1
|
Chen Z, Liu K. Mechanism and Applications of Vagus Nerve Stimulation. Curr Issues Mol Biol 2025; 47:122. [PMID: 39996843 PMCID: PMC11854789 DOI: 10.3390/cimb47020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Over the past three decades, vagus nerve stimulation (VNS) has emerged as a promising rehabilitation therapy for a diverse range of conditions, demonstrating substantial clinical potential. This review summarizes the in vivo biological mechanisms activated by VNS and their corresponding clinical applications. Furthermore, it outlines the selection of parameters and equipment for VNS implementation. VNS exhibits anti-inflammatory effects, modulates neurotransmitter release, enhances neural plasticity, inhibits apoptosis and autophagy, maintains blood-brain barrier integrity, and promotes angiogenesis. Clinically, VNS has been utilized in the treatment of epilepsy, depression, headache, stroke, and obesity. Its potential applications extend to anti-inflammatory treatment and the management of cardiovascular and cerebrovascular diseases and various brain disorders. However, further experiments are required to definitively establish the efficacy of VNS's various mechanisms. Additionally, there is a need to explore and identify optimal rehabilitation treatment parameters for different diseases.
Collapse
Affiliation(s)
| | - Kezhou Liu
- Department of Biomedical Engineering, School of Automation (Artificial Intelligence), Hangzhou Dianzi University, Hangzhou 310018, China;
| |
Collapse
|
2
|
Chen J, Ke Y, Ni G, Liu S, Ming D. Tonic and Event-Related Phasic Transcutaneous Auricular Vagus Nerve Stimulation Alters Pupil Responses in the Change-Detection Task. Neuromodulation 2025:S1094-7159(25)00005-4. [PMID: 39927921 DOI: 10.1016/j.neurom.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (taVNS) has emerged as a potential modulator of cognitive behavior that activates the locus coeruleus-noradrenaline (LC-NA) system. Previous studies explored both phasic and tonic taVNS by investigating their impact on LC-NA markers such as pupil dilation and heart rate variability (HRV). OBJECTIVE Inconsistencies persist in the identification of reliable markers for assessing the effects of taVNS on noradrenergic activity. Furthermore, it remains unclear whether the effects of taVNS extend beyond pure vagal nerve responses, particularly in specific cognitive domains such as working memory. In the present study, we investigated the effects of taVNS on working memory capacity and LC-NA markers using a change-detection task. MATERIALS AND METHODS Twenty-two healthy, right-handed university students participated in a sham-controlled, randomized cross-over experiment with four sessions. We applied two types of phasic and event-related stimulation (Pre-event and Event-synchronous), tonic stimulation (Pre-task), and sham stimulation across different sessions. Pupil size and electrocardiogram data were recorded during the tasks. RESULTS taVNS did not significantly modulate behavioral performance on the change-detection task, specifically working memory capacity. However, both tonic and event-related phasic taVNS significantly influenced the pupillary response during the task. In addition, the Pre-task condition of the taVNS affected the low-frequency parameter of HRV. CONCLUSIONS Our findings suggest that tonic and event-related phasic taVNS may modulate noradrenergic activity, as evidenced by pupil responses and HRV changes during the change-detection task. This study provides new evidence regarding the impact of taVNS on cognitive tasks, thus supporting the development of noninvasive neuromodulation interventions.
Collapse
Affiliation(s)
- Jingxin Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China; Department of Biomedical Engineering, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Yufeng Ke
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China.
| | - Guangjian Ni
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China
| |
Collapse
|
3
|
Edalati S, Meyer JS, Aravot D, Barac YD. Vagal nerve stimulation potential therapeutic benefits in acute lung rejection and transplantation. Transpl Immunol 2024; 86:102105. [PMID: 39128810 DOI: 10.1016/j.trim.2024.102105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Allograft rejection, accompanied by a rise in proinflammatory cytokines, is a leading cause of morbidity and mortality after lung transplantation. Immunosuppressive treatments are routinely employed as an effective way to prevent rejection, however, there is still an unmet need to develop new strategies to reduce the damage caused to transplanted organs by innate inflammatory responses. Recent research has shown that activating the vagus nerve's efferent arm regulates cytokine production and improves survival in experimental conditions of cytokine excess, such as sepsis, hemorrhagic shock, ischemia-reperfusion injury, among others. The cholinergic anti-inflammatory pathway can provide a localized, fast, and discrete response to inflammation by controlling the neuroimmune response and preventing excessive inflammation. This review intends to assess and discuss, the influence of noninvasive vagal nerve stimulation for prophylactic measures and supporting treatment in patients undergoing organ transplantation rejection with a prominent T-cell mediated immune response as a means of attenuating inflammation and leukocyte infiltration of the graft vessels.
Collapse
Affiliation(s)
- Shaun Edalati
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - J Sam Meyer
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel; The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva, Israel
| | - Dan Aravot
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva, Israel
| | - Yaron D Barac
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva, Israel
| |
Collapse
|
4
|
Xu H, Garcia-Ptacek S, Bruchfeld A, Fu EL, Shori TD, Lindholm B, Eriksdotter M, Carrero JJ. Association between cholinesterase inhibitors and kidney function decline in patients with Alzheimer's dementia. Kidney Int 2023; 103:166-176. [PMID: 36341731 DOI: 10.1016/j.kint.2022.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
Preclinical evidence shows that activation of the cholinergic anti-inflammatory pathway (CAP) may have direct and indirect beneficial effects on the kidney. Cholinesterase inhibitors (ChEIs) are specific Alzheimer's dementia (AD) therapies that block the action of cholinesterases and activate CAP. Here, we explored a plausible effect of ChEIs on slowing kidney function decline by comparing the risk of CKD progression among patients with newly diagnosed AD that initiated ChEI or not within 90 days. Using complete information of routine serum creatinine tests, we evaluated changes in estimated glomerular filtration rate (eGFR) and defined the outcome of chronic kidney disease (CKD) progression as the composite of an eGFR decline of over 30%, initiation of dialysis/transplant or death attributed to CKD. A secondary outcome was death. Inverse probability of treatment-weighted Cox regression was used to estimate hazard ratios. Among 11, 898 patients, 6,803 started on ChEIs and 5,095 did not. Mean age was 80 years (64% women) and the mean eGFR was 68 ml/min/1.73m2. During a median 3.0 years of follow-up, and compared to non-use, ChEI use was associated with 18% lower risk of CKD progression (1,231 events, adjusted hazard ratio 0.82; 95% confidence interval 0.71-0.96) and a 21% lower risk of death (0.79; 0.72-0.86). Results were consistent across subgroups, ChEI subclasses and after accounting for competing risks. Thus, in patients with AD undergoing routine care, use of ChEI (vs no-use) was associated with lower risk of CKD progression.
Collapse
Affiliation(s)
- Hong Xu
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Sara Garcia-Ptacek
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Annette Bruchfeld
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Linköping University, Department of Health, Medicine and Caring Sciences, Linköping, Sweden
| | - Edouard L Fu
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Epidemiology and Biostatistics (MEB), Karolinska Institutet, Stockholm, Sweden
| | - Taher Darreh Shori
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics (MEB), Karolinska Institutet, Stockholm, Sweden; Division of Nephrology, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Goggins E, Mitani S, Tanaka S. Clinical perspectives on vagus nerve stimulation: present and future. Clin Sci (Lond) 2022; 136:695-709. [PMID: 35536161 PMCID: PMC9093220 DOI: 10.1042/cs20210507] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022]
Abstract
The vagus nerve, the great wanderer, is involved in numerous processes throughout the body and vagus nerve stimulation (VNS) has the potential to modulate many of these functions. This wide-reaching capability has generated much interest across a range of disciplines resulting in several clinical trials and studies into the mechanistic basis of VNS. This review discusses current preclinical and clinical evidence supporting the efficacy of VNS in different diseases and highlights recent advancements. Studies that provide insights into the mechanism of VNS are considered.
Collapse
Affiliation(s)
- Eibhlin Goggins
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, U.S.A
| | - Shuhei Mitani
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury. Proc Natl Acad Sci U S A 2021; 118:2021758118. [PMID: 33737395 DOI: 10.1073/pnas.2021758118] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury is highly prevalent and associated with high morbidity and mortality, and there are no approved drugs for its prevention and treatment. Vagus nerve stimulation (VNS) alleviates inflammatory diseases including kidney disease; however, neural circuits involved in VNS-induced tissue protection remain poorly understood. The vagus nerve, a heterogeneous group of neural fibers, innervates numerous organs. VNS broadly stimulates these fibers without specificity. We used optogenetics to selectively stimulate vagus efferent or afferent fibers. Anterograde efferent fiber stimulation or anterograde (centripetal) sensory afferent fiber stimulation both conferred kidney protection from ischemia-reperfusion injury. We identified the C1 neurons-sympathetic nervous system-splenic nerve-spleen-kidney axis as the downstream pathway of vagus afferent fiber stimulation. Our study provides a map of the neural circuits important for kidney protection induced by VNS, which is critical for the safe and effective clinical application of VNS for protection from acute kidney injury.
Collapse
|
7
|
Cai J, Nash WT, Okusa MD. Ultrasound for the treatment of acute kidney injury and other inflammatory conditions: a promising path toward noninvasive neuroimmune regulation. Am J Physiol Renal Physiol 2020; 319:F125-F138. [PMID: 32508112 PMCID: PMC7468827 DOI: 10.1152/ajprenal.00145.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) is an important clinical disorder with high prevalence, serious consequences, and limited therapeutic options. Modulation of neuroimmune interaction by nonpharmacological methods is emerging as a novel strategy for treating inflammatory diseases, including AKI. Recently, pulsed ultrasound (US) treatment was shown to protect from AKI by stimulating the cholinergic anti-inflammatory pathway. Because of the relatively simple, portable, and noninvasive nature of US procedures, US stimulation may be a valuable therapeutic option for treating inflammatory conditions. This review discusses potential impacts of US bioeffects on the nervous system and how this may generate feedback onto the immune system. We also discuss recent evidence supporting the use of US as a means to treat AKI and other inflammatory diseases.
Collapse
Affiliation(s)
- Jieru Cai
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| | - William T Nash
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virgnia
| |
Collapse
|
8
|
Jarczyk J, Yard BA, Hoeger S. The Cholinergic Anti-Inflammatory Pathway as a Conceptual Framework to Treat Inflammation-Mediated Renal Injury. Kidney Blood Press Res 2020; 44:435-448. [PMID: 31307039 DOI: 10.1159/000500920] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/12/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The cholinergic anti-inflammatory pathway, positioned at the interface of the nervous and immune systems, is the efferent limb of the "inflammatory reflex" which mainly signals through the vagus nerve. As such, the brain can modulate peripheral inflammatory responses by the activation of vagal efferent fibers. Importantly, immune cells in the spleen express most cholinergic system components such as acetylcholine (ACh), choline acetyltransferase, acetylcholinesterase, and both muscarinic and nicotinic ACh receptors, making communication between both systems possible. In general, this communication down-regulates the inflammation, achieved through different mechanisms and depending on the cells involved. SUMMARY With the awareness that the cholinergic anti-inflammatory pathway serves to prevent or limit inflammation in peripheral organs, vagus nerve stimulation has become a promising strategy in the treatment of several inflammatory conditions. Both pharmacological and non-pharmacological methods have been used in many studies to limit organ injury as a consequence of inflammation. Key Messages: In this review, we will highlight our current knowledge of the cholinergic anti-inflammatory pathway, with emphasis on its potential clinical use in the treatment of inflammation-triggered kidney injury.
Collapse
Affiliation(s)
- Jonas Jarczyk
- Department of Urology, University Medical Center Mannheim, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany
| | - Benito A Yard
- Vth Medical Department, University Medical Center Mannheim, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany
| | - Simone Hoeger
- Vth Medical Department, University Medical Center Mannheim, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany, .,Bioassay GmbH, Heidelberg, Germany,
| |
Collapse
|
9
|
Tanaka S, Okusa MD. Crosstalk between the nervous system and the kidney. Kidney Int 2019; 97:466-476. [PMID: 32001065 DOI: 10.1016/j.kint.2019.10.032] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022]
Abstract
Under physiological states, the nervous system and the kidneys communicate with each other to maintain normal body homeostasis. However, pathological states disrupt this interaction as seen in hypertension, and kidney damage can cause impaired renorenal reflex and sodium handling. In acute kidney injury (AKI) and chronic kidney disease (CKD), damaged kidneys can have a detrimental effect on the central nervous system. CKD is an independent risk factor for cerebrovascular disease and cognitive impairment, and many factors, including retention of uremic toxins and phosphate, have been proposed as CKD-specific factors responsible for structural and functional cerebral changes in patients with CKD. However, more studies are needed to determine the precise pathogenesis. Epidemiological studies have shown that AKI is associated with a subsequent risk for developing stroke and dementia. However, recent animal studies have shown that the renal nerve contributes to kidney inflammation and fibrosis, whereas activation of the cholinergic anti-inflammatory pathway, which involves the vagus nerve, the splenic nerve, and immune cells in the spleen, has a significant renoprotective effect. Therefore, elucidating mechanisms of communication between the nervous system and the kidney enables us not only to develop new strategies to ameliorate neurological conditions associated with kidney disease but also to design safe and effective clinical interventions for kidney disease, using the neural and neuroimmune control of kidney injury and disease.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
10
|
Michels M, Abatti MR, Ávila P, Vieira A, Borges H, Carvalho Junior C, Wendhausen D, Gasparotto J, Tiefensee Ribeiro C, Moreira JCF, Gelain DP, Dal-Pizzol F. Characterization and modulation of microglial phenotypes in an animal model of severe sepsis. J Cell Mol Med 2019; 24:88-97. [PMID: 31654493 PMCID: PMC6933367 DOI: 10.1111/jcmm.14606] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022] Open
Abstract
We aim to characterize the kinetics of early and late microglial phenotypes after systemic inflammation in an animal model of severe sepsis and the effects of minocycline on these phenotypes. Rats were subjected to CLP, and some animals were treated with minocycline (10 ug/kg) by i.c.v. administration. Animals were killed 24 hours, 5, 10 and 30 days after sepsis induction, and serum and hippocampus were collected for subsequent analyses. Real‐time PCR was performed for M1 and M2 markers. TNF‐α, IL‐1β, IL‐6, IL‐10, CCL‐22 and nitrite/nitrate levels were measured. Immunofluorescence for IBA‐1, CD11b and arginase was also performed. We demonstrated that early after sepsis, there was a preponderant up‐regulation of M1 markers, and this was not switched to M2 phenotype markers later on. We found that up‐regulation of both M1 and M2 markers co‐existed up to 30 days after sepsis induction. In addition, minocycline induced a down‐regulation, predominantly, of M1 markers. Our results suggest early activation of M1 microglia that is followed by an overlap of both M1 and M2 phenotypes and that the beneficial effects of minocycline on sepsis‐associated brain dysfunction may be related to its effects predominantly on the M1 phenotype.
Collapse
Affiliation(s)
- Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Mariane Rocha Abatti
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Pricila Ávila
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Andriele Vieira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Heloisa Borges
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Celso Carvalho Junior
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Diogo Wendhausen
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Juciano Gasparotto
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Civil y Ambiental, Universidad de la Costa, Barranquilla, Atlántico, Colombia
| | - Camila Tiefensee Ribeiro
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| |
Collapse
|
11
|
Tanaka S, Hammond B, Rosin DL, Okusa MD. Neuroimmunomodulation of tissue injury and disease: an expanding view of the inflammatory reflex pathway. Bioelectron Med 2019; 5:13. [PMID: 32232102 PMCID: PMC7098254 DOI: 10.1186/s42234-019-0029-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Neuroimmunomodulation through peripheral nerve activation is an important therapeutic approach to various disorders. Central to this approach is the inflammatory reflex pathway in which the cholinergic anti-inflammatory pathway represents the efferent limb. Recent studies provide a framework for understanding this control pathway, however our understanding remains incomplete. Genetically modified mice, using optogenetics and pharmacogenomics, have been invaluable resources that will allow investigators to disentangle neural pathways that provide a unifying mechanism by which vagal nerve stimulation (and other means of stimulating the pathway) leads to an anti-inflammatory and tissue protective effect. In this review we describe disease models that contribute to our understanding of how vagal nerve stimulation attenuates inflammation and organ injury: acute kidney injury, rheumatoid arthritis, and inflammatory gastrointestinal disease. The gut microbiota contributes to health and disease and the potential role of the vagus nerve in affecting the relationship between gut microbiota and the immune system and modifying diseases remains an intriguing opportunity to attenuate local and systemic inflammation that undergird disease processes.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia USA
| | | | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia USA
| | - Mark D. Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia USA
| |
Collapse
|
12
|
Abstract
Neuroimmune interaction is an emerging concept, wherein the nervous system modulates the immune system and vice versa. This concept is gaining attention as a novel therapeutic target in various inflammatory diseases including acute kidney injury (AKI). Vagus nerve stimulation or treatment with pulsed ultrasound activates the cholinergic anti-inflammatory pathway to prevent AKI in mice. The kidneys are innervated by sympathetic efferent and sensory afferent neurons, and these neurons also may play a role in the modulation of inflammation in AKI. In this review, we discuss several neural circuits with respect to the control of renal inflammation and AKI as well as optogenetics as a novel tool for understanding these complex neural circuits.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA.
| |
Collapse
|
13
|
|
14
|
Chavan SS, Ma P, Chiu IM. Neuro-immune interactions in inflammation and host defense: Implications for transplantation. Am J Transplant 2018; 18:556-563. [PMID: 28941325 PMCID: PMC5820210 DOI: 10.1111/ajt.14515] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/13/2017] [Accepted: 09/16/2017] [Indexed: 01/25/2023]
Abstract
Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in regulating the immune system during tissue inflammation and host defense. Recent studies have identified the molecular mechanisms underlying the bidirectional communication between the nervous system and the immune system. Here, we highlight the studies that demonstrate the importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons detect immune mediators to produce pain, and release neuropeptides that act on the immune system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based inflammatory reflex are physiological regulators of inflammatory responses and cytokine production. In transplantation, neuro-immune communication could significantly impact the processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. Therefore, understanding how the nervous system shapes the immune response could have important therapeutic ramifications for transplantation medicine.
Collapse
Affiliation(s)
- Sangeeta S. Chavan
- Center for Biomedical Science, Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Pingchuan Ma
- Harvard Medical School, Department of Microbiology and Immunobiology, Division of Immunology, Boston, MA, USA
| | - Isaac M. Chiu
- Harvard Medical School, Department of Microbiology and Immunobiology, Division of Immunology, Boston, MA, USA
| |
Collapse
|
15
|
Du X, Wang X, Geng M. Alzheimer's disease hypothesis and related therapies. Transl Neurodegener 2018; 7:2. [PMID: 29423193 PMCID: PMC5789526 DOI: 10.1186/s40035-018-0107-y] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause for dementia. There are many hypotheses about AD, including abnormal deposit of amyloid β (Aβ) protein in the extracellular spaces of neurons, formation of twisted fibers of tau proteins inside neurons, cholinergic neuron damage, inflammation, oxidative stress, etc., and many anti-AD drugs based on these hypotheses have been developed. In this review, we will discuss the existing and emerging hypothesis and related therapies.
Collapse
Affiliation(s)
- Xiaoguang Du
- Shanghai GreenValley Pharmaceutical Co., Ltd., 421 Newton Road, Shanghai, 201203 People's Republic of China
| | - Xinyi Wang
- Shanghai GreenValley Pharmaceutical Co., Ltd., 421 Newton Road, Shanghai, 201203 People's Republic of China
| | - Meiyu Geng
- 2State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203 People's Republic of China
| |
Collapse
|
16
|
Okusa MD, Rosin DL, Tracey KJ. Targeting neural reflex circuits in immunity to treat kidney disease. Nat Rev Nephrol 2017; 13:669-680. [PMID: 28970585 PMCID: PMC6049817 DOI: 10.1038/nrneph.2017.132] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neural pathways regulate immunity and inflammation via the inflammatory reflex and specific molecular targets can be modulated by stimulating neurons. Neuroimmunomodulation by nonpharmacological methods is emerging as a novel therapeutic strategy for inflammatory diseases, including kidney diseases and hypertension. Electrical stimulation of vagus neurons or treatment with pulsed ultrasound activates the cholinergic anti-inflammatory pathway (CAP) and protects mice from acute kidney injury (AKI). Direct innervation of the kidney, by afferent and efferent neurons, might have a role in modulating and responding to inflammation in various diseases, either locally or by providing feedback to regions of the central nervous system that are important in the inflammatory reflex pathway. Increased sympathetic drive to the kidney has a role in the pathogenesis of hypertension, and selective modulation of neuroimmune interactions in the kidney could potentially be more effective for lowering blood pressure and treating inflammatory kidney diseases than renal denervation. Use of optogenetic tools for selective stimulation of specific neurons has enabled the identification of neural circuits in the brain that modulate kidney function via activation of the CAP. In this Review we discuss evidence for a role of neural circuits in the control of renal inflammation as well as the therapeutic potential of targeting these circuits in the settings of AKI, kidney fibrosis and hypertension.
Collapse
Affiliation(s)
- Mark D Okusa
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, PO Box 800133, 1300 Jefferson Park Avenue - West Complex, 5 th floor, Charlottesville, Virginia 22908-0133, USA
| | - Diane L Rosin
- Department of Pharmacology, PO Box 800735, 1304 Jefferson Park Avenue, University of Virginia, Charlottesville, Virginia 22908-0735, USA
| | - Kevin J Tracey
- Center for Biomedical Science and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, New York 11030, USA
| |
Collapse
|
17
|
Hottenrott MC, Krebs J, Pelosi P, Luecke T, Rocco PRM, Sticht C, Breedijk A, Yard B, Tsagogiorgas C. Effects of mechanical ventilation on gene expression profiles in renal allografts from brain dead rats. Respir Physiol Neurobiol 2017; 246:17-25. [PMID: 28768153 DOI: 10.1016/j.resp.2017.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
Pathophysiological changes of brain death (BD) are impairing distal organ function and harming potential renal allografts. Whether ventilation strategies influence the quality of renal allografts from BD donors has not been thoroughly studied. 28 adult male Wistar rats were randomly assigned to four groups: 1) no brain death (NBD) with low tidal volume/low positive endexpiratory pressure (PEEP) titrated to minimal static elastance of the respiratory system (LVT/OLPEEP); 2) NBD with high tidal volume/low PEEP (HVT/LPEEP); 3) brain death (BD) with LVT/OLPEEP; and 4) BD with HVT/LPEEP. We hypothesized that HVT/LPEEP in BD leads to increased interleukin 6 (IL-6) gene expression and impairs potential renal allografts after six hours of mechanical ventilation. We assessed inflammatory cytokines in serum, genome wide gene expression profiles and quantitative PCR (qPCR) in kidney tissue. The influence of BD on renal gene-expression profiles was greater than the influence of the ventilation strategy. In BD, LVT ventilation did not influence the inflammatory parameters or kidney function in our experimental model.
Collapse
Affiliation(s)
- Maximilia C Hottenrott
- Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Internal Medicine V, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Joerg Krebs
- Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, IRCCS AOU San Martino- IST, University of Genoa, Genoa, Italy
| | - Thomas Luecke
- Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carsten Sticht
- Centre for Medical Research (ZMF), University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Annette Breedijk
- Department of Internal Medicine V, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Benito Yard
- Department of Internal Medicine V, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Charalambos Tsagogiorgas
- Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
18
|
Abe C, Inoue T, Inglis MA, Viar KE, Huang L, Ye H, Rosin DL, Stornetta RL, Okusa MD, Guyenet PG. C1 neurons mediate a stress-induced anti-inflammatory reflex in mice. Nat Neurosci 2017; 20:700-707. [PMID: 28288124 PMCID: PMC5404944 DOI: 10.1038/nn.4526] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/02/2017] [Indexed: 01/26/2023]
Abstract
C1 neurons (C1), located in the medulla oblongata, mediate adaptive autonomic responses to physical stressors (e.g. hypotension, hemorrhage, lipopolysaccharide). We describe here a powerful effect of restraint stress mediated by C1: protection against renal ischemia-reperfusion injury (IRI). Restraint stress or optogenetic C1 stimulation (10 min) protected mice from IRI. The protection was reproduced by injecting splenic T-cells pre-incubated with noradrenaline or splenocytes harvested from stressed mice. Stress-induced IRI protection was absent in α7nAChR−/− mice and greatly reduced by destroying or transiently inhibiting C1. The protection conferred by C1 stimulation was eliminated by splenectomy, ganglionic blocker administration, or β2-adrenergic receptor blockade. Although C1 stimulation elevated plasma corticosterone and increased both vagal and sympathetic nerve activity, C1-mediated IRI protection persisted after subdiaphragmatic vagotomy or corticosterone receptor blockade. In conclusion, acute stress attenuates IRI by activating a cholinergic, predominantly sympathetic, anti-inflammatory pathway. C1 neurons are necessary and sufficient to mediate this effect.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Tsuyoshi Inoue
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Mabel A Inglis
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Kenneth E Viar
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Liping Huang
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Hong Ye
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Diane L Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Mark D Okusa
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
19
|
Gastric acid secretion and gastrin release during continuous vagal neuromonitoring in thyroid surgery. Langenbecks Arch Surg 2017; 402:265-272. [DOI: 10.1007/s00423-017-1555-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|
20
|
Roloff EVL, Tomiak‐Baquero AM, Kasparov S, Paton JFR. Parasympathetic innervation of vertebrobasilar arteries: is this a potential clinical target? J Physiol 2016; 594:6463-6485. [PMID: 27357059 PMCID: PMC5108906 DOI: 10.1113/jp272450] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/18/2016] [Indexed: 12/25/2022] Open
Abstract
This review aims to summarise the contemporary evidence for the presence and function of the parasympathetic innervation of the cerebral circulation with emphasis on the vertebral and basilar arteries (the posterior cerebral circulation). We consider whether the parasympathetic innervation of blood vessels could be used as a means to increase cerebral blood flow. This may have clinical implications for pathologies associated with cerebral hypoperfusion such as stroke, dementia and hypertension. Relative to the anterior cerebral circulation little is known of the origins and neurochemical phenotypes of the parasympathetic innervation of the vertebrobasilar arteries. These vessels normally provide blood flow to the brainstem and cerebellum but can, via the Circle of Willis upon stenosis of the internal carotid arteries, supply blood to the anterior cerebral circulation too. We review the multiple types of parasympathetic fibres and their distinct transmitter mechanisms and how these vary with age, disease and species. We highlight the importance of parasympathetic fibres for mediating the vasodilatory response to sympathetic activation. Current trials are investigating the possibility of electrically stimulating the postganglionic parasympathetic ganglia to improve cerebal blood flow to reduce the penumbra following stroke. We conclude that although there are substantial gaps in our understanding of the origins of parasympathetic innervation of the vertebrobasilar arteries, activation of this system under some conditions might bring therapeutic benefits.
Collapse
Affiliation(s)
- Eva v. L. Roloff
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Ana M. Tomiak‐Baquero
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Sergey Kasparov
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Julian F. R. Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
21
|
Kwan H, Garzoni L, Liu HL, Cao M, Desrochers A, Fecteau G, Burns P, Frasch MG. Vagus Nerve Stimulation for Treatment of Inflammation: Systematic Review of Animal Models and Clinical Studies. Bioelectron Med 2016. [DOI: 10.15424/bioelectronmed.2016.00005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
22
|
Abstract
End-organ failure is associated with high mortality and morbidity, in addition to increased health care costs. Organ transplantation is the only definitive treatment that can improve survival and quality of life in such patients; however, due to the persistent mismatch between organ supply and demand, waiting lists continue to grow across the world. Careful intensive care management of the potential organ donor with goal-directed therapy has the potential to optimize organ function and improve donation yield.
Collapse
Affiliation(s)
- Carolina B Maciel
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, P.O. Box 208018, New Haven, CT, 06520, USA
| | - David M Greer
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, P.O. Box 208018, New Haven, CT, 06520, USA.
| |
Collapse
|
23
|
Pereira MR, Leite PEC. The Involvement of Parasympathetic and Sympathetic Nerve in the Inflammatory Reflex. J Cell Physiol 2016; 231:1862-9. [DOI: 10.1002/jcp.25307] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Affiliation(s)
| | - Paulo Emílio Corrêa Leite
- Laboratory of Bioengineering and in Vitro Toxicology; Directory of Metrology Applied to Life Sciences (LABET)-Dimav; National Institute of Metrology Quality and Technology-INMETRO; Duque de Caxias Rio de Janeiro Brazil
| |
Collapse
|
24
|
Mundt HM, Yard BA, Krämer BK, Benck U, Schnülle P. Optimized donor management and organ preservation before kidney transplantation. Transpl Int 2015; 29:974-84. [DOI: 10.1111/tri.12712] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/02/2015] [Accepted: 10/30/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Heiko M. Mundt
- 5th Department of Medicine (Nephrology/Endocrinology/Rheumatology); Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
| | - Benito A. Yard
- 5th Department of Medicine (Nephrology/Endocrinology/Rheumatology); Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
| | - Bernhard K. Krämer
- 5th Department of Medicine (Nephrology/Endocrinology/Rheumatology); Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
| | - Urs Benck
- 5th Department of Medicine (Nephrology/Endocrinology/Rheumatology); Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
| | - Peter Schnülle
- 5th Department of Medicine (Nephrology/Endocrinology/Rheumatology); Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
| |
Collapse
|
25
|
Dopamine treatment of brain-dead Fisher rats improves renal histology but not early renal function in Lewis recipients after prolonged static cold storage. Transplant Proc 2015; 46:3319-25. [PMID: 25498044 DOI: 10.1016/j.transproceed.2014.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/26/2014] [Accepted: 04/22/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND Brain death (BD) and cold preservation are major risk factors for an unfavorable transplantation outcome. Although donor dopamine treatment in brain-dead rats improves renal function and histology in allogeneic recipients, it remains to be assessed if this also holds true for the combinations of BD and prolonged static cold preservation. METHODS BD was induced in F344 donor rats, which were subsequently treated with NaCl 1 mL/h (BD, n = 11), NaCl/hydroxy ethyl starch (BD-norm, n = 10), or 10 μg/min/kg dopamine (BD-dopa, n = 10). Renal grafts were harvested 4 h after BD and transplanted into bilateral nephrectomized Lewis recipients 6 h after cold preservation in University of Wisconsin solution. Renal function was evaluated by use of serum creatinine and urea concentrations at days 0, 1, 3, 5, and 10. Ten days after transplantation, recipients were killed and the renal allografts were processed for light microscopy and immune histology. RESULTS Serum urea concentrations at days 5 and 10 were significantly lower in recipients that received a renal graft from dopamine-treated rats; for serum creatinine, only a trend was observed at day 10. Immune histology revealed a lower degree of ED1-positive cells in the donor dopamine-treated group. Under light microscopy, Banff classification revealed significantly less intimal arteritis in these grafts (P < .05). CONCLUSIONS Although donor dopamine treatment clearly improves renal histology in this model, the beneficial effect on early renal function was marginal. It remains to be assessed if donor dopamine treatment has a beneficial effect on renal function in long-term follow-up.
Collapse
|
26
|
Greene JG. Causes and consequences of degeneration of the dorsal motor nucleus of the vagus nerve in Parkinson's disease. Antioxid Redox Signal 2014; 21:649-67. [PMID: 24597973 DOI: 10.1089/ars.2014.5859] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Parkinson's disease (PD) is no longer considered merely a movement disorder caused by degeneration of dopamine neurons in the midbrain. It is now recognized as a widespread neuropathological syndrome accompanied by a variety of motor and nonmotor clinical symptoms. As such, any hypothesis concerning PD pathogenesis and pathophysiology must account for the entire spectrum of disease and not solely focus on the dopamine system. RECENT ADVANCES Based on its anatomy and the intrinsic properties of its neurons, the dorsal motor nucleus of the vagus nerve (DMV) is uniquely vulnerable to damage from PD. Fibers in the vagus nerve course throughout the gastrointestinal (GI) tract to and from the brainstem forming a close link between the peripheral and central nervous systems and a point of proximal contact between the environment and areas where PD pathology is believed to start. In addition, DMV neurons are under high levels of oxidative stress due to their high level of α-synuclein expression, fragile axons, and specific neuronal physiology. Moreover, several consequences of DMV damage, namely, GI dysfunction and unrestrained inflammation, may propagate a vicious cycle of injury affecting vulnerable brain regions. CRITICAL ISSUES Current evidence to suggest the vagal system plays a pivotal role in PD pathogenesis is circumstantial, but given the current state of the field, the time is ripe to obtain direct experimental evidence to better delineate it. FUTURE DIRECTIONS Better understanding of the DMV and vagus nerve may provide insight into PD pathogenesis and a neural highway with direct brain access that could be harnessed for novel therapeutic interventions.
Collapse
Affiliation(s)
- James G Greene
- Department of Neurology, Emory University , Atlanta, Georgia
| |
Collapse
|
27
|
Rebolledo R, Liu B, Akhtar MZ, Ottens PJ, Zhang JN, Ploeg RJ, Leuvenink HGD. Prednisolone has a positive effect on the kidney but not on the liver of brain dead rats: a potencial role in complement activation. J Transl Med 2014; 12:111. [PMID: 24884924 PMCID: PMC4018938 DOI: 10.1186/1479-5876-12-111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/25/2014] [Indexed: 12/29/2022] Open
Abstract
Background Contradictory evidence has been published on the effects of steroid treatments on the outcomes of kidney and liver transplantation from brain dead (BD) donors. Our study aimed to evaluate this disparity by investigating the effect of prednisolone administration on BD rats. Methods BD induction was performed in ventilated rats by inflating a Fogarty catheter placed in the epidural space. Prednisolone (22.5 mg/kg) was administered 30 min prior to BD induction. After four hours of determination of BD: serum, kidney and liver tissues samples were collected and stored. RT-qPCR, routine biochemistry and immunohistochemistry were performed. Results Prednisolone treatment reduced circulating IL-6 and creatinine plasma levels but not serum AST, ALT or LDH. Polymorphonuclear influx assessed by histology, and inflammatory gene expression were reduced in the kidney and liver. However, complement component 3 (C3) expression was decreased in kidney but not in liver. Gene expression of HSP-70, a cytoprotective protein, was down-regulated in the liver after treatment. Conclusions This study shows that prednisolone decreases inflammation and improves renal function, whilst not reducing liver injury. The persistence of complement activation and the negative effect on protective cellular mechanisms in the liver may explain the disparity between the effects of prednisolone on the kidney and liver of BD rats. The difference in the molecular and cellular responses to prednisolone administration may explain the contradictory evidence of the effects of prednisolone on different organ types from brain dead organ donors.
Collapse
Affiliation(s)
- Rolando Rebolledo
- Department of Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
28
|
Krebs J, Tsagogiorgas C, Pelosi P, Rocco PRM, Hottenrott M, Sticht C, Yard B, Luecke T. Open lung approach with low tidal volume mechanical ventilation attenuates lung injury in rats with massive brain damage. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R59. [PMID: 24693992 PMCID: PMC4056811 DOI: 10.1186/cc13813] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/25/2014] [Indexed: 12/18/2022]
Abstract
Introduction The ideal ventilation strategy for patients with massive brain damage requires better elucidation. We hypothesized that in the presence of massive brain injury, a ventilation strategy using low (6 milliliters per kilogram ideal body weight) tidal volume (VT) ventilation with open lung positive end-expiratory pressure (LVT/OLPEEP) set according to the minimal static elastance of the respiratory system, attenuates the impact of massive brain damage on gas-exchange, respiratory mechanics, lung histology and whole genome alterations compared with high (12 milliliters per kilogram ideal body weight) VT and low positive end-expiratory pressure ventilation (HVT/LPEEP). Methods In total, 28 adult male Wistar rats were randomly assigned to one of four groups: 1) no brain damage (NBD) with LVT/OLPEEP; 2) NBD with HVT/LPEEP; 3) brain damage (BD) with LVT/OLPEEP; and 4) BD with HVT/LPEEP. All animals were mechanically ventilated for six hours. Brain damage was induced by an inflated balloon catheter into the epidural space. Hemodynamics was recorded and blood gas analysis was performed hourly. At the end of the experiment, respiratory system mechanics and lung histology were analyzed. Genome wide gene expression profiling and subsequent confirmatory quantitative polymerase chain reaction (qPCR) for selected genes were performed. Results In NBD, both LVT/OLPEEP and HVT/LPEEP did not affect arterial blood gases, as well as whole genome expression changes and real-time qPCR. In BD, LVT/OLPEEP, compared to HVT/LPEEP, improved oxygenation, reduced lung damage according to histology, genome analysis and real-time qPCR with decreased interleukin 6 (IL-6), cytokine-induced neutrophil chemoattractant 1 (CINC)-1 and angiopoietin-4 expressions. LVT/OLPEEP compared to HVT/LPEEP improved overall survival. Conclusions In BD, LVT/OLPEEP minimizes lung morpho-functional changes and inflammation compared to HVT/LPEEP.
Collapse
|
29
|
Dionigi G, Chiang FY, Dralle H, Boni L, Rausei S, Rovera F, Piantanida E, Mangano A, Barczyński M, Randolph GW, Dionigi R, Ulmer C. Safety of neural monitoring in thyroid surgery. Int J Surg 2013; 11 Suppl 1:S120-6. [DOI: 10.1016/s1743-9191(13)60031-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Hoeger S, Fontana J, Jarczyk J, Selhorst J, Waldherr R, Kramer BK, Schnuelle P, Yard BA. Vagal stimulation in brain dead donor rats decreases chronic allograft nephropathy in recipients. Nephrol Dial Transplant 2013; 29:544-9. [DOI: 10.1093/ndt/gft451] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
31
|
de Vries DK, Wijermars LGM, Reinders MEJ, Lindeman JHN, Schaapherder AFM. Donor pre-treatment in clinical kidney transplantation: a critical appraisal. Clin Transplant 2013; 27:799-808. [DOI: 10.1111/ctr.12261] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2013] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | - Jan H. N. Lindeman
- Department of Surgery; Leiden University Medical Center; Leiden The Netherlands
| | | |
Collapse
|
32
|
Inflammatory signalling associated with brain dead organ donation: from brain injury to brain stem death and posttransplant ischaemia reperfusion injury. J Transplant 2013; 2013:521369. [PMID: 23691272 PMCID: PMC3649190 DOI: 10.1155/2013/521369] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 01/19/2013] [Accepted: 01/22/2013] [Indexed: 01/26/2023] Open
Abstract
Brain death is associated with dramatic and serious pathophysiologic changes that adversely affect both the quantity and quality of organs available for transplant. To fully optimise the donor pool necessitates a more complete understanding of the underlying pathophysiology of organ dysfunction associated with transplantation. These injurious processes are initially triggered by catastrophic brain injury and are further enhanced during both brain death and graft transplantation. The activated inflammatory systems then contribute to graft dysfunction in the recipient. Inflammatory mediators drive this process in concert with the innate and adaptive immune systems. Activation of deleterious immunological pathways in organ grafts occurs, priming them for further inflammation after engraftment. Finally, posttransplantation ischaemia reperfusion injury leads to further generation of inflammatory mediators and consequent activation of the recipient's immune system. Ongoing research has identified key mediators that contribute to the inflammatory milieu inherent in brain dead organ donation. This has seen the development of novel therapies that directly target the inflammatory cascade.
Collapse
|
33
|
Goldstein MJ, Lubezky N, Yushkov Y, Bae C, Guarrera JV. Innovations in organ donation. ACTA ACUST UNITED AC 2012; 79:351-64. [PMID: 22678859 DOI: 10.1002/msj.21312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The growing disparity between organ availability for transplantation and the number of patients in need has challenged the donation and transplantation community of practice to develop innovative processes, ideas, and techniques to bridge the gaps. Advances in the sharing of best practices in the donation community have contributed greatly over the last 8 years. Broader sharing of updated guidelines for declaration of brain death in conjunction with improvements in deceased donor management have increased opportunities for organ donation. New techniques for organ preservation and organ resuscitation have allowed for better utilization of the potential donor pool. This review will highlight processes, ideas, and techniques in organ donation.
Collapse
Affiliation(s)
- Michael J Goldstein
- Recanati/Miller Transplantation Institute, Mount Sinai Medical Center, New York, NY, USA.
| | | | | | | | | |
Collapse
|
34
|
Floerchinger B, Oberhuber R, Tullius SG. Effects of brain death on organ quality and transplant outcome. Transplant Rev (Orlando) 2012; 26:54-9. [PMID: 22459036 DOI: 10.1016/j.trre.2011.10.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 10/18/2011] [Indexed: 12/27/2022]
Abstract
The inferiority of organs from brain dead donors is reflected by impaired graft survival and patient outcome. Brain death effects hemodynamic stability, hormonal changes, and neuroimmunologic effects and unleashes a cascade of inflammatory events. Despite considerable efforts in experimental and clinical research, most of the mechanisms linked to brain death are only appreciated on a descriptive level. This overview presents our current understanding of the pathophysiology and consequences of brain death on organ injury and summarizes available therapeutic interventions.
Collapse
Affiliation(s)
- Bernhard Floerchinger
- Transplant Surgery Laboratory, Brigham and Women's Hospital, Harvard Medical, School, Boston, MA 02115, USA
| | | | | |
Collapse
|
35
|
Friedrich C, Ulmer C, Rieber F, Kern E, Kohler A, Schymik K, Thon KP, Lamadé W. Safety analysis of vagal nerve stimulation for continuous nerve monitoring during thyroid surgery. Laryngoscope 2012; 122:1979-87. [DOI: 10.1002/lary.23411] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 01/27/2023]
|
36
|
Ziaja M, Pyka J, Boczkus B, Plonka BK, Plonka PM. Changes in the nitric oxide level in the rat liver as a response to brain injury. Nitric Oxide 2011; 25:423-30. [DOI: 10.1016/j.niox.2011.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/28/2011] [Accepted: 07/23/2011] [Indexed: 12/21/2022]
|
37
|
UW is superior compared with HTK after prolonged preservation of renal grafts. J Surg Res 2011; 170:e149-57. [PMID: 21741054 DOI: 10.1016/j.jss.2011.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/15/2011] [Accepted: 05/11/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND In recent clinical studies, the efficacy of histidine-tryptophan-ketoglutarate (HTK) in kidney transplantation was questioned. This study compares the efficacy of University of Wisconsin (UW) and HTK solutions on transplantation outcome. MATERIALS AND METHODS Rat kidneys were preserved for different periods of cold ischemia (CIT). Heat capacity of the solutions, temperature of the grafts, renal function (RF), and histology were assessed before and after transplantation, respectively. RESULTS After prolonged CIT, recipient survival was superior in the UW - (100%) compared with the HTK group (10%). In the latter, severe tubular necrosis, DNA damage, and renal inflammation were observed, reflected by an increased KIM-1, IL6, and P-selectin expression. CIT correlated negatively with RF in both groups. RF recovered significantly faster in the UW group. LDH-release and ATP depletion after cold storage of tubular cells were lower in UW than in HTK. Heat capacity was significantly higher for UW than for HTK. Accordingly, renal temperature was lower. CONCLUSIONS Prolonged preservation in UW solution results in a better renal function and less tissue damage compared with HTK, possibly due to improved cooling and better cell viability of the graft. The use of HTK for renal allografts should therefore be reconsidered, particularly when CIT is expected to be long.
Collapse
|
38
|
Targeting complement activation in brain-dead donors improves renal function after transplantation. Transpl Immunol 2011; 24:233-7. [DOI: 10.1016/j.trim.2011.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 02/03/2023]
|
39
|
Huston JM, Tracey KJ. The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J Intern Med 2011; 269:45-53. [PMID: 21158977 PMCID: PMC4527046 DOI: 10.1111/j.1365-2796.2010.02321.x] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biological therapeutics targeting TNF, IL-1 and IL-6 are widely used for treatment of rheumatoid arthritis, inflammatory bowel disease and a growing list of other syndromes, often with remarkable success. Now advances in neuroscience have collided with this therapeutic approach, perhaps rendering possible the development of nerve stimulators to inhibit cytokines. Action potentials transmitted in the vagus nerve culminate in the release of acetylcholine that blocks cytokine production by cells expressing acetylcholine receptors. The molecular mechanism of this cholinergic anti-inflammatory pathway is attributable to signal transduction by the nicotinic alpha 7 acetylcholine receptor subunit, a regulator of the intracellular signals that control cytokine transcription and translation. Favourable preclinical data support the possibility that nerve stimulators may be added to the future therapeutic armamentarium, possibly replacing some drugs to inhibit cytokines.
Collapse
Affiliation(s)
- J M Huston
- Department of Surgery, Division of General Surgery, Trauma, Surgical Critical Care, and Burns, Stony Brook University Medical Center, Stony Brook, NY 11794, USA.
| | | |
Collapse
|