italy; Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, 00168 Roma, Italy
| | - Gian Carlo Di Renzo
- Centre of Perinatal and Reproductive Medicine, University of Perugia, Italy; Department of Obstetrics and Gynaecology I.M. Sechenov First State University, Moscow, Russia
| | - Nicoletta Di Simone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, 00168 Roma, Italy; Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, 00168 Roma, Italy
| | - Rosaria Gesuita
- Centre of Epidemiology and Biostatistics, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Stefano R Giannubilo
- Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, 60123 Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, 60100 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy.
| |
Collapse
|
11
|
Malhotra SS, Banerjee P, Gupta SK. Regulation of trophoblast differentiation during embryo implantation and placentation: Implications in pregnancy complications. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jrhm.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Costa MA. Scrutinising the regulators of syncytialization and their expression in pregnancy-related conditions. Mol Cell Endocrinol 2016; 420:180-93. [PMID: 26586208 DOI: 10.1016/j.mce.2015.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022]
Abstract
The placenta is important for the success of gestation and foetal development. In fact, this specialized pregnancy organ is essential for foetal nourishment, support, and protection. In the placenta, there are different cell populations, including four subtypes of trophoblasts. Cytotrophoblasts fuse and differentiate into the multinucleated syncytiotrophoblast (syncytialization). Syncytialization is a hallmark of placentation and is highly regulated by numerous molecules with distinct roles. Placentas from pregnancies complicated by preeclampsia, intrauterine growth restriction or trisomy 21 have been associated with a defective syncytialization and an altered expression of its modulators. This work proposes to review the molecules that promote or inhibit both fusion and biochemical differentiation of cytotrophoblasts. Moreover, it will also analyse the syncytialization modulators abnormally expressed in pathological placentas, highlighting the molecules that may contribute to the aetiology of these diseases.
Collapse
Affiliation(s)
- M A Costa
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
13
|
Malhotra SS, Suman P, Gupta SK. Alpha or beta human chorionic gonadotropin knockdown decrease BeWo cell fusion by down-regulating PKA and CREB activation. Sci Rep 2015; 5:11210. [PMID: 26053549 PMCID: PMC4459146 DOI: 10.1038/srep11210] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 05/01/2015] [Indexed: 01/01/2023] Open
Abstract
The aim of the present study is to delineate the role of human chorionic gonadotropin (hCG) in trophoblast fusion. In this direction, using shRNA lentiviral particles, α- and β-hCG silenced ‘BeWo’ cell lines were generated. Treatment of both α- and β-hCG silenced BeWo cells with either forskolin or exogenous hCG showed a significant reduction in cell fusion as compared with control shRNA treated cells. Studies by qRT-PCR, Western blotting and immunofluorescence revealed down-regulation of fusion-associated proteins such as syncytin-1 and syndecan-1 in the α- and β-hCG silenced cells. Delineation of downstream signaling pathways revealed that phosphorylation of PKA and CREB were compromised in the silenced cells whereas, no significant changes in p38MAPK and ERK1/2 phosphorylation were observed. Moreover, β-catenin activation was unaffected by either α- or β-hCG silencing. Further, inhibition of PKA by H89 inhibitor led to a significant decrease in BeWo cell fusion but had no effect on β-catenin activation suggesting the absence of non-canonical β-catenin stabilization via PKA. Interestingly, canonical activation of β-catenin was associated with the up-regulation of Wnt 10b expression. In summary, this study establishes the significance of hCG in the fusion of trophoblastic BeWo cells, but there may be additional factors involved in this process.
Collapse
Affiliation(s)
- Sudha Saryu Malhotra
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi-110 067, India
| | - Pankaj Suman
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh-201 301, India
| | - Satish Kumar Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi-110 067, India
| |
Collapse
|