1
|
Bodén E, Sveréus F, Niroomand A, Akbarshahi H, Ingemansson R, Larsson H, Lindstedt S, Olm F. Fungal colonization before or after lung transplantation has no negative impact on survival or the development of chronic lung allograft dysfunction. JHLT OPEN 2025; 8:100225. [PMID: 40144727 PMCID: PMC11935453 DOI: 10.1016/j.jhlto.2025.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Introduction Long-term survival following lung transplantation (LTx) faces impediments due to chronic lung allograft dysfunction (CLAD), while infections hinder short-term survival. Fungal colonization and invasive fungal infections (IFI) are common within the first year after LTx. There is ongoing debate regarding the impact of such events on CLAD development and mortality. This study aims to investigate this matter further. Methods A total of 134 LTx recipients transplanted between 2011 and 2020 were included. The median follow-up time was 3.9 years. Fungal colonization and IFI were defined according to international consensus guidelines and were noted if present within the first 12 months after LTx. Results Postoperative fungal colonization was found in 101 patients, and 14 patients had an IFI within twelve months of transplantation. Nineteen patients were neither colonized nor infected. Out of the 115 patients with colonization or IFI, 61 patients had growth of a yeast such as Candida species (spp.). Fifty-six patients were colonized prior to LTx. Being colonized with fungus before or within the first 12 months post-LTx did not significantly affect survival or CLAD development. Conclusions The results of the current study indicate that fungal colonization either pre-transplantation or within the first 12 months after does not correlate with increased risks of mortality or CLAD development. These findings show that while fungal colonization is a common occurrence in LTx recipients, it does not predispose the patients of the cohort to adverse outcomes.
Collapse
Affiliation(s)
- Embla Bodén
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Fanny Sveréus
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Anna Niroomand
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
- Rutgers Robert Wood Johnson Medical School, New Brunswick, 08901 New Jersey
| | - Hamid Akbarshahi
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Department of Pulmonary Medicine, Allergology and Palliative Care, Skåne University Hospital, 22242, Lund, Sweden
| | - Richard Ingemansson
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, 22242 Lund, Sweden
| | - Hillevi Larsson
- Department of Pulmonary Medicine, Allergology and Palliative Care, Skåne University Hospital, 22242, Lund, Sweden
| | - Sandra Lindstedt
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, 22242 Lund, Sweden
| | - Franziska Olm
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, 22242 Lund, Sweden
| |
Collapse
|
2
|
Milesi J, Gras D, Chanez P, Coiffard B. Airway epithelium in lung transplantation: a potential actor for post-transplant complications? Eur Respir Rev 2024; 33:240093. [PMID: 39603662 PMCID: PMC11600126 DOI: 10.1183/16000617.0093-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/20/2024] [Indexed: 11/29/2024] Open
Abstract
Lung transplantation, a critical intervention for end-stage lung diseases, is frequently challenged by post-transplant complications. Indeed, primary graft dysfunction, anastomotic complications, infections and acute and chronic rejections pose significant hurdles in lung transplantation. While evidence regarding the role of airway epithelium after lung transplantation is still emerging, its importance is becoming increasingly recognised. This review looks at the complex involvement of airway epithelium in various post-transplant complications, while emphasising the utility of airway epithelial culture as a research model. In summary, by elucidating the involvement of airway epithelium in each post-transplant complication and explaining these intricate processes, the review aims to guide specific future research efforts and therapeutic strategies aimed at improving lung transplant outcomes and enhancing patient care.
Collapse
Affiliation(s)
- Jules Milesi
- Aix-Marseille University, APHM, Department of Respiratory Medicine and Lung Transplantation, Marseille, France
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
| | - Delphine Gras
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
| | - Pascal Chanez
- Aix-Marseille University, APHM, Department of Respiratory Medicine and Lung Transplantation, Marseille, France
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
| | - Benjamin Coiffard
- Aix-Marseille University, APHM, Department of Respiratory Medicine and Lung Transplantation, Marseille, France
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
| |
Collapse
|
3
|
Righi I, Barone I, Rosso L, Morlacchi LC, Rossetti V, Caffarena G, Limanaqi F, Palleschi A, Clerici M, Trabattoni D. Immunopathology of lung transplantation: from infection to rejection and vice versa. Front Immunol 2024; 15:1433469. [PMID: 39286256 PMCID: PMC11402714 DOI: 10.3389/fimmu.2024.1433469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Lung transplantation offers a lifesaving option for patients with end-stage lung disease, but it is marred by a high risk of post-transplant infections, particularly involving multidrug-resistant bacteria, Cytomegalovirus, and fungal pathogens. This elevated infection rate, the highest among solid organ transplants, poses a significant challenge for clinicians, particularly within the first year post-transplantation, where infections are the leading cause of mortality. The direct exposure of lung allografts to the external environment exacerbates this vulnerability leading to constant immune stimulation and consequently to an elevated risk of triggering alloimmune responses to the lung allograft. The necessity of prolonged immunosuppression to prevent allograft rejection further complicates patient management by increasing susceptibility to infections and neoplasms, and complicating the differentiation between rejection and infection, which require diametrically opposed management strategies. This review explores the intricate balance between preventing allograft rejection and managing the heightened infection risk in lung transplant recipients.
Collapse
Affiliation(s)
- Ilaria Righi
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ivan Barone
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lorenzo Rosso
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Letizia Corinna Morlacchi
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valeria Rossetti
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Caffarena
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Fiona Limanaqi
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Milan, Italy
| | - Alessandro Palleschi
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione Don C. Gnocchi IRCCS, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Milan, Italy
| |
Collapse
|
4
|
Ogawa L, Multani A, Beaird OE, Gaynor P, Carlson M, Garner OB, Schiller G, Schaenman JM. Risk Factors and Outcomes of Mucorales Infection in a Modern Cohort of Solid Organ Transplant, Hematopoietic Cell Transplant, and Chimeric Antigen Receptor T-cell Therapy Recipients. Transplant Proc 2024; 56:1683-1690. [PMID: 39174391 DOI: 10.1016/j.transproceed.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Mucorales infections continue to cause significant morbidity and mortality in immunocompromised hosts despite the advent of new approaches for diagnosis and treatment of fungal infections. We aimed to evaluate risk factors and outcomes of Mucorales infection in solid organ transplant, hematopoietic cell transplant, and chimeric antigen receptor T-cell therapy recipients. METHODS This single-center retrospective study included solid organ transplant, hematopoietic cell transplant, and chimeric antigen receptor T-cell patients with cultures positive for Mucorales. RESULTS Forty-three patients were included for analysis; 34 solid organ transplant (79%) and 9 hematopoietic stem cell transplant or chimeric antigen receptor T-cell (21%). Infection with Mucorales occurred a median of 184 days after transplant. At the time of diagnosis, 36 patients were on antifungal prophylaxis with the majority receiving posaconazole (53%). Thirty-three had clinically significant disease; 30 received definitive anti-Mucorales therapy and 3 empiric antifungal therapy. Isavuconazole was the most common azole used for treatment in monotherapy recipients. All-cause mortality was 64% and, of these deaths, 18 (75%) were directly related to Mucormycosis. The highest mortality was seen in disseminated and intra-abdominal disease (100%), followed by pulmonary disease (50%). There was no significant association with mortality and transplant type or number of immunosuppressive agents. CONCLUSION Mucormycosis is an important cause of morbidity and mortality in immunocompromised patients. Breakthrough infection was not uncommon in this study. Data regarding the incidence of infection at approximately 6 months after transplantation can inform prophylaxis and treatment regimens. The spectrum of antifungal regimens used reflects the lack of consensus on ideal regimens for these organisms and a need for more studies.
Collapse
Affiliation(s)
- Lauren Ogawa
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Ashrit Multani
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Omer E Beaird
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Pryce Gaynor
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Margrit Carlson
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gary Schiller
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Joanna M Schaenman
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
5
|
Keller MB, Newman D, Alnababteh M, Ponor L, Shah P, Mathew J, Kong H, Andargie T, Park W, Charya A, Luikart H, Aryal S, Nathan SD, Orens JB, Khush KK, Jang M, Agbor-Enoh S. Extreme elevations of donor-derived cell-free DNA increases the risk of chronic lung allograft dysfunction and death, even without clinical manifestations of disease. J Heart Lung Transplant 2024; 43:1374-1382. [PMID: 38705500 DOI: 10.1016/j.healun.2024.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Lung transplant recipients are traditionally monitored with pulmonary function testing (PFT) and lung biopsy to detect post-transplant complications and guide treatment. Plasma donor-derived cell free DNA (dd-cfDNA) is a novel molecular approach of assessing allograft injury, including subclinical allograft dysfunction. The aim of this study was to determine if episodes of extreme molecular injury (EMI) in lung transplant recipients increases the risk of chronic lung allograft dysfunction (CLAD) or death. METHODS This multicenter prospective cohort study included 238 lung transplant recipients. Serial plasma samples were collected for dd-cfDNA measurement by shotgun sequencing. EMI was defined as a dd-cfDNA above the third quartile of levels observed for acute rejection (dd-cfDNA level of ≥5% occurring after 45 days post-transplant). EMI was categorized as Secondary if associated with co-existing acute rejection, infection or PFT decline; or Primary if not associated with these conditions. RESULTS EMI developed in 16% of patients at a median 343.5 (IQR: 177.3-535.5) days post-transplant. Over 50% of EMI episodes were classified as Primary. EMI was associated with an increased risk of severe CLAD or death (HR: 2.78, 95% CI: 1.26-6.22, p = 0.012). The risk remained consistent for the Primary EMI subgroup (HR: 2.34, 95% CI 1.18-4.85, p = 0.015). Time to first EMI episode was a significant predictor of the likelihood of developing CLAD or death (AUC=0.856, 95% CI=0.805-0.908, p < 0.001). CONCLUSIONS Episodes of EMI in lung transplant recipients are often isolated and may not be detectable with traditional clinical monitoring approaches. EMI is associated with an increased risk of severe CLAD or death, independent of concomitant transplant complications.
Collapse
Affiliation(s)
- Michael B Keller
- Laborarory of Applied Precision Omics (APO) National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | - David Newman
- College of Nursing, Florida Atlantic University, Boca Raton, Florida
| | - Muhtadi Alnababteh
- Laborarory of Applied Precision Omics (APO) National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Lucia Ponor
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Division of Hospital Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - Pali Shah
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | - Joby Mathew
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | - Hyesik Kong
- Laborarory of Applied Precision Omics (APO) National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - Temesgen Andargie
- Laborarory of Applied Precision Omics (APO) National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - Woojin Park
- Laborarory of Applied Precision Omics (APO) National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - Ananth Charya
- Division of Pulmonary and Critical Care Medicine, University of Maryland Medical Center, Baltimore, Maryland
| | - Helen Luikart
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, California; Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Shambhu Aryal
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Falls Church, Virginia
| | - Steven D Nathan
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Falls Church, Virginia
| | - Jonathan B Orens
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | - Kiran K Khush
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Moon Jang
- Laborarory of Applied Precision Omics (APO) National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - Sean Agbor-Enoh
- Laborarory of Applied Precision Omics (APO) National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland.
| |
Collapse
|
6
|
Forier B, Schaevers V, Spriet I, Quintens C, Desmet S, Bos S, Bleyenbergh PV, Lorent N, Sadeleer LD, Godinas L, Dupont LJ, Vos R. Outpatient parenteral antibiotic therapy in non-cystic fibrosis lung transplant recipients: characteristics, efficacy and safety. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-04921-9. [PMID: 39196488 DOI: 10.1007/s10096-024-04921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
PURPOSE Bacterial isolation is associated with worse outcomes after lung transplantation (LTx), and successful bacterial eradication is shown to improve long-term survival and pulmonary function. Outpatient Parenteral Antibiotic Therapy (OPAT) may be an effective therapeutic modality for bacterial eradication post-LTx. METHODS A single-center, retrospective analysis of OPAT characteristics, efficacy, safety, and costs in non-cystic fibrosis LTx recipients. RESULTS A total of 156 OPAT courses (from June 2019 to December 2022) were evaluated in 108 distinct LTx recipients. OPAT mainly consisted of dual antibiotic therapy (69%) for pulmonary bacterial isolation (97%), mostly Pseudomonas aeruginosa (66%). Successful eradication at 3 months post-OPAT was achieved in 71%. Eradication rate was significantly higher in patients treated after the first post-operative year (79%), compared to patients within the first year (61%) (p = 0.017). Eradication rate was similar for multidrug resistance (eradication rate 61%) versus no multidrug resistance (74%) (p = 0.116). Spirometry remained stable at 90 days post-OPAT. A statistically significant, but clinically negligible, increase in serum creatinine at 90 days post-OPAT was observed (1.33 mg/dL vs. 1.39 mg/dL, p < 0.001), yet unrelated to the antibiotic regimen used. OPAT-related hospital admissions occurred in 13% and line-related adverse events in 6%. Median number of hospitalization days saved per OPAT-course was 10 days (range 2-92), accounting for a total of 1841 avoided admission days and an estimated net cost reduction of 47% per treatment course. CONCLUSION OPAT is an effective and safe therapeutic modality for bacterial eradication post-LTx, associated with a significant reduction in hospitalization days and treatment costs.
Collapse
Affiliation(s)
- Bart Forier
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Veronique Schaevers
- Lung Transplant Team, Clinical Nurse Specialist, University Hospitals Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Charlotte Quintens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Stefanie Desmet
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Saskia Bos
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Pascal Van Bleyenbergh
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Natalie Lorent
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Laurens De Sadeleer
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Laurent Godinas
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Lieven J Dupont
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Robin Vos
- Leuven Transplant Center and Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium.
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Atwood DT, Köhler JR, Vargas SO, Wong W, Klouda T. Identification of Irpex and Rhodotorula on surveillance bronchoscopy in a pediatric lung transplant recipient: A case report and review of literature of these atypical fungal organisms. Pediatr Transplant 2024; 28:e14759. [PMID: 38623871 DOI: 10.1111/petr.14759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Invasive fungal disease (IFD) is a frequent complication in pediatric lung transplant recipients, occurring in up to 12% of patients in the first year. Risk factors for infection include impaired lung defenses and intense immunosuppressive regimens. While most IFD occurs from Aspergillus, other fungal conidia are continuously inhaled, and infections with fungi on a spectrum of human pathogenicity can occur. CASE REPORT We report a case of a 17-year-old lung transplant recipient in whom Irpex lacteus and Rhodotorula species were identified during surveillance bronchoscopy. She was asymptomatic and deemed to be colonized by Irpex lacteus and Rhodotorula species following transplant. 2 years after transplantation, she developed a fever, respiratory symptoms, abnormal lung imaging, and histological evidence of acute and chronic bronchitis on transbronchial biopsy. After developing symptoms concerning for a pulmonary infection and graft dysfunction, she was treated for a presumed IFD. Unfortunately, further diagnostic testing could not be performed at this time given her tenuous clinical status. Despite the initiation of antifungal therapy, her graft function continued to decline resulting in a second lung transplantation. CONCLUSIONS This case raises the concern for IFD in lung transplant recipients from Irpex species. Further investigation is needed to understand the pathogenicity of this organism, reduce the incidence and mortality of IFD in lung transplant recipients, and refine the approach to diagnosis and manage the colonization and isolation of rare, atypical fungal pathogens in immunocompromised hosts.
Collapse
Affiliation(s)
- Daniel T Atwood
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Julia R Köhler
- Division of Infectious Disease, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Wai Wong
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Timothy Klouda
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Magda G. Opportunistic Infections Post-Lung Transplantation: Viral, Fungal, and Mycobacterial. Infect Dis Clin North Am 2024; 38:121-147. [PMID: 38280760 DOI: 10.1016/j.idc.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Opportunistic infections are a leading cause of lung transplant recipient morbidity and mortality. Risk factors for infection include continuous exposure of the lung allograft to the external environment, high levels of immunosuppression, impaired mucociliary clearance and decreased cough reflex, and impact of the native lung microbiome in single lung transplant recipients. Infection risk is mitigated through careful pretransplant screening of recipients and donors, implementation of antimicrobial prophylaxis strategies, and routine surveillance posttransplant. This review describes common viral, fungal, and mycobacterial infectious after lung transplant and provides recommendations on prevention and treatment.
Collapse
Affiliation(s)
- Gabriela Magda
- Columbia University Lung Transplant Program, Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Irving Medical Center, Columbia University Vagelos College of Physicians and Surgeons, 622 West 168th Street PH-14, New York, NY 10032, USA.
| |
Collapse
|
9
|
Kitaura S, Okamoto K. The effect of infectious diseases on lung transplantation in Japan. J Thorac Dis 2024; 16:1632-1644. [PMID: 38505071 PMCID: PMC10944739 DOI: 10.21037/jtd-22-1884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/04/2024] [Indexed: 03/21/2024]
Abstract
Lung transplantation in Japan is an increasingly accessible treatment option for end-stage lung disease; however, the lack of donor organs is a persisting challenge. Five- and 10-year survival rates of lung transplant recipients in Japan are comparable, if not superior, to international standards. The outcomes of lung transplantation in Japan are likely affected by multiple factors. Infectious disease complications are a significant burden to transplant recipients and account for approximately 30% of recipient mortality in Japan, presenting a major challenge in peri-transplant management. Herein, we explore the current status of infectious disease epidemiology, available evidence surrounding infectious diseases in lung transplantation, and potentially influential factors pertinent to lung transplantation outcomes in Japan. Although infection remains the major cause of morbidity and mortality associated with lung transplantation in Japan, there is limited data and evidence. Despite some uncertainties, publicly available data suggests a low rate of antimicrobial resistance in Gram-negative bacteria and a distinct set of endemic pathogens that recipients may encounter. As a countermeasure against the burden of infectious diseases, 8 out of 10 transplant centers in Japan have a dedicated infectious diseases department. Despite these efforts, specific surveillance, prevention, and management are indispensable to improving post-transplantation infectious disease management. We accordingly lay out potential areas for improving infectious disease-related outcomes among lung transplant recipients in Japan.
Collapse
Affiliation(s)
- Satoshi Kitaura
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
- Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koh Okamoto
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
- Division of Infection Control and Prevention, Department of Infectious Diseases, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| |
Collapse
|
10
|
Bansal S, Rahman M, Ravichandran R, Canez J, Fleming T, Mohanakumar T. Extracellular Vesicles in Transplantation: Friend or Foe. Transplantation 2024; 108:374-385. [PMID: 37482627 DOI: 10.1097/tp.0000000000004693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The long-term function of transplanted organs, even under immunosuppression, is hindered by rejection, especially chronic rejection. Chronic rejection occurs more frequently after lung transplantation, termed chronic lung allograft dysfunction (CLAD), than after transplantation of other solid organs. Pulmonary infection is a known risk factor for CLAD, as transplanted lungs are constantly exposed to the external environment; however, the mechanisms by which respiratory infections lead to CLAD are poorly understood. The role of extracellular vesicles (EVs) in transplantation remains largely unknown. Current evidence suggests that EVs released from transplanted organs can serve as friend and foe. EVs carry not only major histocompatibility complex antigens but also tissue-restricted self-antigens and various transcription factors, costimulatory molecules, and microRNAs capable of regulating alloimmune responses. EVs play an important role in antigen presentation by direct, indirect, and semidirect pathways in which CD8 and CD4 cells can be activated. During viral infections, exosomes (small EVs <200 nm in diameter) can express viral antigens and regulate immune responses. Circulating exosomes may also be a viable biomarker for other diseases and rejection after organ transplantation. Bioengineering the surface of exosomes has been proposed as a tool for targeted delivery of drugs and personalized medicine. This review focuses on recent studies demonstrating the role of EVs with a focus on exosomes and their dual role (immune activation or tolerance induction) after organ transplantation, more specifically, lung transplantation.
Collapse
Affiliation(s)
- Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | | | | | | | | | | |
Collapse
|
11
|
Birnie JD, Ahmed T, Kidd SE, Westall GP, Snell GI, Peleg AY, Morrissey CO. Multi-Locus Microsatellite Typing of Colonising and Invasive Aspergillus fumigatus Isolates from Patients Post Lung Transplantation and with Chronic Lung Disease. J Fungi (Basel) 2024; 10:95. [PMID: 38392766 PMCID: PMC10889758 DOI: 10.3390/jof10020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024] Open
Abstract
Aspergillus fumigatus can cause different clinical manifestations/phenotypes in lung transplant (LTx) recipients and patients with chronic respiratory diseases. It can also precipitate chronic lung allograft dysfunction (CLAD) in LTx recipients. Many host factors have been linked with the severity of A. fumigatus infection, but little is known about the contribution of different A. fumigatus strains to the development of different phenotypes and CLAD. We used multi-locus microsatellite typing (MLMT) to determine if there is a relationship between strain (i.e., genotype) and phenotype in 60 patients post LTx or with chronic respiratory disease across two time periods (1 November 2006-31 March 2009 and 1 November 2015-30 June 2017). The MLMT (STRAf) assay was highly discriminatory (Simpson's diversity index of 0.9819-0.9942) with no dominant strain detected. No specific genotype-phenotype link was detected, but several clusters and related strains were associated with invasive aspergillosis (IA) and colonisation in the absence of CLAD. Host factors were linked to clinical phenotypes, with prior lymphopenia significantly more common in IA cases as compared with A. fumigatus-colonised patients (12/16 [75%] vs. 13/36 [36.1%]; p = 0.01), and prior Staphylococcus aureus infection was a significant risk factor for the development of IA (odds ratio 13.8; 95% confidence interval [2.01-279.23]). A trend toward a greater incidence of CMV reactivation post-A. fumigatus isolation was observed (0 vs. 5; p = 0.06) in LTx recipients. Further research is required to determine the pathogenicity and immunogenicity of specific A. fumigatus strains.
Collapse
Affiliation(s)
- Joshua D Birnie
- University Hospital Geelong, Barwon Health, Geelong, VIC 3220, Australia
| | - Tanveer Ahmed
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
| | - Sarah E Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, SA 5000, Australia
| | - Glen P Westall
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
| | - Gregory I Snell
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
| | - Anton Y Peleg
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3168, Australia
| | - Catherine Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
12
|
Patel SN, Thompson D, Roth N, Grodstein E. Cutaneous and renal aspergillosis resulting from orthotopic liver transplantation. BMJ Case Rep 2023; 16:e256974. [PMID: 37993141 PMCID: PMC10668145 DOI: 10.1136/bcr-2023-256974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Affiliation(s)
- Shreeja Nirav Patel
- Medical School, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Dane Thompson
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Nitzan Roth
- Department of Hepatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Elliot Grodstein
- Department of Transplant Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
13
|
Wulff SM, Perch M, Helweg-Larsen J, Bredahl P, Arendrup MC, Lundgren J, Helleberg M, Crone CG. Associations between invasive aspergillosis and cytomegalovirus in lung transplant recipients: a nationwide cohort study. APMIS 2023; 131:574-583. [PMID: 37022293 DOI: 10.1111/apm.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023]
Abstract
Cytomegalovirus (CMV) and invasive aspergillosis (IA) cause morbidity among lung transplant recipients (LTXr). Early diagnosis and treatment could improve outcomes. We examined rates of CMV after IA and vice versa to assess whether screening for one infection is warranted after detecting the other. All Danish LTXr, 2010-2019, were followed for IA and CMV for 2 years after transplantation. IA was defined using ISHLT criteria. Adjusted incidence rate ratios (aIRR) were estimated by Poisson regression adjusted for time after transplantation. We included 295 LTXr, among whom CMV and IA were diagnosed in 128 (43%) and 48 (16%). The risk of CMV was high the first 3 months after IA, IR 98/100 person-years of follow-up (95% CI 47-206). The risk of IA was significantly increased in the first 3 months after CMV, aIRR 2.91 (95% CI 1.32-6.44). Numbers needed to screen to diagnose one case of CMV after IA, and one case of IA after CMV was approximately seven and eight, respectively. Systematic screening for CMV following diagnosis of IA, and vice versa, may improve timeliness of diagnosis and outcomes for LTXr.
Collapse
Affiliation(s)
- Signe Marie Wulff
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Michael Perch
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jannik Helweg-Larsen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pia Bredahl
- Department of Thoracic Anaesthesiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Maiken Cavling Arendrup
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens Lundgren
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marie Helleberg
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Cornelia Geisler Crone
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
14
|
Huang W, Smith AT, Korotun M, Iacono A, Wang J. Lung Transplantation in a New Era in the Field of Cystic Fibrosis. Life (Basel) 2023; 13:1600. [PMID: 37511977 PMCID: PMC10381966 DOI: 10.3390/life13071600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Lung transplantation for people with cystic fibrosis (PwCF) is a critical therapeutic option, in a disease without a cure to this day, and its overall success in this population is evident. The medical advancements in knowledge, treatment, and clinical care in the field of cystic fibrosis (CF) rapidly expanded and improved over the last several decades, starting from early pathology reports of CF organ involvement in 1938, to the identification of the CF gene in 1989. Lung transplantation for CF has been performed since 1983, and CF now accounts for about 17% of pre-transplantation diagnoses in lung transplantation recipients. Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have been the latest new therapeutic modality addressing the underlying CF protein defect with the first modulator, ivacaftor, approved in 2012. Fast forward to today, and we now have a growing CF population. More than half of PwCF are now adults, and younger patients face a better life expectancy than they ever did before. Unfortunately, CFTR modulator therapy is not effective in all patients, and efficacy varies among patients; it is not a cure, and CF remains a progressive disease that leads predominantly to respiratory failure. Lung transplantation remains a lifesaving treatment for this disease. Here, we reviewed the current knowledge of lung transplantation in PwCF, the challenges associated with its implementation, and the ongoing changes to the field as we enter a new era in the care of PwCF. Improved life expectancy in PwCF will surely influence the role of transplantation in patient care and may even lead to a change in the demographics of which people benefit most from transplantation.
Collapse
Affiliation(s)
- Wei Huang
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Alexander T Smith
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Maksim Korotun
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Aldo Iacono
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Janice Wang
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Institute of Health System Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| |
Collapse
|
15
|
Permpalung N, Liang T, Gopinath S, Bazemore K, Mathew J, Ostrander D, Durand CM, Shoham S, Zhang SX, Marr KA, Avery RK, Shah PD. Invasive fungal infections after respiratory viral infections in lung transplant recipients are associated with lung allograft failure and chronic lung allograft dysfunction within 1 year. J Heart Lung Transplant 2023; 42:953-963. [PMID: 36925381 DOI: 10.1016/j.healun.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/18/2023] [Accepted: 02/10/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Respiratory viral infections (RVI) are associated with chronic lung allograft dysfunction (CLAD) and mortality in lung transplant recipients (LTRs). However, the prevalence and impact of secondary invasive fungal infections (IFIs) post RVIs in LTRs have not been investigated. METHODS We performed a single center retrospective study including LTRs diagnosed with 5 different respiratory viral pathogens between January 2010 to May 2021 and evaluated their clinical outcomes in 1 year. The risk factors of IFIs were evaluated by logistic regression. The impact of IFIs on CLAD stage progression/death was examined by Cox regression. RESULTS A total of 202 RVI episodes (50 influenza, 31 severe acute respiratory syndrome coronavirus-2, 30 metapneumovirus, 44 parainfluenza, and 47 respiratory syncytial virus) in 132 patients was included for analysis. Thirty-one episodes (15%) were associated with secondary IFIs, and 27 occurred in LTRs with lower respiratory tract infection (LRTI; 28% from 96 LRTI episodes). Aspergillosis was the most common IFI (80%). LTRs with IFIs had higher disease severity during RVI episodes. In multivariable analysis, RVI with LTRI was associated with IFI (adjusted odds ratio [95% confidence interval (CI)] of 7.85 (2.48-24.9). Secondary IFIs were associated with CLAD stage progression/death after accounting for LRTI, pre-existing CLAD, intensive care unit admission, secondary bacterial pneumonia and underlying lung diseases pre-transplant with adjusted hazard ratio (95%CI) of 2.45 (1.29-4.64). CONCLUSIONS This cohort demonstrated 15% secondary IFI prevalence in LTRs with RVIs. Importantly, secondary IFIs were associated with CLAD stage progression/death, underscoring the importance of screening for fungal infections in this setting.
Collapse
Affiliation(s)
- Nitipong Permpalung
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Division of Mycology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Tao Liang
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shilpa Gopinath
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Katrina Bazemore
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joby Mathew
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Darin Ostrander
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine M Durand
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shmuel Shoham
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sean X Zhang
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kieren A Marr
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Pearl Diagnostics Inc, Baltimore, Maryland
| | - Robin K Avery
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pali D Shah
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
16
|
Opportunistic Infections Post-Lung Transplantation: Viral, Fungal, and Mycobacterial. Clin Chest Med 2023; 44:159-177. [PMID: 36774162 DOI: 10.1016/j.ccm.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Opportunistic infections are a leading cause of lung transplant recipient morbidity and mortality. Risk factors for infection include continuous exposure of the lung allograft to the external environment, high levels of immunosuppression, impaired mucociliary clearance and decreased cough reflex, and impact of the native lung microbiome in single lung transplant recipients. Infection risk is mitigated through careful pretransplant screening of recipients and donors, implementation of antimicrobial prophylaxis strategies, and routine surveillance posttransplant. This review describes common viral, fungal, and mycobacterial infectious after lung transplant and provides recommendations on prevention and treatment.
Collapse
|
17
|
Invasive Pulmonary Aspergillosis in Patients with and without SARS-CoV-2 Infection. J Fungi (Basel) 2023; 9:jof9020130. [PMID: 36836245 PMCID: PMC9968193 DOI: 10.3390/jof9020130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The recent European Confederation of Medical Mycology (ECMM) and the International Society for Human and Animal Mycology (ISHAM) 2020 consensus classification proposes criteria to define coronavirus 2019 (COVID-19)-associated invasive pulmonary aspergillosis (CAPA), including mycological evidence obtained via non-bronchoscopic lavage. Given the low specificity of radiological findings in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, this criterion makes it difficult to differentiate between invasive pulmonary aspergillosis (IPA) and colonization. This unicenter and retrospective study includes 240 patients with isolates of any Aspergillus species in any respiratory samples during a 20-month study (140 IPA and 100 colonization). Mortality was high in the IPA and colonization groups (37.1% and 34.0%, respectively; p = 0.61), especially in patients with SARS-CoV-2 infection, where mortality was higher in colonized patients (40.7% vs. 66.6.%; p: 0.021). Multivariate analysis confirmed the following variables to be independently associated with increased mortality: age > 65 years, acute or chronic renal failure at diagnosis, thrombocytopenia (<100,000 platelets/µL) at admission, inotrope requirement, and SARS-CoV-2 infection, but not the presence of IPA. This series shows that the isolation of Aspergillus spp. in respiratory samples, whether associated with disease criteria or not, is associated with high mortality, especially in patients with SARS-CoV-2 infection, and suggests an early initiation of treatment given its high mortality rate.
Collapse
|
18
|
Beeckmans H, Van Roy E, Kaes J, Sacreas A, Geudens V, Vermaut A, Willems L, Jin X, Bos S, Vanstapel A, Van Slambrouck J, Orlitova M, Vanaudenaerde B, Ceulemans LJ, Van Raemdonck D, Neyrinck AP, Godinas L, Dupont LJ, Verleden GM, Vos R. Aspergillus-Specific IgG Antibodies are Associated With Fungal-Related Complications and Chronic Lung Allograft Dysfunction After Lung Transplantation. Transpl Int 2023; 36:10768. [PMID: 36873745 PMCID: PMC9977785 DOI: 10.3389/ti.2023.10768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
Fungal exposure and sensitization negatively affect outcomes in various respiratory diseases, however, the effect of fungal sensitization in lung transplant (LTx) recipients is still unknown. We performed a retrospective cohort study of prospectively collected data on circulating fungal specific IgG/IgE antibodies, and their correlation with fungal isolation, chronic lung allograft dysfunction (CLAD) and overall survival after LTx. 311 patients transplanted between 2014 and 2019 were included. Patients with elevated Aspergillus fumigatus or Aspergillus flavus IgG (10%) had more mold and Aspergillus species isolation (p = 0.0068 and p = 0.0047). Aspergillus fumigatus IgG was specifically associated with Aspergillus fumigatus isolation in the previous or consecutive year (AUC 0.60, p = 0.004 and AUC 0.63, p = 0.022, respectively). Elevated Aspergillus fumigatus or Aspergillus flavus IgG was associated with CLAD (p = 0.0355), but not with death. Aspergillus fumigatus, Aspergillus flavus or Aspergillus niger IgE was elevated in 19.3% of patients, but not associated with fungal isolation, CLAD or death. Mold isolation and Aspergillus species isolation from respiratory cultures were associated with CLAD occurrence (p = 0.0011 and p = 0.0005, respectively), and Aspergillus species isolation was also associated with impaired survival (p = 0.0424). Fungus-specific IgG could be useful in long-term follow-up post-LTx, as a non-invasive marker for fungal exposure, and thus a diagnostic tool for identifying patients at risk for fungal-related complications and CLAD.
Collapse
Affiliation(s)
- Hanne Beeckmans
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Elfri Van Roy
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Janne Kaes
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Annelore Sacreas
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Vincent Geudens
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Astrid Vermaut
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Lynn Willems
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Xin Jin
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Saskia Bos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arno Vanstapel
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Jan Van Slambrouck
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Michaela Orlitova
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Van Raemdonck
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Arne P Neyrinck
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Laurent Godinas
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory diseases, University Hospitals Leuven, Leuven, Belgium
| | - Lieven J Dupont
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory diseases, University Hospitals Leuven, Leuven, Belgium
| | - Geert M Verleden
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory diseases, University Hospitals Leuven, Leuven, Belgium
| | - Robin Vos
- Laboratory for Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Respiratory diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Boutin CA, Desjardins M, Luong ML. Fungal infection and chronic lung allograft dysfunction: A dangerous combination. Transpl Infect Dis 2022; 24:e13987. [PMID: 36380580 DOI: 10.1111/tid.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Catherine-Audrey Boutin
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Division of Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Division of Infectious Disease, Department of Medicine, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Michaël Desjardins
- Division of Infectious Disease, Department of Medicine, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Me-Linh Luong
- Division of Infectious Disease, Department of Medicine, University of Montreal Hospital Center, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Pennington KM, Aversa M, Martinu T, Johnson B, Husain S. Fungal infection and colonization in lung transplant recipients with chronic lung allograft dysfunction. Transpl Infect Dis 2022; 24:e13986. [PMID: 36380578 DOI: 10.1111/tid.13986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The incidence and impact of de novo fungal airway colonization and infection in lung transplant recipients (LTRs) with known chronic lung allograft dysfunction (CLAD) has not been established. We aimed to determine the 1-year cumulative incidence and risk factors of de novo fungal colonization or infection in LTRs with CLAD and assess the impact of colonization or infection on post-CLAD survival. METHODS Prospectively collected Toronto Lung Transplant Program database and chart review were used for double-LTRs who were diagnosed with CLAD from January 1, 2016 to January 1, 2020 and who were free of airway fungi within 1 year prior to CLAD onset. International Society for Heart and Lung Transplantation definitions were used to define clinical syndromes. Cox-Proportional Hazards Models were used for risk-factor analysis. Survival analysis could not be completed secondary to low number of fungal events; therefore, descriptive statistics were employed for survival outcomes. RESULTS We found 186 LTRs diagnosed with CLAD meeting our inclusion criteria. The 1-year cumulative incidence for any fungal event was 11.8% (7.0% for infection and 4.8% for colonization). Aspergillus fumigatus was a causative pathogen in eight of 13 (61.5%) patients with infection and six of nine (66.7%) patients with colonization. No patients with fungal colonization post-CLAD developed fungal infection. Peri-CLAD diagnosis (3 months prior or 1 month after) methylprednisolone bolus (hazards ratio: 8.84, p = .001) increased the risk of fungal events. Most patients diagnosed with fungal infections (53.8%) died within 1-year of CLAD onset. CONCLUSION De novo IFIs and fungal colonization following CLAD onset were not common. Fungal colonization did not lead to fungal infection. Methylprednisolone bolus was a significant risk factors for post-CLAD fungal events.
Collapse
Affiliation(s)
- Kelly M Pennington
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Meghan Aversa
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Tereza Martinu
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Bradley Johnson
- Department of Biostatistics, Mayo Clinic, Rochester, Minnesota, USA
| | - Shahid Husain
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada.,Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Guohui J, Kun W, Dong T, Ji Z, Dong L, Dong W, Jingyu C. Microbiosis in lung allotransplantation and xenotransplantation: State of the art and future perspective. HEALTH CARE SCIENCE 2022; 1:119-128. [PMID: 38938886 PMCID: PMC11080722 DOI: 10.1002/hcs2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 06/29/2024]
Abstract
The respiratory tract is known to harbor a microbial community including bacteria, viruses, and fungi. New techniques contribute enormously to the identification of unknown or culture-independent species and reveal the interaction of the community with the host immune system. The existing respiratory microbiome and substantial equilibrium of the transplanted microbiome from donor lung grafts provide an extreme bloom of dynamic changes in the microenvironment in lung transplantation (LT) recipients. Dysbiosis in grafts are not only related to the modified microbial components but also involve the kinetics of the host-graft "talk," which signifies the destination of graft allograft injury, acute rejection, infection, and chronic allograft dysfunction development in short- and long-term survival. Microbiome-derived factors may contribute to lung xenograft survival when using genetically multimodified pig-derived organs. Here, we review the most advanced knowledge of the dynamics and resilience of microbial communities in transplanted lungs with various pretransplant indications. Conceptual and analytical points of view have been illustrated along the time series, gaining insight into the microbiome and lung grafts. Future endeavors on precise tools, sophisticated models, and novel targeted regimens are needed to improve the long-term survival in these patients.
Collapse
Affiliation(s)
- Jiao Guohui
- Center for Medical Device Evaluation, NMPABeijingChina
| | - Wu Kun
- Center for Medical Device Evaluation, NMPABeijingChina
| | - Tian Dong
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduChina
| | - Zhang Ji
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| | - Liu Dong
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| | - Wei Dong
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| | - Chen Jingyu
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| |
Collapse
|
22
|
Ju C, Lian Q, Chen A, Zhao B, Zhou S, Cai Y, Xie H, Wei L, Li S, He J. Antifungal prophylactic effectiveness and intrapulmonary concentrations of voriconazole versus posaconazole in lung transplant recipients. Med Mycol 2022; 60:6678431. [PMID: 36036471 PMCID: PMC9437723 DOI: 10.1093/mmy/myac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/22/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Invasive fungal diseases (IFDs) are one of the leading causes of death in lung transplant recipients. This study aimed to compare the antifungal prophylactic effectiveness, intrapulmonary and plasma levels of voriconazole with posaconazole in lung transplant recipients. This retrospective cohort study analyzed adult recipients who underwent lung transplantation between June 2017 and December 2020. Voriconazole oral tablets or posaconazole oral suspension were used for prophylaxis against posttransplant IFD. Drug concentrations in bronchoalveolar lavage fluid (BALF) and plasma were measured by using liquid chromatography-mass spectrometry. The 182 recipients included 142 in the voriconazole group and 40 in the posaconazole group. The trough plasma levels were comparable between voriconazole and posaconazole (1.65 ± 0.09 vs. 1.69 ± 0.03 μg/ml, p = 0.55). However, the BALF levels were significantly higher for posaconazole than voriconazole (17.47 ± 11.51 vs. 0.56 ± 0.49 μg/ml, p < 0.001). There was no significant difference in the total incidence of breakthrough IFDs between the voriconazole and posaconazole groups (10.6% vs. 7.5%, p = 0.77). The intrapulmonary concentrations of posaconazole were significantly higher than voriconazole. The two agents had comparable antifungal prophylactic effectiveness.
Collapse
Affiliation(s)
- Chunrong Ju
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiaoyan Lian
- Department of Organ Transplant, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ao Chen
- Department of Organ Transplant, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shouning Zhou
- Department of Pharmacy, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuhang Cai
- Department of Organ Transplant, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Xie
- Department of Pharmacy, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Wei
- Department of Pharmacy, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyue Li
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Samanta P, Clancy CJ, Nguyen MH. Fungal infections in lung transplantation. J Thorac Dis 2022; 13:6695-6707. [PMID: 34992845 PMCID: PMC8662481 DOI: 10.21037/jtd-2021-26] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
Lung transplant is a potential life-saving procedure for chronic lung diseases. Lung transplant recipients (LTRs) are at the greatest risk for invasive fungal infections (IFIs) among solid organ transplant (SOT) recipients because the allograft is directly exposed to fungi in the environment, airway and lung host defenses are impaired, and immunosuppressive regimens are particularly intense. IFIs occur within a year of transplant in 3-19% of LTRs, and they are associated with high mortality, prolonged hospital stays, and excess healthcare costs. The most common causes of post-LT IFIs are Aspergillus and Candida spp.; less common pathogens are Mucorales, other non-Aspergillus moulds, Cryptococcus neoformans, Pneumocystis jirovecii, and endemic mycoses. The majority of IFIs occur in the first year following transplant, although later onset is observed with prolonged antifungal prophylaxis. The most common manifestations of invasive mould infections (IMIs) include tracheobronchial (particularly at anastomotic sites), pulmonary and disseminated infections. The mortality rate of tracheobronchitis is typically low, but local complications such as bronchomalacia, stenosis and dehiscence may occur. Mortality rates associated with lung and disseminated infections can exceed 40% and 80%, respectively. IMI risk factors include mould colonization, single lung transplant and augmented immunosuppression. Candidiasis is less common than mould infections, and manifests as bloodstream or other non-pulmonary invasive candidiasis; tracheobronchial infections are encountered uncommonly. Risk factors for and outcomes of candidiasis are similar to those of non lung transplant recipients. There is evidence that IFIs and fungal colonization are risk factors for allograft failure due to chronic rejection. Mould-active azoles are frontline agents for treatment of IMIs, with local debridement as needed for tracheobronchial disease. Echinocandins and azoles are treatments for invasive candidiasis, in keeping with guidelines in other patient populations. Antifungal prophylaxis is commonly administered, but benefits and optimal regimens are not defined. Universal mould-active azole prophylaxis is used most often. Other approaches include targeted prophylaxis of high-risk LTRs or pre-emptive therapy based on culture or galactomannan (GM) (or other biomarker) results. Prophylaxis trials are needed, but difficult to perform due to heterogeneity in local epidemiology of IFIs and standard LT practices. The key to devising rational strategies for preventing IFIs is to understand local epidemiology in context of institutional clinical practices.
Collapse
Affiliation(s)
- Palash Samanta
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Hong Nguyen
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Bai YZ, Roberts SH, Kreisel D, Nava RG. Microbiota in heart and lung transplantation: implications for innate-adaptive immune interface. Curr Opin Organ Transplant 2021; 26:609-614. [PMID: 34561360 DOI: 10.1097/mot.0000000000000923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Transplantation continues to be the only treatment option for end-stage organ failure when other interventions have failed. Although short-term outcomes have improved due to advances in perioperative care, long-term outcomes continue to be adversely affected by chronic rejection. Little is known about the role microbiota play in modulating alloimmune responses and potentially contributing to graft failure. Initial data have identified a correlation between specific changes of the recipient and/or donor microbiota and transplant outcomes. In this review, we will focus on recent findings concerning the complex interplay between microbiota and the innate immune system after heart and lung transplantation. RECENT FINDINGS Gut microbiome derangements in heart failure promote an inflammatory state and have lasting effects on the innate immune system, with an observed association between increased levels of microbiota-dependent metabolites and acute rejection after cardiac transplantation. The lung allograft microbiome interacts with components of the innate immune system, such as toll-like receptor signalling pathways, NKG2C+ natural killer cells and the NLRP3 inflammasome, to alter posttransplant outcomes, which may result in the development of chronic rejection. SUMMARY The innate immune system is influenced by alterations in the microbiome before and after heart and lung transplantation, thereby offering potential therapeutic targets for prolonging allograft survival.
Collapse
Affiliation(s)
| | | | - Daniel Kreisel
- Department of Surgery
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
25
|
The Prediction and Prognosis of Fungal Infection in Lung Transplant Recipients-A Retrospective Cohort Study in South Korea. J Fungi (Basel) 2021; 7:jof7080639. [PMID: 34436178 PMCID: PMC8400395 DOI: 10.3390/jof7080639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023] Open
Abstract
(1) Background: Lung transplant recipients (LTRs) are at substantial risk of invasive fungal disease (IFD), although no consensus has been reached on the use of antifungal agents (AFAs) after lung transplantation (LTx). This study aimed to assess the risk factors and prognosis of fungal infection after LTx in a single tertiary center in South Korea. (2) Methods: The study population included all patients who underwent LTx between January 2012 and July 2019 at a tertiary hospital. It was a retrospective cohort study. Culture, bronchoscopy, and laboratory findings were reviewed during episodes of infection. (3) Results: Fungus-positive respiratory samples were predominant in the first 90 days and the overall cumulative incidence of Candida spp. was approximately three times higher than that of Aspergillus spp. In the setting of itraconazole administration for 6 months post-LTx, C. glabrata accounted for 36.5% of all Candida-positive respiratory samples. Underlying connective tissue disease-associated interstitial lung disease, use of AFAs before LTx, a longer length of hospital stay after LTx, and old age were associated with developing a fungal infection after LTx. IFD and fungal infection treatment failure significantly increased overall mortality. Host factors, antifungal drug resistance, and misdiagnosis of non-Aspergillus molds could attribute to the breakthrough fungal infections. (4) Conclusions: Careful bronchoscopy, prompt fungus culture, and appropriate use of antifungal therapies are recommended during the first year after LTx.
Collapse
|
26
|
McGinniss JE, Whiteside SA, Simon-Soro A, Diamond JM, Christie JD, Bushman FD, Collman RG. The lung microbiome in lung transplantation. J Heart Lung Transplant 2021; 40:733-744. [PMID: 34120840 PMCID: PMC8335643 DOI: 10.1016/j.healun.2021.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
Culture-independent study of the lower respiratory tract after lung transplantation has enabled an understanding of the microbiome - that is, the collection of bacteria, fungi, and viruses, and their respective gene complement - in this niche. The lung has unique features as a microbial environment, with balanced entry from the upper respiratory tract, clearance, and local replication. There are many pressures impacting the microbiome after transplantation, including donor allograft factors, recipient host factors such as underlying disease and ongoing exposure to the microbe-rich upper respiratory tract, and transplantation-related immunosuppression, antimicrobials, and postsurgical changes. To date, we understand that the lung microbiome after transplant is dysbiotic; that is, it has higher biomass and altered composition compared to a healthy lung. Emerging data suggest that specific microbiome features may be linked to host responses, both immune and non-immune, and clinical outcomes such as chronic lung allograft dysfunction (CLAD), but many questions remain. The goal of this review is to put into context our burgeoning understanding of the lung microbiome in the postlung transplant patient, the interactions between microbiome and host, the role the microbiome may play in post-transplant complications, and critical outstanding research questions.
Collapse
Affiliation(s)
- John E McGinniss
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samantha A Whiteside
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aurea Simon-Soro
- Department of Orthodontics and Divisions of Community Oral Health and Pediatric Dentistry, School of Dental Medicine at the University of Pennsylvania
| | - Joshua M Diamond
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason D Christie
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fredrick D Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald G Collman
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Eskind CC, Shilts MH, Shaver CM, Das SR, Satyanarayana G. The respiratory microbiome after lung transplantation: Reflection or driver of respiratory disease? Am J Transplant 2021; 21:2333-2340. [PMID: 33749996 PMCID: PMC8926303 DOI: 10.1111/ajt.16568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 01/25/2023]
Abstract
With the introduction of high-throughput sequencing methods, our understanding of the human lower respiratory tract's inhabitants has expanded significantly in recent years. What is now termed the "lung microbiome" has been described for healthy patients, as well as people with chronic lung diseases and lung transplants. The lung microbiome of lung transplant recipients (LTRs) has proven to be unique compared with nontransplant patients, with characteristic findings associated with disease states, such as pneumonia, acute rejection, and graft failure. In this review, we summarize the current understanding of the lung microbiome in LTRs, not only focusing on bacteria but also highlighting key findings of the viral and the fungal community. Based on our knowledge of the lung microbiome in LTRs, we propose multiple opportunities for clinical use of the microbiome to improve outcomes in this population.
Collapse
Affiliation(s)
- Caroline Cohen Eskind
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Meghan H. Shilts
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Otolaryngology and Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gowri Satyanarayana
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
28
|
Amubieya O, Ramsey A, DerHovanessian A, Fishbein GA, Lynch JP, Belperio JA, Weigt SS. Chronic Lung Allograft Dysfunction: Evolving Concepts and Therapies. Semin Respir Crit Care Med 2021; 42:392-410. [PMID: 34030202 DOI: 10.1055/s-0041-1729175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary factor that limits long-term survival after lung transplantation is chronic lung allograft dysfunction (CLAD). CLAD also impairs quality of life and increases the costs of medical care. Our understanding of CLAD continues to evolve. Consensus definitions of CLAD and the major CLAD phenotypes were recently updated and clarified, but it remains to be seen whether the current definitions will lead to advances in management or impact care. Understanding the potential differences in pathogenesis for each CLAD phenotype may lead to novel therapeutic strategies, including precision medicine. Recognition of CLAD risk factors may lead to earlier interventions to mitigate risk, or to avoid risk factors all together, to prevent the development of CLAD. Unfortunately, currently available therapies for CLAD are usually not effective. However, novel therapeutics aimed at both prevention and treatment are currently under investigation. We provide an overview of the updates to CLAD-related terminology, clinical phenotypes and their diagnosis, natural history, pathogenesis, and potential strategies to treat and prevent CLAD.
Collapse
Affiliation(s)
- Olawale Amubieya
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Allison Ramsey
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ariss DerHovanessian
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gregory A Fishbein
- Department of Pathology, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John A Belperio
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - S Samuel Weigt
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
29
|
van den Hoogen MWF, Seghers L, Manintveld OC, Roest S, Bekkers JA, den Hoed CM, Minnee RC, de Geus HRH, van Thiel RJ, Hesselink DA. Care for the organ transplant recipient on the intensive care unit. J Crit Care 2021; 64:37-44. [PMID: 33784577 DOI: 10.1016/j.jcrc.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/25/2022]
Abstract
All transplant recipients receive tacrolimus, mycophenolate and glucocorticoids and these drugs have many side-effects and drug-drug interactions. Common complications include surgical complications, infections, rejection and acute kidney injury. Infections as CMV and PJP can be prevented with prophylactic treatment. Given the complexity of organ transplant recipients a multi-disciplinary team of intensivists, surgeons, pharmacists and transplant specialists is essential. After heart transplantation a temporary pacemaker is required until the conduction system recovers. Stiffening of the heart and increased cardiac markers indicate rejection. An endomyocardial biopsy is performed via the right jugular vein, necessitating its preservation. For lung transplant patients, early intervention for aspiration is warranted to prevent chronic rejection. Risk of any infection is high, requiring active surveillance and intensive treatment, mainly of fungal infections. The liver is immunotolerant requiring lower immunosuppression. Transplantation surgery is often accompanied by massive blood loss and coagulopathy. Other complications include portal vein or hepatic artery thrombosis and biliary leakage or stenosis. Kidney transplant recipients have a high risk of cardiovascular disease and posttransplant anemia should be treated liberally. After postmortal transplantation, delayed graft function is common and dialysis is continued. Ureteral anastomosis complications can be diagnosed with ultrasound.
Collapse
Affiliation(s)
- M W F van den Hoogen
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - L Seghers
- Department of Pulmonology, Thorax Center, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - O C Manintveld
- Department of Cardiology, Thorax Center, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - S Roest
- Department of Cardiology, Thorax Center, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - J A Bekkers
- Department of Thorax Surgery, Thorax Center, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - C M den Hoed
- Department of Gastroenterology, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - R C Minnee
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - H R H de Geus
- Department of Intensive Care, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - R J van Thiel
- Department of Intensive Care, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - D A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
30
|
Le Pavec J, Pradère P, Gigandon A, Dauriat G, Dureault A, Aguilar C, Henry B, Lanternier F, Savale L, Dolidon S, Gazengel P, Mussot S, Mercier O, Husain S, Lortholary O, Fadel E. Risk of Lung Allograft Dysfunction Associated With Aspergillus Infection. Transplant Direct 2021; 7:e675. [PMID: 34113715 PMCID: PMC8184025 DOI: 10.1097/txd.0000000000001128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/26/2020] [Indexed: 11/25/2022] Open
Abstract
We sought to determine whether invasive aspergillosis (IA) during the first year after lung transplantation increased the risk of chronic lung allograft dysfunction (CLAD). Methods We retrospectively reviewed the records of 191 patients who underwent lung transplantation at our institution between January 2013 and December 2017. Screening for Aspergillus was with bronchial aspirates, bronchoalveolar lavage if indicated or during surveillance bronchoscopy, radiography, and computed tomography. We used Fine and Gray multivariable regression to identify potential risk factors for CLAD. Results During the first posttransplant year, 72 patients had at least 1 deep-airway sample positive for Aspergillus; 63 were classified as having IA and were included in the study. Median number of endoscopies per patient during the first year was 9 (range, 1-44). Median time from transplantation to first Aspergillus-positive sample was 121 d. Bronchial aspirate samples and bronchoalveolar lavage fluid were positive in 71 and 44 patients, respectively. Aspergillus fumigatus (n = 36, 50%) predominated; bacterial samples were also positive in 22 (31%) patients. IA within 4 mo after transplantation was independently associated with CLAD development (subdistribution hazard ratio, 3.75; 95% confidence interval [CI], 1.61-8.73; P < 0.01) by regression analysis. Survival at 3 and 5 y conditional on 1-y CLAD-free survival was 37% (95% CI, 24%-58%), and 24% (95% CI, 11%-52%) in the IA <4 mo group compared to 65% (95% CI, 57%-73%) and 54% (95% CI, 43%-66%) in the non-IA group and to 69% (95% CI, 58%-83%) and 54% (95% CI, 35%-82%) in the IA ≥4 mo group, respectively (P < 0.01, logrank test). Conclusions Our evaluation of de novo IA showed that this infection was most strongly associated with CLAD when found within 4 mo after transplantation.
Collapse
Affiliation(s)
- Jérôme Le Pavec
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Pauline Pradère
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Anne Gigandon
- Service de microbiologie, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Gaëlle Dauriat
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Amélie Dureault
- Molecular Mycology Unit, UMR2000, CNRS, Institut Pasteur, Paris, France.,Necker Pasteur Center for Infectious Diseases and Tropical Medicine, Hôpital Necker Enfants malades, AP-HP, IHU Imagine, Paris Descartes University, Université de Paris, Paris, France
| | - Claire Aguilar
- Molecular Mycology Unit, UMR2000, CNRS, Institut Pasteur, Paris, France.,Necker Pasteur Center for Infectious Diseases and Tropical Medicine, Hôpital Necker Enfants malades, AP-HP, IHU Imagine, Paris Descartes University, Université de Paris, Paris, France
| | - Benoît Henry
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Service de microbiologie, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Molecular Mycology Unit, UMR2000, CNRS, Institut Pasteur, Paris, France
| | - Fanny Lanternier
- Molecular Mycology Unit, UMR2000, CNRS, Institut Pasteur, Paris, France.,Necker Pasteur Center for Infectious Diseases and Tropical Medicine, Hôpital Necker Enfants malades, AP-HP, IHU Imagine, Paris Descartes University, Université de Paris, Paris, France
| | - Laurent Savale
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France.,AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Samuel Dolidon
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Pierre Gazengel
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Sacha Mussot
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Olaf Mercier
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Shahid Husain
- University of Toronto, University Health Network, Toronto, ON, Canada
| | - Olivier Lortholary
- Molecular Mycology Unit, UMR2000, CNRS, Institut Pasteur, Paris, France.,Necker Pasteur Center for Infectious Diseases and Tropical Medicine, Hôpital Necker Enfants malades, AP-HP, IHU Imagine, Paris Descartes University, Université de Paris, Paris, France
| | - Elie Fadel
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France.,Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France.,UMR_S 999, Université Paris-Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| |
Collapse
|
31
|
Werlein C, Seidel A, Warnecke G, Gottlieb J, Laenger F, Jonigk D. Lung Transplant Pathology: An Overview on Current Entities and Procedures. Surg Pathol Clin 2020; 13:119-140. [PMID: 32005428 DOI: 10.1016/j.path.2019.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alloimmune reactions are, besides various infections, the major cause for impaired lung allograft function following transplant. Acute cellular rejection is not only a major trigger of acute allograft failure but also contributes to development of chronic lung allograft dysfunction. Analogous to other solid organ transplants, acute antibody-mediated rejection has become a recognized entity in lung transplant pathology. Adequate sensitivity and specificity in the diagnosis of alloimmune reactions in the lung can only be achieved by synoptic analysis of histopathologic, clinical, and radiological findings together with serologic and microbiologic findings.
Collapse
Affiliation(s)
- Christopher Werlein
- Institute for Pathology, OE 5110, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| | - Allison Seidel
- Institute for Pathology, OE 5110, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)
| | - Gregor Warnecke
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, OE6210, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Jens Gottlieb
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Department of Pneumology, OE6210, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Florian Laenger
- Institute for Pathology, OE 5110, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)
| | - Danny Jonigk
- Institute for Pathology, OE 5110, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)
| |
Collapse
|
32
|
Arjuna A, Olson MT, Walia R, Bremner RM, Smith MA, Mohanakumar T. An update on current treatment strategies for managing bronchiolitis obliterans syndrome after lung transplantation. Expert Rev Respir Med 2020; 15:339-350. [PMID: 33054424 DOI: 10.1080/17476348.2021.1835475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Bronchiolitis obliterans syndrome (BOS), a subtype of chronic lung allograft dysfunction, is quite common, with up to half of all lung recipients developing BOS within 5 years of transplantation. Preventive efforts are aimed at alleviating known risk factors of BOS development, while the primary goal of treatment is to delay the irreversible, fibrotic airway changes, and progressive loss of lung function. AREAS COVERED This narrative review will briefly discuss the updated definition, clinical presentation, pathogenesis, risk factors, and survival after BOS while paying particular attention to the salient evidence for optimal preventive strategies and treatments based on investigations in the modern era. EXPERT OPINION Future translational research focused on further characterizing the complex interplay between immune and nonimmune mechanisms mediating chronic lung rejection is the first step toward mitigating risk of allograft injury, improving early disease detection with noninvasive biomarkers, and ultimately, developing an effective, targeted therapy that can extend the life of the lung allograft.
Collapse
Affiliation(s)
- Ashwini Arjuna
- St. Joseph's Hospital and Medical Center, Norton Thoracic Institute, Phoenix, AZ, USA
| | - Michael T Olson
- St. Joseph's Hospital and Medical Center, Norton Thoracic Institute, Phoenix, AZ, USA.,Phoenix Campus, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Rajat Walia
- St. Joseph's Hospital and Medical Center, Norton Thoracic Institute, Phoenix, AZ, USA
| | - Ross M Bremner
- St. Joseph's Hospital and Medical Center, Norton Thoracic Institute, Phoenix, AZ, USA
| | - Michael A Smith
- St. Joseph's Hospital and Medical Center, Norton Thoracic Institute, Phoenix, AZ, USA
| | | |
Collapse
|
33
|
Peghin M, Los-Arcos I, Hirsch HH, Codina G, Monforte V, Bravo C, Berastegui C, Jauregui A, Romero L, Cabral E, Ferrer R, Sacanell J, Román A, Len O, Gavaldà J. Community-acquired Respiratory Viruses Are a Risk Factor for Chronic Lung Allograft Dysfunction. Clin Infect Dis 2020; 69:1192-1197. [PMID: 30561555 PMCID: PMC7797743 DOI: 10.1093/cid/ciy1047] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/11/2018] [Indexed: 01/30/2023] Open
Abstract
Background The relationship between community-acquired respiratory viruses (CARVs) and chronic lung allograft dysfunction (CLAD) in lung transplant recipients is still controversial. Methods We performed a prospective cohort study (2009–2014) in all consecutive adult patients (≥18 years) undergoing lung transplantation in the Hospital Universitari Vall d’Hebron (Barcelona, Spain). We systematically collected nasopharyngeal swabs from asymptomatic patients during seasonal changes, from patients with upper respiratory tract infectious disease, lower respiratory tract infectious disease (LRTID), or acute rejection. Nasopharyngeal swabs were analyzed by multiplex polymerase chain reaction. Primary outcome was to evaluate the potential association of CARVs and development of CLAD. Time-dependent Cox regression models were performed to identify the independent risk factors for CLAD. Results Overall, 98 patients (67 bilateral lung transplant recipients; 63.3% male; mean age, 49.9 years) were included. Mean postoperative follow-up was 3.4 years (interquartile range [IQR], 2.5–4.0 years). Thirty-eight lung transplant recipients (38.8%) developed CLAD, in a median time of 20.4 months (IQR, 12–30.4 months). In time-controlled multivariate analysis, CARV-LRTID (hazard ratio [HR], 3.00 [95% confidence interval {CI}, 1.52–5.91]; P = .002), acute rejection (HR, 2.97 [95% CI, 1.51–5.83]; P = .002), and cytomegalovirus pneumonitis (HR, 3.76 [95% CI, 1.23–11.49]; P = .02) were independent risk factors associated with developing CLAD. Conclusions Lung transplant recipients with CARVs in the lower respiratory tract are at increased risk to develop CLAD.
Collapse
Affiliation(s)
- Maddalena Peghin
- Infectious Diseases Research Group, Vall d'Hebron Research Institute, Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona.,Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid.,Infectious Diseases Clinic, Department of Medicine, University of Udine and Santa Maria Misericordia Hospital, Italy
| | - Ibai Los-Arcos
- Infectious Diseases Research Group, Vall d'Hebron Research Institute, Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona.,Department of Medicine, Universitat Autònoma de Barcelona, Spain
| | - Hans H Hirsch
- Division of Infectious Diseases and Hospital Epidemiology, Basel University Hospital, Switzerland
| | - Gemma Codina
- Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid.,Department of Microbiology, Hospital Universitari Vall d'Hebron, Barcelona
| | - Víctor Monforte
- Department of Pulmonology and Lung Transplant Unit, Hospital Universitari Vall d'Hebron, Barcelona
| | - Carles Bravo
- Department of Pulmonology and Lung Transplant Unit, Hospital Universitari Vall d'Hebron, Barcelona
| | - Cristina Berastegui
- Department of Pulmonology and Lung Transplant Unit, Hospital Universitari Vall d'Hebron, Barcelona
| | - Alberto Jauregui
- Department of Thoracic Surgery, Hospital Universitari Vall d'Hebron, Barcelona
| | - Laura Romero
- Department of Thoracic Surgery, Hospital Universitari Vall d'Hebron, Barcelona
| | - Evelyn Cabral
- Infectious Diseases Research Group, Vall d'Hebron Research Institute, Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona
| | - Ricard Ferrer
- Intensive Care Department, Hospital Universitari Vall d'Hebron, Barcelona.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d' Hebron Research Institute, Barcelona
| | - Judith Sacanell
- Intensive Care Department, Hospital Universitari Vall d'Hebron, Barcelona.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d' Hebron Research Institute, Barcelona
| | - Antonio Román
- Department of Pulmonology and Lung Transplant Unit, Hospital Universitari Vall d'Hebron, Barcelona.,Ciber Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Len
- Infectious Diseases Research Group, Vall d'Hebron Research Institute, Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona.,Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid
| | - Joan Gavaldà
- Infectious Diseases Research Group, Vall d'Hebron Research Institute, Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona.,Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid
| |
Collapse
|
34
|
De Muynck B, Van Herck A, Sacreas A, Heigl T, Kaes J, Vanstapel A, Verleden SE, Neyrinck AP, Ceulemans LJ, Van Raemdonck DE, Lagrou K, Vanaudenaerde BM, Verleden GM, Vos R. Successful Pseudomonas aeruginosa eradication improves outcomes after lung transplantation: a retrospective cohort analysis. Eur Respir J 2020; 56:13993003.01720-2020. [DOI: 10.1183/13993003.01720-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 05/21/2020] [Indexed: 12/14/2022]
Abstract
Long-term survival after lung transplantation (LTx) is hampered by development of chronic lung allograft dysfunction (CLAD). Pseudomonas aeruginosa is an established risk factor for CLAD. Therefore, we investigated the effect of P. aeruginosa eradication on CLAD-free and graft survival.Patients who underwent first LTx between July, 1991, and February, 2016, and were free from CLAD, were retrospectively classified according to P. aeruginosa presence in respiratory samples between September, 2011, and September, 2016. P. aeruginosa-positive patients were subsequently stratified according to success of P. aeruginosa eradication following targeted antibiotic treatment. CLAD-free and graft survival were compared between P. aeruginosa-positive and P. aeruginosa-negative patients; and between patients with or without successful P. aeruginosa eradication. In addition, pulmonary function was assessed during the first year following P. aeruginosa isolation in both groups.CLAD-free survival of P. aeruginosa-negative patients (n=443) was longer compared with P. aeruginosa-positive patients (n=95) (p=0.045). Graft survival of P. aeruginosa-negative patients (n=443, 82%) was better compared with P. aeruginosa-positive patients (n=95, 18%) (p<0.0001). Similarly, P. aeruginosa-eradicated patients demonstrated longer CLAD-free and graft survival compared with patients with persistent P. aeruginosa. Pulmonary function was higher in successfully P. aeruginosa-eradicated patients compared with unsuccessfully eradicated patients (p=0.035).P. aeruginosa eradication after LTx improves CLAD-free and graft survival and maintains pulmonary function. Therefore, early P. aeruginosa detection and eradication should be pursued.
Collapse
|
35
|
Weigt SS, Snyder LD. Demystifying "bad luck": Seemingly unrelated risk factors for CLAD may be connected by a common pathway. Am J Transplant 2020; 20:920-921. [PMID: 31833649 DOI: 10.1111/ajt.15741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/19/2019] [Accepted: 12/04/2019] [Indexed: 01/25/2023]
|
36
|
Abstract
Introduction: Lung transplantation remains an important treatment for patients with end stage lung disease. Chronic lung allograft dysfunction (CLAD) remains the greatest limiting factor for long term survival. As the diagnosis of CLAD is based on pulmonary function tests, significant lung injury is required before a diagnosis is feasible, likely when irreversible damage has already occurred. Therefore, research is ongoing for early CLAD recognition, with biomarkers making up a substantial amount of this research.Areas covered: The purpose of this review is to describe available biomarkers, focusing on those which aid in predicting CLAD and distinguishing between different CLAD phenotypes. We describe biomarkers presenting in bronchial alveolar lavage (BAL) as well as circulating in peripheral blood, both of which offer an appealing alternative to lung biopsy.Expert opinion: Development of CLAD involves complex, multiple immune and nonimmune mechanisms. Therefore, evaluation of potential CLAD biomarkers serves a dual purpose: clinically, the goal remains early detection and identification of patients at increased risk. Simultaneously, biomarkers offer insight into the different mechanisms involved in the pathophysiology of CLAD, leading to the development of possible interventions. The ultimate goal is the development of both preventive and early intervention strategies for CLAD to improve the overall survival of our lung transplant recipients.
Collapse
Affiliation(s)
- Osnat Shtraichman
- Division of Pulmonary, Allergy & Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Pulmonary institute, Rabin Medical Center, Petach Tikva, Israel; Sackler School of Medicine, Tel Aviv, Israel
| | - Joshua M Diamond
- Division of Pulmonary, Allergy & Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Sato M. Bronchiolitis obliterans syndrome and restrictive allograft syndrome after lung transplantation: why are there two distinct forms of chronic lung allograft dysfunction? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:418. [PMID: 32355862 PMCID: PMC7186721 DOI: 10.21037/atm.2020.02.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bronchiolitis obliterans syndrome (BOS) had been considered to be the representative form of chronic rejection or chronic lung allograft dysfunction (CLAD) after lung transplantation. In BOS, small airways are affected by chronic inflammation and obliterative fibrosis, whereas peripheral lung tissue remains relatively intact. However, recognition of another form of CLAD involving multiple tissue compartments in the lung, termed restrictive allograft syndrome (RAS), raised a fundamental question: why there are two phenotypes of CLAD? Increasing clinical and experimental data suggest that RAS may be a prototype of chronic rejection after lung transplantation involving both cellular and antibody-mediated alloimmune responses. Some cases of RAS are also induced by fulminant general inflammation in lung allografts. However, BOS involves alloimmune responses and the airway-centered disease process can be explained by multiple mechanisms such as external alloimmune-independent stimuli (such as infection, aspiration and air pollution), exposure of airway-specific autoantigens and airway ischemia. Localization of immune responses in different anatomical compartments in different phenotypes of CLAD might be associated with lymphoid neogenesis or the de novo formation of lymphoid tissue in lung allografts. Better understanding of distinct mechanisms of BOS and RAS will facilitate the development of effective preventive and therapeutic strategies of CLAD.
Collapse
Affiliation(s)
- Masaaki Sato
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Kawashima M, Juvet SC. The role of innate immunity in the long-term outcome of lung transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:412. [PMID: 32355856 PMCID: PMC7186608 DOI: 10.21037/atm.2020.03.20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long-term survival after lung transplantation remains suboptimal due to chronic lung allograft dysfunction (CLAD), a progressive scarring process affecting the graft. Although anti-donor alloimmunity is central to the pathogenesis of CLAD, its underlying mechanisms are not fully elucidated and it is neither preventable nor treatable using currently available immunosuppression. Recent evidence has shown that innate immune stimuli are fundamental to the development of CLAD. Here, we examine long-standing assumptions and new concepts linking innate immune activation to late lung allograft fibrosis.
Collapse
Affiliation(s)
- Mitsuaki Kawashima
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Stephen C Juvet
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Villalobos APC, Husain S. Infection prophylaxis and management of fungal infections in lung transplant. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:414. [PMID: 32355858 PMCID: PMC7186682 DOI: 10.21037/atm.2020.03.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung transplantation has emerged as a lifesaving treatment for a wide range of advanced lung diseases. While the survival of lung transplant recipients continues to improve, infectious complications contribute substantially to morbidity and mortality following lung transplantation. The incidence of invasive fungal infections is variable, with a mean occurrence of 8.6%. The majority of fungal infections in lung transplant recipients are caused Aspergillus and Candida species. This review provides an update in the current approaches for the diagnosis, management and prevention of fungal infections and the late complications that are associated.
Collapse
Affiliation(s)
| | - Shahid Husain
- Multi-Organ Transplant Unit, Division of Infectious Diseases, University Health Network, Toronto, ON, Canada
| |
Collapse
|
40
|
Atchade E, Desmard M, Kantor E, Genève C, Tebano G, De Tymowski C, Tran-dinh A, Zappella N, Houzé S, Mal H, Castier Y, Tanaka S, Montravers P. Fungal Isolation in Respiratory Tract After Lung Transplantation: Epidemiology, Clinical Consequences, and Associated Factors. Transplant Proc 2020; 52:326-332. [DOI: 10.1016/j.transproceed.2019.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/06/2019] [Indexed: 10/25/2022]
|
41
|
Hachem RR. The role of the immune system in lung transplantation: towards improved long-term results. J Thorac Dis 2019; 11:S1721-S1731. [PMID: 31632749 DOI: 10.21037/jtd.2019.04.25] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past 35 years, lung transplantation has evolved from an experimental treatment to the treatment of choice for patients with end-stage lung disease. Beyond the immediate period after lung transplantation, rejection and infection are the leading causes of death. The risk of rejection after lung transplantation is generally higher than after other solid organ transplants, and this necessitates more intensive immunosuppression. However, this more intensive treatment does not reduce the risk of rejection sufficiently, and rejection is one of the most common complications after transplantation. There are multiple forms of rejection including acute cellular rejection, antibody-mediated rejection, and chronic lung allograft dysfunction. These have posed a vexing problem for clinicians, patients, and the field of lung transplantation. Confounding matters is the inherent effect of more intensive immunosuppression on the risk of infections. Indeed, infections pose a direct problem resulting in morbidity and mortality and increase the risk of chronic lung allograft dysfunction in the ensuing weeks and months. There are complex interactions between microbes and the immune response that are the subject of ongoing studies. This review focuses on the role of the immune system in lung transplantation and highlights different forms of rejection and the impact of infections on outcomes.
Collapse
Affiliation(s)
- Ramsey R Hachem
- Division of Pulmonary & Critical Care, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
42
|
Parulekar AD, Kao CC. Detection, classification, and management of rejection after lung transplantation. J Thorac Dis 2019; 11:S1732-S1739. [PMID: 31632750 DOI: 10.21037/jtd.2019.03.83] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rejection is a major complication following lung transplantation. Acute cellular rejection, lymphocytic bronchiolitis, and antibody-mediated rejection (AMR) are all risk factors for the subsequent development of chronic lung allograft dysfunction (CLAD). Acute cellular rejection and lymphocytic bronchiolitis have well defined histopathologic diagnostic criteria and grading. Diagnosis of AMR requires a multidisciplinary approach. CLAD is the major barrier to long-term survival following lung transplantation. The most common phenotype of CLAD is bronchiolitis obliterans syndrome (BOS) which is defined by a persistent obstructive decline in lung function. Restrictive allograft dysfunction (RAS) is a second phenotype of CLAD and is associated with a worse prognosis. This article will review the diagnosis, staging, clinical presentation, and treatment of acute rejection, AMR, and CLAD following lung transplantation.
Collapse
Affiliation(s)
- Amit D Parulekar
- Section of Pulmonary, Critical Care, and Sleep, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Christina C Kao
- Section of Pulmonary, Critical Care, and Sleep, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
43
|
Pennington KM, Yost KJ, Escalante P, Razonable RR, Kennedy CC. Antifungal prophylaxis in lung transplant: A survey of United States' transplant centers. Clin Transplant 2019; 33:e13630. [PMID: 31173402 DOI: 10.1111/ctr.13630] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Antifungal prophylaxis strategies for lung transplant recipients vary without consensus or standard of care. Our current study aims to identify antifungal prophylaxis practices in the United States. METHODS From November 29, 2018, to February 15, 2019, we emailed surveys to medical directors of adult lung transplant centers. An alternate physician representative was approached if continued non-response after three survey attempts. Descriptive statistics were used to report findings. RESULTS Forty-four of 62 (71.0%) eligible centers responded. All Organ Procurement and Transplantation Networks were represented. Only four (9.1%) centers used pre-transplant prophylaxis for prevention of tracheobronchitis (3 of 4) and invasive fungal disease (4 of 4). Thirty-nine of forty (97.5%) centers used post-transplant prophylaxis: 36 (90.0%) universal and 3 (7.5%) pre-emptive/selective prophylaxis. Most centers used nebulized amphotericin with a systemic agent (26 of 36, 72.2%). Thirty-two of thirty-six (88.9%) centers continued universal prophylaxis beyond the hospital setting. Duration of prophylaxis ranged from the post-transplant hospitalization to lifelong with most centers (25 of 36, 69.4%) discontinuing prophylaxis 6 months or less post-transplant. CONCLUSION Most United States' lung transplant centers utilize a universal prophylaxis with nebulized amphotericin and a systemic triazole for 6 months or less post-transplant. Very few centers use pre-transplant antifungal prophylaxis.
Collapse
Affiliation(s)
- Kelly M Pennington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Robert D. and Patricia E. Kern Center for the Science of Healthcare Delivery, Mayo Clinic, Rochester, Minnesota, USA
| | - Kathleen J Yost
- Robert D. and Patricia E. Kern Center for the Science of Healthcare Delivery, Mayo Clinic, Rochester, Minnesota, USA
| | - Patricio Escalante
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| | - Cassie C Kennedy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Robert D. and Patricia E. Kern Center for the Science of Healthcare Delivery, Mayo Clinic, Rochester, Minnesota, USA.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
44
|
Law N, Hamandi B, Fegbeutel C, Silveira FP, Verschuuren EA, Ussetti P, Chin-Hong PV, Sole A, Holmes-Liew CL, Billaud EM, Grossi PA, Manuel O, Levine DJ, Barbers RG, Hadjiliadis D, Younus M, Aram J, Chaparro C, Singer LG, Husain S. Lack of association of Aspergillus colonization with the development of bronchiolitis obliterans syndrome in lung transplant recipients: An international cohort study. J Heart Lung Transplant 2019; 38:963-971. [PMID: 31300191 DOI: 10.1016/j.healun.2019.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/30/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Bronchiolitis obliterans syndrome (BOS) is a major limitation in the long-term survival of lung transplant recipients (LTRs). However, the risk factors in the development of BOS remain undetermined. We conducted an international cohort study of LTRs to assess whether Aspergillus colonization with large or small conidia is a risk factor for the development of BOS. METHODS Consecutive LTRs from January 2005 to December 2008 were evaluated. Rates of BOS and associated risk factors were recorded at 4 years. International Society of Heart and Lung Transplantation criteria were used to define fungal and other infections. A Cox proportional-hazards-model was constructed to assess the association between Aspergillus colonization and the development of BOS controlling for confounders. RESULTS A total of 747 LTRs were included. The cumulative incidence of BOS at 4 years after transplant was 33% (250 of 747). Additionally, 22% of LTRs experienced Aspergillus colonization after transplantation. Aspergillus colonization with either large (hazard ratio [HR] = 0.6, 95% confidence interval [CI] = 0.3-1.2, p = 0.12) or small conidia (HR = 0.9, 95% CI = 0.6-1.4, p = 0.74) was not associated with the development of BOS. Factors associated with increased risk of development of BOS were the male gender (HR = 1.4, 95% CI = 1.1-1.8, p = 0.02) and episodes of acute rejection (1-2 episodes, HR = 1.5, 95% CI = 1.1-2.1, p = 0.014; 3-4 episodes, HR = 1.6, 95% CI = 1.0-2.6, p = 0.036; >4 episodes, HR = 2.2, 95% CI = 1.1-4.3, p = 0.02), whereas tacrolimus use was associated with reduced risk of BOS (HR = 0.6, 95% CI = 0.5-0.9, p = 0.007). CONCLUSIONS We conclude from this large multicenter cohort of lung transplant patients, that Aspergillus colonization with large or small conidia did not show an association with the development of BOS.
Collapse
Affiliation(s)
- Nancy Law
- Division of Infectious Diseases, Multi-Organ Transplant Program, University of Toronto, University Health Network, Toronto, Ontario, Canada
| | - Bassem Hamandi
- Department of Pharmacy, University Health Network, Toronto, Ontario, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Christine Fegbeutel
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Fernanda P Silveira
- Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Erik A Verschuuren
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Groningen, The Netherlands
| | - Piedad Ussetti
- Respiratory Department, Hospital Puerta di Hierro, Madrid, Spain
| | - Peter V Chin-Hong
- Department of Medicine, University of California, San Francisco, California, USA
| | - Amparo Sole
- Respiratory Department, University and Polytechnic Hospital La Fe, Universidad de Valencia, Valencia, Spain
| | - Chien-Li Holmes-Liew
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Eliane M Billaud
- Service de Pharmacologie, AP-HP, Hôpital Européen Georges-Pompidou, Paris, France
| | - Paolo A Grossi
- Department of Infectious Diseases, University of Insubria, Varese, Italy
| | - Oriol Manuel
- Transplantation Center and Infectious Diseases Service, University Hospital of Lausanne, Lausanne, Switzerland
| | - Deborah J Levine
- Division of Pulmonary and Critical Care Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Richard G Barbers
- Division of Pulmonary and Critical Care, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Denis Hadjiliadis
- Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Jay Aram
- Pfizer Incorporated, New York, New York, USA
| | - Cecilia Chaparro
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Lianne G Singer
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Shahid Husain
- Division of Infectious Diseases, Multi-Organ Transplant Program, University of Toronto, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
45
|
|
46
|
Qiao W, Zou J, Ping F, Han Z, Li L, Wang X. Fungal infection in lung transplant recipients in perioperative period from one lung transplant center. J Thorac Dis 2019; 11:1554-1561. [PMID: 31179099 DOI: 10.21037/jtd.2019.03.18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background This study aimed to analyze the distribution and prophylaxis strategy of pathogens causing fungal infection in lung transplant recipients from cardiac-brain dead donors in the perioperative period to provide evidence for antifungal prophylaxis and treatment in lung transplant recipients. Methods This retrospective study evaluated 194 lung transplant recipients from January 2015 to December 2016. Fungal pathogens were isolated and identified from respiratory tract cultures before and after transplantation in the perioperative period. The galactomannan (GM) testing of bronchoalveolar lavage fluid (BALF) might facilitate the diagnosis of Aspergillus infection. Data were statistically analyzed using SPSS 19.0. Results A total of 31 cases of fungal strains isolated from the 194 recipients were identified prior to lung transplantation, and the positive rate was 16.0% (31/194). A total of 27 cases of isolated fungal strains in the 194 recipients were identified, and the positive rate after lung transplantation was 13.9% (27/194) in the perioperative period. A total of 54 cases with positive fungal infection (27.8%) were detected before and after lung transplantation. Overall, 10.3% (20/194) of the lung transplant recipients developed fungal infection in the observation period. The most common fungal pathogens were filamentous fungi and Candida albicans. Conclusions Our data suggested that fungi were frequently isolated before and after transplantation from respiratory samples. However, the incidence of invasive fungal infection in lung transplant recipients in the perioperative period was relatively low. Targeted antifungal prophylaxis and treatment should be applied on the basis of the fungal distribution status of different individuals.
Collapse
Affiliation(s)
- Weizhen Qiao
- Center of Clinical Research, Wuxi Institute of Translational Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Jian Zou
- Center of Clinical Research, Wuxi Institute of Translational Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Fengfeng Ping
- Center of Clinical Research, Wuxi Institute of Translational Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Zhenge Han
- Department of Clinical Laboratory, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200052, China
| | - Lingling Li
- Center of Clinical Research, Wuxi Institute of Translational Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Xiuzhi Wang
- Institute of Medical and Technology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
47
|
Gago S, Denning DW, Bowyer P. Pathophysiological aspects of Aspergillus colonization in disease. Med Mycol 2019; 57:S219-S227. [PMID: 30239804 DOI: 10.1093/mmy/myy076] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022] Open
Abstract
Aspergillus colonization of the lower respiratory airways is common in normal people, and of little clinical significance. However, in some patients, colonization is associated with severe disease including poorly controlled asthma, allergic bronchopulmonary aspergillosis (ABPA) with sputum plugs, worse lung function in chronic obstructive pulmonary aspergillosis (COPD), invasive aspergillosis, and active infection in patients with chronic pulmonary aspergillosis (CPA). Therefore, understanding the pathophysiological mechanisms of fungal colonization in disease is essential to develop strategies to avert or minimise disease. Aspergillus cell components promoting fungal adherence to the host surface, extracellular matrix, or basal lamina are indispensable for pathogen persistence. However, our understanding of individual differences in clearance of A. fumigatus from the lung in susceptible patients is close to zero.
Collapse
Affiliation(s)
- Sara Gago
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom
| | - David W Denning
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom.,National Aspergillosis Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom
| |
Collapse
|
48
|
Affiliation(s)
- Alexis Guenette
- Division of Infectious Disease, University Health Network, University of Toronto, 585 University Avenue, 11 PMB 138, Toronto, Ontario M5G 2N2, Canada
| | - Shahid Husain
- Division of Infectious Disease, Multi-Organ Transplant Program, University Health Network, University of Toronto, 585 University Avenue, 11 PMB 138, Toronto, Ontario M5G 2N2, Canada.
| |
Collapse
|
49
|
Weigt SS, Wang X, Palchevskiy V, Patel N, Derhovanessian A, Shino MY, Sayah DM, Lynch JP, Saggar R, Ross DJ, Kubak BM, Ardehali A, Palmer S, Husain S, Belperio JA. Gene Expression Profiling of Bronchoalveolar Lavage Cells During Aspergillus Colonization of the Lung Allograft. Transplantation 2019; 102:986-993. [PMID: 29256975 DOI: 10.1097/tp.0000000000002058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Aspergillus colonization after lung transplant is associated with an increased risk of chronic lung allograft dysfunction (CLAD). We hypothesized that gene expression during Aspergillus colonization could provide clues to CLAD pathogenesis. METHODS We examined transcriptional profiles in 3- or 6-month surveillance bronchoalveolar lavage fluid cell pellets from recipients with Aspergillus fumigatus colonization (n = 12) and without colonization (n = 10). Among the Aspergillus colonized, we also explored profiles in those who developed CLAD (n = 6) or remained CLAD-free (n = 6). Transcription profiles were assayed with the HG-U133 Plus 2.0 microarray (Affymetrix). Differential gene expression was based on an absolute fold difference of 2.0 or greater and unadjusted P value less than 0.05. We used NIH Database for Annotation, Visualization and Integrated Discovery for functional analyses, with false discovery rates less than 5% considered significant. RESULTS Aspergillus colonization was associated with differential expression of 489 probe sets, representing 404 unique genes. "Defense response" genes and genes in the "cytokine-cytokine receptor" Kyoto Encyclopedia of Genes and Genomes pathway were notably enriched in this list. Among Aspergillus colonized patients, CLAD development was associated with differential expression of 69 probe sets, representing 64 unique genes. This list was enriched for genes involved in "immune response" and "response to wounding", among others. Notably, both chitinase 3-like-1 and chitotriosidase were associated with progression to CLAD. CONCLUSIONS Aspergillus colonization is associated with gene expression profiles related to defense responses including cytokine signaling. Epithelial wounding, as well as the innate immune response to chitin that is present in the fungal cell wall, may be key in the link between Aspergillus colonization and CLAD.
Collapse
Affiliation(s)
- S Samuel Weigt
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Xiaoyan Wang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Vyacheslav Palchevskiy
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Naman Patel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Ariss Derhovanessian
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Michael Y Shino
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - David M Sayah
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Joseph P Lynch
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Rajan Saggar
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - David J Ross
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Bernie M Kubak
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Abbas Ardehali
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Scott Palmer
- Department of Medicine, Duke University, Durham, NC
| | - Shahid Husain
- Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, Ontario, Canada
| | - John A Belperio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
50
|
Common Infections Following Lung Transplantation. ESSENTIALS IN LUNG TRANSPLANTATION 2019. [PMCID: PMC7121478 DOI: 10.1007/978-3-319-90933-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The lungs are the only transplanted organ in direct contact with the ‘outside world’. Infection is a significant cause of morbidity and mortality in lung transplantation. Early accurate diagnosis and optimal management is essential to prevent short and long term complications. Bacteria, including Mycobacteria and Nocardia, viruses and fungi are common pathogens. Organisms may be present in the recipient prior to transplantation, transmitted with the donor lungs or acquired after transplantation. The degree of immunosuppression and the routine use of antimicrobial prophylaxis alters the pattern of post-transplant infections.
Collapse
|