1
|
Xiao C, Peng G, Conneely KN, Zhao H, Felger JC, Wommack EC, Higgins KA, Shin DM, Saba NF, Bruner DW, Miller AH. DNA methylation profiles of cancer-related fatigue associated with markers of inflammation and immunometabolism. Mol Psychiatry 2025; 30:76-83. [PMID: 38977918 DOI: 10.1038/s41380-024-02652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
Cancer patients are commonly affected by fatigue. Herein, we sought to examine epigenetic modifications (i.e., DNA methylation) related to fatigue in peripheral blood among patients during and after treatment for head and neck cancer (HNC). Further, we determined whether these modifications were associated with gene expression and inflammatory protein markers, which we have previously linked to fatigue in HNC. This prospective, longitudinal study enrolled eligible patients with data collected at pre-radiotherapy, end of radiotherapy, and six months and one-year post-radiotherapy. Fatigue data were reported by patients using the Multidimensional Fatigue Inventory (MFI)-20. DNA methylation (Illumina MethylationEPIC) and gene expression (Applied Biosystems Clariom S) arrays and assays for seven inflammatory markers (R&D Systems multiplex) were performed. Mixed models and enrichment analyses were applied to establish the associations. A total of 386 methylation loci were associated with fatigue among 145 patients (False Discovery Rate [FDR] < 0.05). Enrichment analyses showed the involvement of genes related to immune and inflammatory responses, insulin and lipid metabolism, neuropsychological disorders, and tumors. We further identified 16 methylation-gene expression pairs (FDR < 0.05), which were linked to immune and inflammatory responses and lipid metabolism. Ninety-one percent (351) of the 386 methylation loci were also significantly associated with inflammatory markers (e.g., interleukin 6, c-reactive protein; FDR < 0.05), which further mediated the association between methylation and fatigue (FDR < 0.05). These data suggest that epigenetic modifications associated with inflammation and immunometabolism, in conjunction with relevant gene expression and protein markers, are potential targets for treating fatigue in HNC patients. The findings also merit future prospective studies in other cancer populations as well as interventional investigations.
Collapse
Affiliation(s)
- Canhua Xiao
- Emory University School of Nursing, Atlanta, GA, USA.
| | - Gang Peng
- Indianan University School of Medicine, Department of Medical and Molecular Genetics, Indianapolis, IN, USA
| | - Karen N Conneely
- Emory University School of Medicine, Department of Human Genetics, Atlanta, GA, USA
| | - Hongyu Zhao
- Yale University School of Medicine, Department of Genetics, New Haven, CT, USA
| | - Jennifer C Felger
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Evanthia C Wommack
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Kristin A Higgins
- Emory University School of Medicine, Department of Radiation Oncology, Atlanta, GA, USA
| | - Dong M Shin
- Emory University School of Medicine, Department of Hematology and Medical Oncology, Atlanta, GA, USA
| | - Nabil F Saba
- Emory University School of Medicine, Department of Hematology and Medical Oncology, Atlanta, GA, USA
| | | | - Andrew H Miller
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| |
Collapse
|
2
|
Li H, Aboudhiaf S, Parrot S, Scote-Blachon C, Benetollo C, Lin JS, Seugnet L. Pallidin function in Drosophila surface glia regulates sleep and is dependent on amino acid availability. Cell Rep 2023; 42:113025. [PMID: 37682712 DOI: 10.1016/j.celrep.2023.113025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/16/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
The Pallidin protein is a central subunit of a multimeric complex called biogenesis of lysosome-related organelles complex 1 (BLOC1) that regulates specific endosomal functions and has been linked to schizophrenia. We show here that downregulation of Pallidin and other members of BLOC1 in the surface glia, the Drosophila equivalent of the blood-brain barrier, reduces and delays nighttime sleep in a circadian-clock-dependent manner. In agreement with BLOC1 involvement in amino acid transport, downregulation of the large neutral amino acid transporter 1 (LAT1)-like transporters JhI-21 and mnd, as well as of TOR (target of rapamycin) amino acid signaling, phenocopy Pallidin knockdown. Furthermore, supplementing food with leucine normalizes the sleep/wake phenotypes of Pallidin downregulation, and we identify a role for Pallidin in the subcellular trafficking of JhI-21. Finally, we provide evidence that Pallidin in surface glia is required for GABAergic neuronal activity. These data identify a BLOC1 function linking essential amino acid availability and GABAergic sleep/wake regulation.
Collapse
Affiliation(s)
- Hui Li
- Centre de Recherche en Neurosciences de Lyon, Team WAKING, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Sami Aboudhiaf
- Centre de Recherche en Neurosciences de Lyon, Team WAKING, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Sandrine Parrot
- Centre de Recherche en Neurosciences de Lyon, NeuroDialyTics Facility, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Céline Scote-Blachon
- Centre de Recherche en Neurosciences de Lyon, GenCyTi Facility, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Claire Benetollo
- Centre de Recherche en Neurosciences de Lyon, GenCyTi Facility, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Jian-Sheng Lin
- Centre de Recherche en Neurosciences de Lyon, Team WAKING, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, Team WAKING, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France.
| |
Collapse
|
3
|
Cataloging the potential SNPs (single nucleotide polymorphisms) associated with quantitative traits, viz. BMI (body mass index), IQ (intelligence quotient) and BP (blood pressure): an updated review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Single nucleotide polymorphism (SNP) variants are abundant, persistent and widely distributed across the genome and are frequently linked to the development of genetic diseases. Identifying SNPs that underpin complex diseases can aid scientists in the discovery of disease-related genes by allowing for early detection, effective medication and eventually disease prevention.
Main body
Various SNP or polymorphism-based studies were used to categorize different SNPs potentially related to three quantitative traits: body mass index (BMI), intelligence quotient (IQ) and blood pressure, and then uncovered common SNPs for these three traits. We employed SNPedia, RefSNP Report, GWAS Catalog, Gene Cards (Data Bases), PubMed and Google Scholar search engines to find relevant material on SNPs associated with three quantitative traits. As a result, we detected three common SNPs for all three quantitative traits in global populations: SNP rs6265 of the BDNF gene on chromosome 11p14.1, SNP rs131070325 of the SL39A8 gene on chromosome 4p24 and SNP rs4680 of the COMT gene on chromosome 22q11.21.
Conclusion
In our review, we focused on the prevalent SNPs and gene expression activities that influence these three quantitative traits. These SNPs have been used to detect and map complex, common illnesses in communities for homogeneity testing and pharmacogenetic studies. High blood pressure, diabetes and heart disease, as well as BMI, schizophrenia and IQ, can all be predicted using common SNPs. Finally, the results of our work can be used to find common SNPs and genes that regulate these three quantitative features across the genome.
Collapse
|
4
|
Waddington JL, Zhen X, O'Tuathaigh CMP. Developmental Genes and Regulatory Proteins, Domains of Cognitive Impairment in Schizophrenia Spectrum Psychosis and Implications for Antipsychotic Drug Discovery: The Example of Dysbindin-1 Isoforms and Beyond. Front Pharmacol 2020; 10:1638. [PMID: 32063853 PMCID: PMC7000454 DOI: 10.3389/fphar.2019.01638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Alongside positive and negative symptomatology, deficits in working memory, attention, selective learning processes, and executive function have been widely documented in schizophrenia spectrum psychosis. These cognitive abnormalities are strongly associated with impairment across multiple function domains and are generally treatment-resistant. The DTNBP1 (dystrobrevin-binding protein-1) gene, encoding dysbindin, is considered a risk factor for schizophrenia and is associated with variation in cognitive function in both clinical and nonclinical samples. Downregulation of DTNBP1 expression in dorsolateral prefrontal cortex and hippocampal formation of patients with schizophrenia has been suggested to serve as a primary pathophysiological process. Described as a "hub," dysbindin is an important regulatory protein that is linked with multiple complexes in the brain and is involved in a wide variety of functions implicated in neurodevelopment and neuroplasticity. The expression pattern of the various dysbindin isoforms (-1A, -1B, -1C) changes depending upon stage of brain development, tissue areas and subcellular localizations, and can involve interaction with different protein partners. We review evidence describing how sequence variation in DTNBP1 isoforms has been differentially associated with schizophrenia-associated symptoms. We discuss results linking these isoform proteins, and their interacting molecular partners, with cognitive dysfunction in schizophrenia, including evidence from drosophila through to genetic mouse models of dysbindin function. Finally, we discuss preclinical evidence investigating the antipsychotic potential of molecules that influence dysbindin expression and functionality. These studies, and other recent work that has extended this approach to other developmental regulators, may facilitate identification of novel molecular pathways leading to improved antipsychotic treatments.
Collapse
Affiliation(s)
- John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Colm M P O'Tuathaigh
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,Medical Education Unit, School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Sleurs C, Madoe A, Lagae L, Jacobs S, Deprez S, Lemiere J, Uyttebroeck A. Genetic Modulation of Neurocognitive Development in Cancer Patients throughout the Lifespan: a Systematic Review. Neuropsychol Rev 2019; 29:190-219. [DOI: 10.1007/s11065-019-09399-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
|
6
|
Lee FY, Wang HB, Hitchcock ON, Loh DH, Whittaker DS, Kim YS, Aiken A, Kokikian C, Dell’Angelica EC, Colwell CS, Ghiani CA. Sleep/Wake Disruption in a Mouse Model of BLOC-1 Deficiency. Front Neurosci 2018; 12:759. [PMID: 30498428 PMCID: PMC6249416 DOI: 10.3389/fnins.2018.00759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Mice lacking a functional Biogenesis of Lysosome-related Organelles Complex 1 (BLOC-1), such as those of the pallid line, display cognitive and behavioural impairments reminiscent of those presented by individuals with intellectual and developmental disabilities. Although disturbances in the sleep/wake cycle are commonly lamented by these individuals, the underlying mechanisms, including the possible role of the circadian timing system, are still unknown. In this paper, we have explored sleep/circadian malfunctions and underlying mechanisms in BLOC-1-deficient pallid mice. These mutants exhibited less sleep behaviour in the beginning of the resting phase than wild-type mice with a more broken sleeping pattern in normal light-dark conditions. Furthermore, the strength of the activity rhythms in the mutants were reduced with significantly more fragmentation and lower precision than in age-matched controls. These symptoms were accompanied by an abnormal preference for the open arm in the elevated plus maze in the day and poor performance in the novel object recognition at night. At the level of the central circadian clock (the suprachiasmatic nucleus, SCN), loss of BLOC-1 caused subtle morphological changes including a larger SCN and increased expression of the relative levels of the clock gene Per2 product during the day but did not affect the neuronal activity rhythms. In the hippocampus, the pallid mice presented with anomalies in the cytoarchitecture of the Dentate Gyrus granule cells, but not in CA1 pyramidal neurones, along with altered PER2 protein levels as well as reduced pCREB/tCREB ratio during the day. Our findings suggest that lack of BLOC-1 in mice disrupts the sleep/wake cycle and performance in behavioural tests associated with specific alterations in cytoarchitecture and protein expression.
Collapse
Affiliation(s)
- Frank Y. Lee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Huei-Bin Wang
- Molecular, Cellular, & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Olivia N. Hitchcock
- Integrative Biology and Physiology Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Dawn Hsiao Loh
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel S. Whittaker
- Molecular, Cellular, & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yoon-Sik Kim
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Achilles Aiken
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Collette Kokikian
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Esteban C. Dell’Angelica
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cristina A. Ghiani
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Larimore J, Zlatic SA, Arnold M, Singleton KS, Cross R, Rudolph H, Bruegge MV, Sweetman A, Garza C, Whisnant E, Faundez V. Dysbindin Deficiency Modifies the Expression of GABA Neuron and Ion Permeation Transcripts in the Developing Hippocampus. Front Genet 2017; 8:28. [PMID: 28344592 PMCID: PMC5344932 DOI: 10.3389/fgene.2017.00028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/20/2017] [Indexed: 12/25/2022] Open
Abstract
The neurodevelopmental factor dysbindin is required for synapse function and GABA interneuron development. Dysbindin protein levels are reduced in the hippocampus of schizophrenia patients. Mouse dysbindin genetic defects and other mouse models of neurodevelopmental disorders share defective GABAergic neurotransmission and, in several instances, a loss of parvalbumin-positive interneuron phenotypes. This suggests that mechanisms downstream of dysbindin deficiency, such as those affecting GABA interneurons, could inform pathways contributing to or ameliorating diverse neurodevelopmental disorders. Here we define the transcriptome of developing wild type and dysbindin null Bloc1s8sdy/sdy mouse hippocampus in order to identify mechanisms downstream dysbindin defects. The dysbindin mutant transcriptome revealed previously reported GABA parvalbumin interneuron defects. However, the Bloc1s8sdy/sdy transcriptome additionally uncovered changes in the expression of molecules controlling cellular excitability such as the cation-chloride cotransporters NKCC1, KCC2, and NCKX2 as well as the potassium channel subunits Kcne2 and Kcnj13. Our results suggest that dysbindin deficiency phenotypes, such as GABAergic defects, are modulated by the expression of molecules controlling the magnitude and cadence of neuronal excitability.
Collapse
Affiliation(s)
| | | | - Miranda Arnold
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | | | - Rebecca Cross
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | - Hannah Rudolph
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | | | - Andrea Sweetman
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | - Cecilia Garza
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | - Eli Whisnant
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
8
|
Bakanidze G, Brandl EJ, Hutzler C, Aurass F, Onken S, Rapp MA, Puls I. Association of Dystrobrevin-Binding Protein 1 Polymorphisms with Sustained Attention and Set-Shifting in Schizophrenia Patients. Neuropsychobiology 2017; 74:41-47. [PMID: 27798936 DOI: 10.1159/000450550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Despite extensive research in the past decades, the influence of genetics on cognitive functions in schizophrenia remains unclear. Dystrobrevin-binding protein 1 (DTNBP1) is one of the most promising candidate genes in schizophrenia. An association of DTNBP1 with cognitive dysfunction, particularly memory impairment, has been reported in a number of studies. However, the results remain inconsistent. The aim of this study was to measure the association between DTNBP1 polymorphisms and cognitive domains in a well-characterized sample. METHODS Ninety-one clinically stable schizophrenia outpatients underwent a battery of cognitive tests. Six single nucleotide polymorphisms (SNPs) of DTNBP1 were genotyped in all participants. Statistical and multivariate analyses were performed. RESULTS Factor analysis revealed 4 factors corresponding to distinct cognitive domains, namely sustained attention, set-shifting, executive functioning, and memory. We found a significant association of the rs909706 polymorphism with attention (p = 0.030) and a nonsignificant trend for set-shifting (p = 0.060). The other SNPs and haplotypes were not associated with cognitive function. DISCUSSION Replication of this finding in a larger sample is needed in order to confirm the importance of this particular polymorphism in the genetics of schizophrenia, particularly the distinct cognitive domains. In conclusion, the present study supports the involvement of DTNBP1 in the regulation of cognitive processes and demonstrates association in particular with sustained attention and set-shifting in schizophrenia patients.
Collapse
Affiliation(s)
- George Bakanidze
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Correa DD, Satagopan J, Cheung K, Arora AK, Kryza-Lacombe M, Xu Y, Karimi S, Lyo J, DeAngelis LM, Orlow I. COMT, BDNF, and DTNBP1 polymorphisms and cognitive functions in patients with brain tumors. Neuro Oncol 2016; 18:1425-33. [PMID: 27091610 PMCID: PMC5035520 DOI: 10.1093/neuonc/now057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/11/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cognitive dysfunction is common among patients with brain tumors and can be associated with the disease and treatment with radiotherapy and chemotherapy. However, little is known about genetic risk factors that may moderate the vulnerability for developing cognitive dysfunction. In this study, we examined the association of single nucleotide polymorphisms (SNPs) in the catechol-O-methyl transferase (COMT), brain-derived neurotrophic factor (BDNF), and dystrobrevin-binding protein 1 (DTNBP1) genes with cognitive functions and neuroimaging outcomes in patients with brain tumors. METHODS One hundred and fifty patients with brain tumors completed neuropsychological tests of attention, executive functions, and memory and were genotyped for polymorphisms in the COMT, BDNF, and DTNBP1 genes. Ratings of white matter (WM) abnormalities on magnetic resonance imaging scans were performed. RESULTS Multivariate regression shrinkage analyses, adjusted for age, education, treatment type, time since treatment completion, and tumor location, indicated a significant association between the COMT SNP rs4680 (Val158Met) and memory with lower scores in delayed recall (P < .01) among homozygotes (valine/valine). Additional COMT, BDNF and DTNBP1 SNPs were significantly associated with attention, executive functions, and memory scores. CONCLUSION This is the first study to suggest that known and newly described polymorphisms in genes associated with executive and memory functions in healthy individuals and other clinical populations may modulate cognitive outcome in patients with brain tumors.
Collapse
Affiliation(s)
- Denise D Correa
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (D.D.C., M.K.-L., L.M.D.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (J.S., K.C., A.K.A., Y.X., I.O.); Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York (S.K., J.L.); Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York (D.D.C., L.M.D.)
| | - Jaya Satagopan
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (D.D.C., M.K.-L., L.M.D.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (J.S., K.C., A.K.A., Y.X., I.O.); Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York (S.K., J.L.); Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York (D.D.C., L.M.D.)
| | - Kenneth Cheung
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (D.D.C., M.K.-L., L.M.D.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (J.S., K.C., A.K.A., Y.X., I.O.); Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York (S.K., J.L.); Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York (D.D.C., L.M.D.)
| | - Arshi K Arora
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (D.D.C., M.K.-L., L.M.D.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (J.S., K.C., A.K.A., Y.X., I.O.); Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York (S.K., J.L.); Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York (D.D.C., L.M.D.)
| | - Maria Kryza-Lacombe
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (D.D.C., M.K.-L., L.M.D.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (J.S., K.C., A.K.A., Y.X., I.O.); Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York (S.K., J.L.); Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York (D.D.C., L.M.D.)
| | - Youming Xu
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (D.D.C., M.K.-L., L.M.D.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (J.S., K.C., A.K.A., Y.X., I.O.); Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York (S.K., J.L.); Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York (D.D.C., L.M.D.)
| | - Sasan Karimi
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (D.D.C., M.K.-L., L.M.D.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (J.S., K.C., A.K.A., Y.X., I.O.); Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York (S.K., J.L.); Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York (D.D.C., L.M.D.)
| | - John Lyo
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (D.D.C., M.K.-L., L.M.D.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (J.S., K.C., A.K.A., Y.X., I.O.); Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York (S.K., J.L.); Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York (D.D.C., L.M.D.)
| | - Lisa M DeAngelis
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (D.D.C., M.K.-L., L.M.D.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (J.S., K.C., A.K.A., Y.X., I.O.); Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York (S.K., J.L.); Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York (D.D.C., L.M.D.)
| | - Irene Orlow
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (D.D.C., M.K.-L., L.M.D.); Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (J.S., K.C., A.K.A., Y.X., I.O.); Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York (S.K., J.L.); Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York (D.D.C., L.M.D.)
| |
Collapse
|
10
|
Abdolmaleky HM, Pajouhanfar S, Faghankhani M, Joghataei MT, Mostafavi A, Thiagalingam S. Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and Psychotic bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2015; 168:687-96. [PMID: 26285059 DOI: 10.1002/ajmg.b.32361] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/31/2015] [Indexed: 12/13/2022]
Abstract
Due to the lack of genetic association between individual genes and schizophrenia (SCZ) pathogenesis, the current consensus is to consider both genetic and epigenetic alterations. Here, we report the examination of DNA methylation status of DTNBP1 promoter region, one of the most credible candidate genes affected in SCZ, assayed in saliva and post-mortem brain samples. The Illumina DNA methylation profiling and bisulfite sequencing of representative samples were used to identify methylation status of the DTNBP1 promoter region. Quantitative methylation specific PCR (qMSP) was employed to assess methylation of DTNBP1 promoter CpGs flanking a SP1 binding site in the saliva of SCZ patients, their first-degree relatives and control subjects (30, 15, and 30/group, respectively) as well as in post-mortem brains of patients with SCZ and bipolar disorder (BD) versus controls (35/group). qRT-PCR was used to assess DTNBP1 expression. We found DNA hypermethylation of DTNBP1 promoter in the saliva of SCZ patients (∼12.5%, P = 0.036), particularly in drug-naïve patients (∼20%, P = 0.011), and a trend toward hypermethylation in their first-degree relatives (P = 0.085) versus controls. Analysis of post-mortem brain samples revealed an inverse correlation between DTNBP1 methylation and expression, and normalization of this epigenetic change by classic antipsychotic drugs. Additionally, BD patients with psychotic depression exhibited higher degree of methylation versus other BD patients (∼80%, P = 0.025). DTNBP1 promoter DNA methylation may become a key element in a panel of biomarkers for diagnosis, prevention, or therapy in SCZ and at risk individuals pending confirmatory studies with larger sample sizes to attain a higher degree of significance.
Collapse
Affiliation(s)
- Hamid M Abdolmaleky
- Departments of Medicine (Biomedical Genetics Section), Genetics & Genomics, Boston University School of Medicine, Boston, Massachusetts.,Mental Health Research Center, Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Pajouhanfar
- Mental Health Research Center, Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mostafavi
- Arian Salamat Counselling and Nursing Services Centre, Tehran, Iran
| | - Sam Thiagalingam
- Departments of Medicine (Biomedical Genetics Section), Genetics & Genomics, Boston University School of Medicine, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
11
|
Increased dysbindin-1B isoform expression in schizophrenia and its propensity in aggresome formation. Cell Discov 2015; 1:15032. [PMID: 27462430 PMCID: PMC4860834 DOI: 10.1038/celldisc.2015.32] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/13/2015] [Indexed: 02/06/2023] Open
Abstract
Genetic variations in the human dysbindin-1 gene (DTNBP1) have been associated with schizophrenia. As a result of alternative splicing, the human DTNBP1 gene generates at least three distinct protein isoforms, dysbindin-1A, -1B and -1C. Significant effort has focused on dysbindin-1A, an important player in multiple steps of neurodevelopment. However, the other isoforms, dysbindin-1B and dysbindin-1C have not been well characterized. Nor have been associated with human diseases. Here we report an increase in expression of DTNBP1b mRNA in patients with paranoid schizophrenia as compared with healthy controls. A single-nucleotide polymorphism located in intron 9, rs117610176, has been identified and associated with paranoid schizophrenia, and its C allele leads to an increase of DTNBP1b mRNA splicing. Our data show that different dysbindin splicing isoforms exhibit distinct subcellular distribution, suggesting their distinct functional activities. Dysbindin-1B forms aggresomes at the perinuclear region, whereas dysbindin-1A and -1C proteins exhibit diffused patterns in the cytoplasm. Dysbindin-1A interacts with dysbindin-1B, getting recruited to the aggresome structure when co-expressed with dysbindin-1B. Moreover, cortical neurons over-expressing dysbindin-1B show reduction in neurite outgrowth, suggesting that dysbindin-1B may interfere with dysbindin-1A function in a dominant-negative manner. Taken together, our study uncovers a previously unknown association of DTNBP1b expression with schizophrenia in addition to its distinct biochemical and functional properties.
Collapse
|
12
|
Tan GKN, Tee SF, Tang PY. Genetic association of single nucleotide polymorphisms in dystrobrevin binding protein 1 gene with schizophrenia in a Malaysian population. Genet Mol Biol 2015; 38:138-46. [PMID: 26273215 PMCID: PMC4530642 DOI: 10.1590/s1415-4757382220140142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 12/15/2014] [Indexed: 12/19/2022] Open
Abstract
Dystrobrevin binding protein 1 (DTNBP1) gene is pivotal in regulating the glutamatergic system. Genetic variants of the DTNBP1 affect cognition and thus may be particularly relevant to schizophrenia. We therefore evaluated the association of six single nucleotide polymorphisms (SNPs) with schizophrenia in a Malaysian population (171 cases; 171 controls). Associations between these six SNPs and schizophrenia were tested in two stages. Association signals with p < 0.05 and minor allele frequency > 0.05 in stage 1 were followed by genotyping the SNPs in a replication phase (stage 2). Genotyping was performed with sequenced specific primer (PCR-SSP) and restriction fragment length polymorphism (PCR-RFLP). In our sample, we found significant associations between rs2619522 (allele p = 0.002, OR = 1.902, 95%CI = 1.266 – 2.859; genotype p = 0.002) and rs2619528 (allele p = 0.008, OR = 1.606, 95%CI = 1.130 – 2.281; genotype p = 6.18 × 10−5) and schizophrenia. Given that these two SNPs may be associated with the pathophysiology of schizophrenia, further studies on the other DTNBP1 variants are warranted.
Collapse
Affiliation(s)
- Grace Kang Ning Tan
- Department of Mechatronics and Biomedical Engineering, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia
| | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Gene dosage in the dysbindin schizophrenia susceptibility network differentially affect synaptic function and plasticity. J Neurosci 2015; 35:325-38. [PMID: 25568125 DOI: 10.1523/jneurosci.3542-14.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurodevelopmental disorders arise from single or multiple gene defects. However, the way multiple loci interact to modify phenotypic outcomes remains poorly understood. Here, we studied phenotypes associated with mutations in the schizophrenia susceptibility gene dysbindin (dysb), in isolation or in combination with null alleles in the dysb network component Blos1. In humans, the Blos1 ortholog Bloc1s1 encodes a polypeptide that assembles, with dysbindin, into the octameric BLOC-1 complex. We biochemically confirmed BLOC-1 presence in Drosophila neurons, and measured synaptic output and complex adaptive behavior in response to BLOC-1 perturbation. Homozygous loss-of-function alleles of dysb, Blos1, or compound heterozygotes of these alleles impaired neurotransmitter release, synapse morphology, and homeostatic plasticity at the larval neuromuscular junction, and impaired olfactory habituation. This multiparameter assessment indicated that phenotypes were differentially sensitive to genetic dosages of loss-of-function BLOC-1 alleles. Our findings suggest that modification of a second genetic locus in a defined neurodevelopmental regulatory network does not follow a strict additive genetic inheritance, but rather, precise stoichiometry within the network determines phenotypic outcomes.
Collapse
|
14
|
Kendler KS, Ohlsson H, Sundquist J, Sundquist K. IQ and schizophrenia in a Swedish national sample: their causal relationship and the interaction of IQ with genetic risk. Am J Psychiatry 2015; 172:259-65. [PMID: 25727538 PMCID: PMC4391822 DOI: 10.1176/appi.ajp.2014.14040516] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The authors sought to clarify the relationship between IQ and subsequent risk for schizophrenia. METHOD IQ was assessed at ages 18-20 in 1,204,983 Swedish males born between 1951 and 1975. Schizophrenia was assessed by hospital diagnosis through 2010. Cox proportional hazards models were used to investigate future risk for schizophrenia in individuals as a function of their IQ score, and then stratified models using pairs of relatives were used to adjust for familial cluster. Finally, regression models were used to examine the interaction between IQ and genetic liability on risk for schizophrenia. RESULTS IQ had a monotonic relationship with schizophrenia risk across the IQ range, with a mean increase in risk of 3.8% per 1-point decrease in IQ; this association was stronger in the lower than the higher IQ range. Co-relative control analyses showed a similar association between IQ and schizophrenia in the general population and in cousin, half-sibling, and full-sibling pairs. A robust interaction was seen between genetic liability to schizophrenia and IQ in predicting schizophrenia risk. Genetic susceptibility for schizophrenia had a much stronger impact on risk of illness for those with low than high intelligence. The IQ-genetic liability interaction arose largely from IQ differences between close relatives. CONCLUSIONS IQ assessed in late adolescence is a robust risk factor for subsequent onset of schizophrenia. This association is not the result of a declining IQ associated with insidious onset. In this large, representative sample, we found no evidence for a link between genius and schizophrenia. Co-relative control analyses showed that the association between lower IQ and schizophrenia is not the result of shared familial risk factors and may be causal. The strongest effect was seen with IQ differences within families. High intelligence substantially attenuates the impact of genetic liability on the risk for schizophrenia.
Collapse
Affiliation(s)
- Kenneth S. Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA,Department of Psychiatry, Virginia Commonwealth University, Richmond VA, USA,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Henrik Ohlsson
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden,Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden,Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Cheah SY, Lawford BR, Young RM, Morris CP, Voisey J. Dysbindin (DTNBP1) variants are associated with hallucinations in schizophrenia. Eur Psychiatry 2015; 30:486-91. [PMID: 25697573 DOI: 10.1016/j.eurpsy.2015.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Dystrobrevin binding protein 1 (DTNBP1) is a schizophrenia susceptibility gene involved with neurotransmission regulation (especially dopamine and glutamate) and neurodevelopment. The gene is known to be associated with cognitive deficit phenotypes within schizophrenia. In our previous studies, DTNBP1 was found associated not only with schizophrenia but with other psychiatric disorders including psychotic depression, post-traumatic stress disorder, nicotine dependence and opiate dependence. These findings suggest that DNTBP1 may be involved in pathways that lead to multiple psychiatric phenotypes. In this study, we explored the association between DTNBP1 SNPs (single nucleotide polymorphisms) and multiple psychiatric phenotypes included in the Diagnostic Interview of Psychosis (DIP). METHODS Five DTNBP1 SNPs, rs17470454, rs1997679, rs4236167, rs9370822 and rs9370823, were genotyped in 235 schizophrenia subjects screened for various phenotypes in the domains of depression, mania, hallucinations, delusions, subjective thought disorder, behaviour and affect, and speech disorder. SNP-phenotype association was determined with ANOVA under general, dominant/recessive and over-dominance models. RESULTS Post hoc tests determined that SNP rs1997679 was associated with visual hallucination; SNP rs4236167 was associated with general auditory hallucination as well as specific features including non-verbal, abusive and third-person form auditory hallucinations; and SNP rs9370822 was associated with visual and olfactory hallucinations. SNPs that survived correction for multiple testing were rs4236167 for third-person and abusive form auditory hallucinations; and rs9370822 for olfactory hallucinations. CONCLUSION These data suggest that DTNBP1 is likely to play a role in development of auditory related, visual and olfactory hallucinations which is consistent with evidence of DTNBP1 activity in the auditory processing regions, in visual processing and in the regulation of glutamate and dopamine activity.
Collapse
Affiliation(s)
- S-Y Cheah
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - B R Lawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; Discipline of Psychiatry, Royal Brisbane and Women's Hospital, Herston, Queensland 4006, Australia
| | - R M Young
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - C P Morris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - J Voisey
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| |
Collapse
|
16
|
Larimore J, Zlatic SA, Gokhale A, Tornieri K, Singleton KS, Mullin AP, Tang J, Talbot K, Faundez V. Mutations in the BLOC-1 subunits dysbindin and muted generate divergent and dosage-dependent phenotypes. J Biol Chem 2014; 289:14291-300. [PMID: 24713699 DOI: 10.1074/jbc.m114.553750] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-mortem analysis has revealed reduced levels of the protein dysbindin in the brains of those suffering from the neurodevelopmental disorder schizophrenia. Consequently, mechanisms controlling the cellular levels of dysbindin and its interacting partners may participate in neurodevelopmental processes impaired in that disorder. To address this question, we studied loss of function mutations in the genes encoding dysbindin and its interacting BLOC-1 subunits. We focused on BLOC-1 mutants affecting synapse composition and function in addition to their established systemic pigmentation, hematological, and lung phenotypes. We tested phenotypic homogeneity and gene dosage effects in the mouse null alleles muted (Bloc1s5(mu/mu)) and dysbindin (Bloc1s8(sdy/sdy)). Transcripts of NMDA receptor subunits and GABAergic interneuron markers, as well as expression of BLOC-1 subunit gene products, were affected differently in the brains of Bloc1s5(mu/mu) and Bloc1s8(sdy/sdy) mice. Unlike Bloc1s8(sdy/sdy), elimination of one or two copies of Bloc1s5 generated indistinguishable pallidin transcript phenotypes. We conclude that monogenic mutations abrogating the expression of a protein complex subunit differentially affect the expression of other complex transcripts and polypeptides as well as their downstream effectors. We propose that the genetic disruption of different subunits of protein complexes and combinations thereof diversifies phenotypic presentation of pathway deficiencies, contributing to the wide phenotypic spectrum and complexity of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jennifer Larimore
- From the Department of Biology, Agnes Scott College, Decatur, Georgia 30030
| | | | | | | | - Kaela S Singleton
- From the Department of Biology, Agnes Scott College, Decatur, Georgia 30030
| | | | - Junxia Tang
- the Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Konrad Talbot
- the Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Victor Faundez
- the Department of Cell Biology and the Center for Social Translational Neuroscience Emory University, Atlanta, Georgia 30322,
| |
Collapse
|
17
|
Moran PM, O'Tuathaigh CM, Papaleo F, Waddington JL. Dopaminergic function in relation to genes associated with risk for schizophrenia. PROGRESS IN BRAIN RESEARCH 2014; 211:79-112. [DOI: 10.1016/b978-0-444-63425-2.00004-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Kuratomi G, Saito A, Ozeki Y, Watanabe T, Fujii K, Shimoda K, Inukai T, Mori H, Ohmori K, Akiyama K. Association of the Hermansky-Pudlak syndrome type 4 (HPS4) gene variants with cognitive function in patients with schizophrenia and healthy subjects. BMC Psychiatry 2013; 13:276. [PMID: 24168225 PMCID: PMC3819706 DOI: 10.1186/1471-244x-13-276] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/25/2013] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The Hermansky-Pudlak Syndrome Type 4 (HPS4) gene, which encodes a subunit protein of the biogenesis of lysosome-related organelles complex (BLOC)-3, which is involved in late endosomal trafficking, is associated with schizophrenia; however, its clinical relevance in schizophrenia remains unknown. The purpose of the present study was to investigate whether HPS4 is associated with cognitive functions in patients with schizophrenia and healthy controls and with the clinical profiles of patients with schizophrenia. METHODS We investigated the association of variants of HPS4 with clinical symptoms and cognitive function in Japanese patients with schizophrenia (n = 240) and age-matched healthy control subjects (n = 240) with single nucleotide polymorphisms (SNP)- or haplotype-based linear regression. We analyzed five tagging SNPs (rs4822724, rs61276843, rs9608491, rs713998, and rs2014410) of HPS4 and 2-5 locus haplotypes of these five SNPs. The cognitive functions of patients and healthy subjects were evaluated with the Brief Assessment of Cognition in Schizophrenia, Japanese-language version, and the patients were assessed for their symptomatology with the Positive and Negative Symptom Scale (PANSS). RESULTS In patients with schizophrenia, rs713998 was significantly associated with executive function under the dominant genetic model (P = 0.0073). In healthy subjects, there was a significant association between working memory and two individual SNPs under the recessive model (rs9608491: P = 0.001; rs713998: P = 0.0065) and two haplotypes (rs9608491-713998: P = 0.0025; rs61276843-9608491-713998: P = 0.0064). No significant association was found between HPS4 SNPs and PANSS scores or premorbid IQ, as measured by the Japanese version of the National Adult Reading Test. CONCLUSIONS These findings suggested the involvement of HPS4 in the working memory of healthy subjects and in the executive function deficits in schizophrenia.
Collapse
Affiliation(s)
- Go Kuratomi
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 3210293, Japan
| | - Atsushi Saito
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 3210293, Japan
| | - Yuji Ozeki
- Department of Psychiatry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 3210293, Japan
| | - Takashi Watanabe
- Department of Psychiatry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 3210293, Japan
| | - Kumiko Fujii
- Department of Psychiatry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 3210293, Japan
| | - Kazutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 3210293, Japan
| | - Toshihiko Inukai
- Department of Internal Medicine (Endocrinology, Metabolism, and Hematology), Dokkyo Medical University Koshigaya Hospital, 2-1-50 Minamikoshigaya, Koshigaya, Saitama 3438555, Japan
| | - Harunobu Mori
- Mori Hospital, 419 Iidamachi, Utsunomiya, Tochigi 3210347, Japan
| | - Kenichi Ohmori
- Takizawa Hospital, 2-29 Hanabusahoncho Utsunomiya, Tochigi 3200828, Japan
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 3210293, Japan.
| |
Collapse
|
19
|
Abstract
This review provides a comprehensive overview of clinical and molecular genetic as well as pharmacogenetic studies regarding the clinical phenotype of "psychotic depression." Results are discussed with regard to the long-standing debate on categorical vs dimensional disease models of affective and psychotic disorders on a continuum from unipolar depression over bipolar disorder and schizoaffective disorder to schizophrenia. Clinical genetic studies suggest a familial aggregation and a considerable heritability (39%) of psychotic depression partly shared with schizoaffective disorder, schizophrenia, and affective disorders. Molecular genetic studies point to potential risk loci of psychotic depression shared with schizoaffective disorder (1q42, 22q11, 19p13), depression, bipolar disorder, and schizophrenia (6p, 8p22, 10p13-12, 10p14, 13q13-14, 13q32, 18p, 22q11-13) and several vulnerability genes possibly contributing to an increased risk of psychotic symptoms in depression (eg, BDNF, DBH, DTNBP1, DRD2, DRD4, GSK-3beta, MAO-A). Pharmacogenetic studies implicate 5-HTT, TPH1, and DTNBP1 gene variation in the mediation of antidepressant treatment response in psychotic depression. Genetic factors are suggested to contribute to the disease risk of psychotic depression in partial overlap with disorders along the affective-psychotic spectrum. Thus, genetic research focusing on psychotic depression might inspire a more dimensional, neurobiologically and symptom-oriented taxonomy of affective and psychotic disorders challenging the dichotomous Kraepelinian view. Additionally, pharmacogenetic studies might aid in the development of a more personalized treatment of psychotic depression with an individually tailored antidepressive/antipsychotic pharmacotherapy according to genotype.
Collapse
Affiliation(s)
- Katharina Domschke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
20
|
Trost S, Platz B, Usher J, Scherk H, Wobrock T, Ekawardhani S, Meyer J, Reith W, Falkai P, Gruber O. The DTNBP1 (dysbindin-1) gene variant rs2619522 is associated with variation of hippocampal and prefrontal grey matter volumes in humans. Eur Arch Psychiatry Clin Neurosci 2013; 263:53-63. [PMID: 22580710 PMCID: PMC3560950 DOI: 10.1007/s00406-012-0320-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 04/22/2012] [Indexed: 12/19/2022]
Abstract
DTNBP1 is one of the most established susceptibility genes for schizophrenia, and hippocampal volume reduction is one of the major neuropathological findings in this severe disorder. Consistent with these findings, the encoded protein dysbindin-1 has been shown to be diminished in glutamatergic hippocampal neurons in schizophrenic patients. The aim of this study was to investigate the effects of two single nucleotide polymorphisms of DTNBP1 on grey matter volumes in human subjects using voxel-based morphometry. Seventy-two subjects were included and genotyped with respect to two single nucleotide polymorphisms of DTNBP1 (rs2619522 and rs1018381). All participants underwent structural magnetic resonance imaging (MRI). MRI data were preprocessed and statistically analysed using standard procedures as implemented in SPM5 (Statistical Parametric Mapping), in particular the voxel-based morphometry (VBM) toolbox. We found significant effects of the DTNBP1 SNP rs2619522 bilaterally in the hippocampus as well as in the anterior middle frontal gyrus and the intraparietal cortex. Carriers of the G allele showed significantly higher grey matter volumes in these brain regions than T/T homozygotes. Compatible with previous findings on a role of dysbindin in hippocampal functions as well as in major psychoses, the present study provides first direct in vivo evidence that the DTNBP1 SNP rs2619522 is associated with variation of grey matter volumes bilaterally in the hippocampus.
Collapse
Affiliation(s)
- S. Trost
- Department of Psychiatry and Psychotherapy, Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University, Goettingen, Germany
| | - B. Platz
- Department of Psychiatry and Psychotherapy, Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University, Goettingen, Germany
| | - J. Usher
- Department of Psychiatry and Psychotherapy, Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University, Goettingen, Germany
| | - H. Scherk
- Department of Psychiatry and Psychotherapy, Ameos Clinic Osnabrueck, Osnabrueck, Germany
| | - T. Wobrock
- Centre for Mental Health, County Hospitals Darmstadt-Dieburg, Groß-Umstadt, Germany
| | - S. Ekawardhani
- Department of Neurobehavioral Genetics, University of Trier, Trier, Germany
| | - J. Meyer
- Department of Neurobehavioral Genetics, University of Trier, Trier, Germany
| | - W. Reith
- Department of Neuroradiology, Saarland University, Homburg, Germany
| | - P. Falkai
- Department of Psychiatry and Psychotherapy, Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University, Goettingen, Germany
| | - O. Gruber
- Department of Psychiatry and Psychotherapy, Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University, Goettingen, Germany
| |
Collapse
|
21
|
Baek JH, Kim JS, Ryu S, Oh S, Noh J, Lee WK, Park T, Lee YS, Lee D, Kwon JS, Hong KS. Association of genetic variations in DTNBP1 with cognitive function in schizophrenia patients and healthy subjects. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:841-9. [PMID: 22911901 DOI: 10.1002/ajmg.b.32091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/12/2012] [Indexed: 12/13/2022]
Abstract
The dystrobrevin-binding protein 1 gene (DTNBP1) has been regarded as a susceptibility gene for schizophrenia. Recent studies have investigated its role on cognitive function that is frequently impaired in schizophrenia patients, and generated inconsistent results. The present study was performed to elucidate effects of genetic variations in DTNBP1 on various cognitive domains in both schizophrenia patients and healthy subjects. Comprehensive neuropsychological tests were administered to 122 clinically stable schizophrenia patients and 119 healthy subjects. Based on positive findings reported in previous association studies, six SNPs were selected and genotyped. Compared to healthy subjects, schizophrenia patients showed expected lower performance for all of the cognitive domains. After adjusting for age, gender, and educational level, four SNPs showed a nominally significant association with cognitive domains. The association of rs760761 and rs1018381 with the attention and vigilance domain remained significant after applying the correction for multiple testing (P < 0.001). Similar association patterns were observed both, in patients and healthy subjects. The observed results suggest the involvement of DTNBP1 not only in the development of attention deficit of schizophrenia, but also in the inter-individual variability of this cognitive domain within the normal functional range.
Collapse
Affiliation(s)
- Ji Hyun Baek
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schizophrenia. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Burdick KE, Gopin CB, Malhotra AK. Pharmacogenetic approaches to cognitive enhancement in schizophrenia. Harv Rev Psychiatry 2011; 19:102-8. [PMID: 21631157 DOI: 10.3109/10673229.2011.581899] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Research in the area of pharmacogenetics in psychiatry is aimed at identifying clinically relevant genetic variations that can predict treatment response. Ultimately, the goal is to individualize treatment in order to optimize outcome in disorders in which incomplete treatment response is common. Positive symptoms in patients with schizophrenia appear to be the most amenable to the currently available agents; however, negative symptoms and cognitive deficits frequently persist even when frank psychosis is well controlled. Given the relationship between these persistent traits and functional disability in schizophrenia, efforts are under way to directly target cognitive impairment and negative symptoms pharmacologically in order to improve quality of life. To date, most pharmacogenetic studies of schizophrenia have been focused on predicting clinical efficacy and side effects. In this review, we discuss the potential use of cognition as a primary outcome measure of interest in future pharmacogenetic trials of schizophrenia.
Collapse
|
24
|
Domschke K, Lawford B, Young R, Voisey J, Morris CP, Roehrs T, Hohoff C, Birosova E, Arolt V, Baune BT. Dysbindin (DTNBP1)--a role in psychotic depression? J Psychiatr Res 2011; 45:588-95. [PMID: 20951386 DOI: 10.1016/j.jpsychires.2010.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/10/2010] [Accepted: 09/22/2010] [Indexed: 01/20/2023]
Abstract
Previous studies yielded evidence for dysbindin (DTNBP1) to impact the pathogenesis of schizophrenia on the one hand and affective disorders such as bipolar or major depressive disorder (MDD) on the other. Thus, in the present study we investigated whether DTNBP1 variation was associated with psychotic depression as a severe clinical manifestation of MDD possibly constituting an overlapping phenotype between affective disorders and schizophrenia. A sample of 243 Caucasian inpatients with MDD (SCID-I) was genotyped for 12 SNPs spanning 92% of the DTNBP1 gene region. Differences in DTNBP1 genotype distributions across diagnostic subgroups of psychotic (N = 131) vs. non-psychotic depression were estimated by Pearson Chi(2) test and logistic regression analyses adjusted for age, gender, Beck Depression Inventory (BDI) and the Global Assessment of Functioning Scale (GAF). Overall, patients with psychotic depression presented with higher BDI and lower GAF scores expressing a higher severity of the illness as compared to depressed patients without psychotic features. Four DTNBP1 SNPs, particularly rs1997679 and rs9370822, and the corresponding haplotypes, respectively, were found to be significantly associated with the risk of psychotic depression in an allele-dose fashion. In summary, the present results provide preliminary support for dysbindin (DTNBP1) gene variation, particularly SNPs rs1997679 and rs9370822, to be associated with the clinical phenotype of psychotic depression suggesting a possible neurobiological mechanism for an intermediate trait on the continuum between affective disorders and schizophrenia.
Collapse
Affiliation(s)
- Katharina Domschke
- Department of Psychiatry, University of Muenster, Albert-Schweitzer-Strasse 11, D-48143 Muenster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wolf C, Jackson MC, Kissling C, Thome J, Linden DE. Dysbindin-1 genotype effects on emotional working memory. Mol Psychiatry 2011; 16:145-55. [PMID: 20010894 PMCID: PMC3044452 DOI: 10.1038/mp.2009.129] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 10/15/2009] [Accepted: 11/03/2009] [Indexed: 01/03/2023]
Abstract
We combined functional imaging and genetics to investigate the behavioral and neural effects of a dysbindin-1 (DTNBP1) genotype associated with the expression level of this important synaptic protein, which has been implicated in schizophrenia. On a working memory (WM) task for emotional faces, participants with the genotype related to increased expression showed higher WM capacity for happy faces compared with the genotype related to lower expression. Activity in several task-related brain areas with known DTNBP1 expression was increased, including hippocampal, temporal and frontal cortex. Although these increases occurred across emotions, they were mostly observed in areas whose activity correlated with performance for happy faces. This suggests effects of variability in DTNBP1 on emotion-specific WM capacity and region-specific task-related brain activation in humans. Synaptic effects of DTNBP1 implicate that altered dopaminergic and/or glutamatergic neurotransmission may be related to the increased WM capacity. The combination of imaging and genetics thus allows us to bridge the gap between the cellular/molecular and systems/behavioral level and extend the cognitive neuroscience approach to a comprehensive biology of cognition.
Collapse
Affiliation(s)
- Claudia Wolf
- Wolfson Centre for Cognitive and Clinical Neuroscience, School of Psychology, Bangor University, Brigantia Building, Bangor, LL57 2AS, UK
| | - Margaret C. Jackson
- Wolfson Centre for Cognitive and Clinical Neuroscience, School of Psychology, Bangor University, Brigantia Building, Bangor, LL57 2AS, UK
| | - Christian Kissling
- Laboratory of Molecular Psychiatry and Pharmacology, Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Johannes Thome
- Laboratory of Molecular Psychiatry and Pharmacology, Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - David E.J. Linden
- Wolfson Centre for Cognitive and Clinical Neuroscience, School of Psychology, Bangor University, Brigantia Building, Bangor, LL57 2AS, UK
- North Wales Clinical School, Bangor University, Bangor, LL57 2AS, UK
| |
Collapse
|
26
|
Balu DT, Coyle JT. Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci Biobehav Rev 2011; 35:848-70. [PMID: 20951727 PMCID: PMC3005823 DOI: 10.1016/j.neubiorev.2010.10.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/06/2010] [Accepted: 10/10/2010] [Indexed: 12/15/2022]
Abstract
Schizophrenia is a severe mental illness that afflicts nearly 1% of the world's population. One of the cardinal pathological features of schizophrenia is perturbation in synaptic connectivity. Although the etiology of schizophrenia is unknown, it appears to be a developmental disorder involving the interaction of a potentially large number of risk genes, with no one gene producing a strong effect except rare, highly penetrant copy number variants. The purpose of this review is to detail how putative schizophrenia risk genes (DISC-1, neuregulin/ErbB4, dysbindin, Akt1, BDNF, and the NMDA receptor) are involved in regulating neuroplasticity and how alterations in their expression may contribute to the disconnectivity observed in schizophrenia. Moreover, this review highlights how many of these risk genes converge to regulate common neurotransmitter systems and signaling pathways. Future studies aimed at elucidating the functions of these risk genes will provide new insights into the pathophysiology of schizophrenia and will likely lead to the nomination of novel therapeutic targets for restoring proper synaptic connectivity in the brain in schizophrenia and related disorders.
Collapse
Affiliation(s)
- Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
| | | |
Collapse
|
27
|
Zhang JP, Burdick KE, Lencz T, Malhotra AK. Meta-analysis of genetic variation in DTNBP1 and general cognitive ability. Biol Psychiatry 2010; 68:1126-33. [PMID: 21130223 PMCID: PMC3026311 DOI: 10.1016/j.biopsych.2010.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 07/30/2010] [Accepted: 09/06/2010] [Indexed: 01/31/2023]
Abstract
BACKGROUND The human dystrobrevin binding protein 1 (DTNBP1) gene has been linked to risk for schizophrenia. Recent studies indicate that several single nucleotide polymorphisms (SNPs) in the DTNBP1 gene may also influence general cognitive ability in both schizophrenic patients and healthy control subjects. We examined the relationship between DTNBP1 SNPs and general cognitive ability in nonpsychiatric healthy samples via meta-analysis. METHODS MEDLINE search (12/31/09) yielded 11 articles examining DTNBP1 variation and general cognitive ability, of which 8 studies had data available encompassing 10 independent cohorts (total n = 7592). The phenotype was defined as either the first principal component score from multiple neuropsychological tests (Spearman's g) or full-scale IQ. Meta-analyses were conducted for nine SNPs for which cognitive data were available from at least three cohorts. For each SNP in each cohort, effect size was computed between major allele homozygotes and minor allele carriers; effect size was then pooled across studies using a random effect model. RESULTS Pooled effect sizes from two of the nine SNPs (rs1018381 and rs2619522) were -.123 and -.083, ps < .01, respectively, suggesting that the minor allele carriers of these SNPs had lower cognitive ability scores than the major allele homozygotes. Results remained significant after examining heterogeneity among samples and potential publication biases. Other SNPs did not show significant effects on general cognitive ability. CONCLUSIONS Genetic variation in DTNBP1 modestly influences general cognitive ability. Further studies are needed to elucidate the biological mechanisms that may account for this relationship.
Collapse
Affiliation(s)
| | - Katherine E. Burdick
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, Center for Psychiatric Neurosciences, Feinstein Institute for Medical Research, Manhasset, NY, Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY
| | - Todd Lencz
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, Center for Psychiatric Neurosciences, Feinstein Institute for Medical Research, Manhasset, NY, Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, Department of Psychiatry, Hofstra University School of Medicine, Hempstead, NY
| | - Anil K. Malhotra
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, Center for Psychiatric Neurosciences, Feinstein Institute for Medical Research, Manhasset, NY, Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
28
|
Baharnoori M, Bartholomeusz C, Boucher AA, Buchy L, Chaddock C, Chiliza B, Föcking M, Fornito A, Gallego JA, Hori H, Huf G, Jabbar GA, Kang SH, El Kissi Y, Merchán-Naranjo J, Modinos G, Abdel-Fadeel NA, Neubeck AK, Ng HP, Novak G, Owolabi O, Prata DP, Rao NP, Riecansky I, Smith DC, Souza RP, Thienel R, Trotman HD, Uchida H, Woodberry KA, O'Shea A, DeLisi LE. The 2nd Schizophrenia International Research Society Conference, 10-14 April 2010, Florence, Italy: summaries of oral sessions. Schizophr Res 2010; 124:e1-62. [PMID: 20934307 PMCID: PMC4182935 DOI: 10.1016/j.schres.2010.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 01/06/2023]
Abstract
The 2nd Schizophrenia International Research Society Conference, was held in Florence, Italy, April 10-15, 2010. Student travel awardees served as rapporteurs of each oral session and focused their summaries on the most significant findings that emerged from each session and the discussions that followed. The following report is a composite of these reviews. It is hoped that it will provide an overview for those who were present, but could not participate in all sessions, and those who did not have the opportunity to attend, but who would be interested in an update on current investigations ongoing in the field of schizophrenia research.
Collapse
Affiliation(s)
- Moogeh Baharnoori
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 LaSalle Blvd, Montreal, Quebec, Canada H4H 1R3, phone (514) 761-6131 ext 3346,
| | - Cali Bartholomeusz
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Level 2-3, Alan Gilbert Building, 161 Barry St, Carlton South, Victoria 3053, Australia, phone +61 3 8344 1878, fax +61 3 9348 0469,
| | - Aurelie A. Boucher
- Brain and Mind Research Institute, 100 Mallett Street, Camperdown NSW 2050, Australia, phone +61 (0)2 9351 0948, fax +61 (0)2 9351 0652,
| | - Lisa Buchy
- Douglas Hospital Research Centre, 6875 LaSalle Blvd, Verdun, Québec, Canada, H4H 1R3 phone: 514-761-6131 x 3386, fax: 514-888-4064,
| | - Christopher Chaddock
- PO67, Section of Neuroimaging, Division of Psychological Medicine, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, phone 020 7848 0919, mobile 07734 867854 fax 020 7848 0976,
| | - Bonga Chiliza
- Department of Psychiatry, University of Stellenbosch, Tygerberg, 7505, South Africa, phone: +27 (0)21 9389227, fax +27 (0)21 9389738,
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland, phone +353 1 809 3857, fax +353 1 809 3741,
| | - Alex Fornito
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Downing Site, Downing St, Cambridge, UK, CB2 3EB, phone +44 (0) 1223 764670, fax +44 (0) 1223 336581,
| | - Juan A. Gallego
- The Zucker Hillside Hospital, Psychiatry Research, 75-59 263rd St, Glen Oaks, NY 11004, phone 718-470-8177, fax 718-343-1659,
| | - Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8502, JAPAN, phone: +81 42 341 2711; fax: +81 42 346 1744,
| | - Gisele Huf
- National Institute of Quality Control in Health - Oswaldo Cruz Foundation.Av. Brasil 4365 Manguinhos Rio de Janeiro RJ BRAZIL 21045-900, phone + 55 21 38655112, fax + 55 21 38655139,
| | - Gul A. Jabbar
- Clinical Research Coordinator, Harvard Medical School Department of Psychiatry, 940 Belmont Street 2-B, Brockton, MA 02301, office (774) 826-1624, cell (845) 981-9514, fax (774) 286-1076,
| | - Shi Hyun Kang
- Seoul National Hospital, 30-1 Junggok3-dong Gwangjin-gu, Seoul, 143-711, Korea, phone +82-2-2204-0326, fax +82-2-2204-0394,
| | - Yousri El Kissi
- Psychiatry department, Farhat Hached Hospital. Ibn Jazzar Street, 4002 Sousse. Tunisia. phone + 216 98468626, fax + 216 73226702,
| | - Jessica Merchán-Naranjo
- Adolescent Unit. Department of Psychiatry. Hospital General Universitario Gregorio Marañón. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain. C/Ibiza 43, C.P:28009, phone +34 914265005, fax +34 914265004,
| | - Gemma Modinos
- Department of Psychosis Studies (PO67), Institute of Psychiatry, King's College London, King's Health Partners, De Crespigny Park, SE5 8AF London, United Kingdo, phone +44 (0)20 78480917, fax +44 (0)20 78480976,
| | - Nashaat A.M. Abdel-Fadeel
- Minia University, Egypt, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, phone 617 953 0414, fax 617-998-5007, ,
| | - Anna-Karin Neubeck
- Project Manager at Karolinska Institute, Skinnarviksringen 12, 117 27 Stockholm, Sweden, phone +46708777908,
| | - Hsiao Piau Ng
- Singapore Bioimaging Consortium, A*STAR, Singapore; Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, phone 857-544-0192, fax 617-525-6150,
| | - Gabriela Novak
- University of Toronto, Medical Sciences Building, Room 4345, 1 King's College Circle, Toronto, Ontario, M5S 1A8, phone (416) 946-8219, fax (416) 971-2868,
| | - Olasunmbo.O. Owolabi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Science University of Ilorin, Ilorin, Nigeria, phone +2348030764811,
| | - Diana P. Prata
- Department of Psychosis Studies, King’s College London, King’s Health Partners, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK, phone +44(0)2078480917, fax +44(0)2078480976,
| | - Naren P. Rao
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029 Karnataka, India, phone +91 9448342379,
| | - Igor Riecansky
- Address: Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia, phone +421-2-52 92 62 76, fax +421-2-52 96 85 16,
| | - Darryl C. Smith
- 3336 Mt Pleasant St. NW #2, Washington, DC 20010, phone 202.494.3892,
| | - Renan P. Souza
- Centre for Addiction and Mental Health 250 College St R31 Toronto - Ontario - Canada M5T1R8, phone +14165358501 x4883, fax +14169794666,
| | - Renate Thienel
- Postdoctoral Research Fellow, PRC Brain and Mental Health, University of Newcastle, Mc Auley Centre Level 5, Mater Hospital, Edith Street, Waratah NSW 2298, phone +61 (2) 40335636,
| | - Hanan D. Trotman
- 36 Eagle Row, Atlanta, GA 30322, phone 404-727-8384, fax 404-727-1284,
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Psychopharmacology Research Program, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan, phone +81.3.3353.1211(x62454), fax +81.3.5379.0187,
| | - Kristen A. Woodberry
- Landmark Center 2 East, 401 Park Drive, Boston, MA 02215, phone 617-998-5022, fax 617-998-5007,
| | - Anne O'Shea
- Coordinator of reports. Harvard Medical School, VA Boston Healthcare System, 940 Belmont Street, Brockton, MA 02301, phone 774-826-1374, anne_o’
| | - Lynn E. DeLisi
- VA Boston Healthcare System and Harvard Medical School, 940 Belmont Street, Brockton, MA 02301, phone 774-826-1355, fax 774-826-2721
| |
Collapse
|
29
|
Thimm M, Krug A, Kellermann T, Markov V, Krach S, Jansen A, Zerres K, Eggermann T, Stöcker T, Shah NJ, Nöthen MM, Rietschel M, Kircher T. The effects of a DTNBP1 gene variant on attention networks: an fMRI study. Behav Brain Funct 2010; 6:54. [PMID: 20846375 PMCID: PMC2949706 DOI: 10.1186/1744-9081-6-54] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 09/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Attention deficits belong to the main cognitive symptoms of schizophrenia and come along with altered neural activity in previously described cerebral networks. Given the high heritability of schizophrenia the question arises if impaired function of these networks is modulated by susceptibility genes and detectable in healthy risk allele carriers. METHODS The present event-related fMRI study investigated the effect of the single nucleotide polymorphism (SNP) rs1018381 of the DTNBP1 (dystrobrevin-binding protein 1) gene on brain activity in 80 subjects while performing the attention network test (ANT). In this reaction time task three domains of attention are probed simultaneously: alerting, orienting and executive control of attention. RESULTS Risk allele carriers showed impaired performance in the executive control condition associated with reduced neural activity in the left superior frontal gyrus [Brodmann area (BA) 9]. Risk allele carriers did not show alterations in the alerting and orienting networks. CONCLUSIONS BA 9 is a key region of schizophrenia pathology and belongs to a network that has been shown previously to be involved in impaired executive control mechanisms in schizophrenia. Our results identified the impact of DTNBP1 on the development of a specific attention deficit via modulation of a left prefrontal network.
Collapse
Affiliation(s)
- Markus Thimm
- Department of Psychiatry and Psychotherapy, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sun YH, Shen Y, Xu Q. DTNBP1 gene is associated with some symptom factors of schizophrenia in Chinese Han nationality. ACTA ACUST UNITED AC 2010; 25:85-9. [PMID: 20598229 DOI: 10.1016/s1001-9294(10)60027-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To study the association of DTNBP1 gene with some symptom factors of schizophrenia. METHODS A total of 285 unrelated schizophrenic individuals were recruited from December 2004 to January 2009 for genetic analysis, and their symptom factors were assessed based on the Positive and Negative Syndrome Scale (PANSS). The quantitative trait test was performed by the UNPHASED program (version 3.0.12) to investigate the association between scored positive and negative symptoms and the single nucleotide polymorphisms (SNPs) in DTNBP1 gene. RESULTS The quantitative trait test showed allelic association of rs909706 with the excitement symptom of schizophrenia (P<0.05, adjusted by 10,000 permutations), while the genotype C/G of rs2619539 with a negative symptom, lack of spontaneity and flow of conversation (P<0.05, adjusted by 10,000 permutations). CONCLUSION DTNBP1 variations are possibly associated with some symptoms of schizophrenia, which could partly explain the relationship between the susceptibility gene DTNBP1 and that disease.
Collapse
Affiliation(s)
- Yu-hui Sun
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | | | | |
Collapse
|
31
|
Strohmaier J, Frank J, Wendland JR, Schumacher J, Jamra RA, Treutlein J, Nieratschker V, Breuer R, Mattheisen M, Herms S, Mühleisen TW, Maier W, Nöthen MM, Cichon S, Rietschel M, Schulze TG. A reappraisal of the association between Dysbindin (DTNBP1) and schizophrenia in a large combined case-control and family-based sample of German ancestry. Schizophr Res 2010; 118:98-105. [PMID: 20083391 PMCID: PMC2856768 DOI: 10.1016/j.schres.2009.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 12/08/2009] [Accepted: 12/20/2009] [Indexed: 01/14/2023]
Abstract
BACKGROUND Dysbindin (DTNBP1) is a widely studied candidate gene for schizophrenia (SCZ); however, inconsistent results across studies triggered skepticism towards the validity of the findings. In this HapMap-based study, we reappraised the association between Dysbindin and SCZ in a large sample of German ethnicity. METHOD Six hundred thirty-four cases with DSM-IV SCZ, 776 controls, and 180 parent-offspring trios were genotyped for 38 Dysbindin SNPs. We also studied two phenotypically-defined subsamples: 147 patients with a positive family history of SCZ (FH-SCZ+) and SCZ patients characterized for cognitive performance with Trail-Making Tests A and B (TMT-A: n=219; TMT-B: n=247). Given previous evidence of gene-gene interactions in SCZ involving the COMT gene, we also assessed epistatic interactions between Dysbindin markers and 14 SNPs in COMT. RESULTS No association was detected between Dysbindin markers and SCZ, or in the FH-SCZ+ subgroup. Only one marker (rs1047631, previously reported to be part of a risk haplotype), showed a nominally significant association with performance on TMT-A and TMT-B; these findings did not remain significant after correction for multiple comparisons. Similarly, no pair-wise epistatic interactions between Dysbindin and COMT markers remained significant after correction for 504 pair-wise comparisons. CONCLUSIONS Our results, based on one of the largest samples of European Caucasians and using narrowly-defined criteria for SCZ, do not support the etiological involvement of Dysbindin markers in SCZ. Larger samples may be needed in order to unravel Dysbindin's possible role in the genetic basis of proposed intermediate phenotypes of SCZ or to detect epistatic interactions.
Collapse
Affiliation(s)
- Jana Strohmaier
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Josef Frank
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Jens R. Wendland
- Unit on the Genetic Basis of Mood and Anxiety Disorders, NIMH, NIH, Bethesda, MD, USA
| | - Johannes Schumacher
- Unit on the Genetic Basis of Mood and Anxiety Disorders, NIMH, NIH, Bethesda, MD, USA
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Jens Treutlein
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Vanessa Nieratschker
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - René Breuer
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Manuel Mattheisen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Stefan Herms
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Thomas W. Mühleisen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Markus M. Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Sven Cichon
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Marcella Rietschel
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Thomas G. Schulze
- Division of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
- Unit on the Genetic Basis of Mood and Anxiety Disorders, NIMH, NIH, Bethesda, MD, USA
| |
Collapse
|
32
|
Thimm M, Krug A, Markov V, Krach S, Jansen A, Zerres K, Eggermann T, Stöcker T, Shah NJ, Nöthen MM, Rietschel M, Kircher T. The impact of dystrobrevin-binding protein 1 (DTNBP1) on neural correlates of episodic memory encoding and retrieval. Hum Brain Mapp 2010; 31:203-9. [PMID: 19621369 DOI: 10.1002/hbm.20857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Episodic memory impairment is a frequently reported symptom in schizophrenia. It has been shown to be associated with reduced neural activity of the hippocampus and prefrontal cortex. Given the high heritability of schizophrenia the question arises if alterations in brain activity are modulated by susceptibility genes and might be detectable in healthy risk allele carriers. The present study investigated the effect of the single nucleotide polymorphism (SNP) rs1018381 (P1578) of the dystrobrevin-binding protein 1 (DTNBP1) on brain activity in 84 healthy subjects assessed by functional magnetic resonance imaging (fMRI) while they performed an episodic memory task comprising encoding and retrieval of faces. During encoding, the group of risk allele carriers (n = 29) showed enhanced neural activity in the left middle frontal gyrus (BA 11) and bilaterally in the cuneus (BA 17, 7) when compared with the nonrisk carrier group (n = 55). During retrieval, the risk group (compared to the non risk group) showed increased right hemispheric neural activity comprising the medial frontal gyrus (BA 9), inferior frontal gyrus (BA 9), and inferior parietal lobule (BA 40). Since there were no behavioral performance differences, increased neural activity of the risk group might be interpreted as a correlate of higher effort or differing cognitive strategies in order to compensate for a genetically determined slight cognitive deficit. Interestingly, the laterality of increased prefrontal activity is in accordance with the well known hemispheric encoding/retrieval asymmetry (HERA) model of episodic memory.
Collapse
Affiliation(s)
- Markus Thimm
- Department of Psychiatry and Psychotherapy, RWTH Aachen University, 52074 Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Markov V, Krug A, Krach S, Jansen A, Eggermann T, Zerres K, Stöcker T, Shah NJ, Nöthen MM, Treutlein J, Rietschel M, Kircher T. Impact of schizophrenia-risk gene dysbindin 1 on brain activation in bilateral middle frontal gyrus during a working memory task in healthy individuals. Hum Brain Mapp 2010; 31:266-75. [PMID: 19650139 DOI: 10.1002/hbm.20862] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Working memory (WM) dysfunction is a hallmark feature of schizophrenia. Functional imaging studies using WM tasks have documented both prefrontal hypo- and hyperactivation in schizophrenia. Schizophrenia is highly heritable, and it is unclear which susceptibility genes modulate WM and its neural correlates. A strong linkage between genetic variants in the dysbindin 1 gene and schizophrenia has been demonstrated. The aim of this study was to investigate the influence of the DTNBP1 schizophrenia susceptibility gene on WM and its neural correlates in healthy individuals. Fifty-seven right-handed, healthy male volunteers genotyped for DTNBP1 SNP rs1018381 status were divided in heterozygous risk-allele carriers (T/C) and homozygous noncarriers (C/C). WM was assessed by a 2-back vs. 0-back version of the Continuous Performance Test (CPT), while brain activation was measured with fMRI. DTNBP1 SNP rs1018381 carrier status was determined and correlated with WM performance and brain activation. Despite any differences in behavioral performance, risk-allele carriers exhibited significantly increased activation of the bilateral middle frontal gyrus (BA 9), a part of the dorsolateral prefrontal cortex (DLPFC), compared to noncarriers. This difference did not correlate with WM performance. The fMRI data provide evidence for an influence of genetic variation in DTNBP1 gene region tagged by SNP rs1018381 on bilateral middle frontal gyrus activation during a WM task. The increased activation in these brain areas may be a consequence of "inefficient" or compensatory DLPFC cognitive control functions.
Collapse
Affiliation(s)
- Valentin Markov
- Department of Psychiatry and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bergen SE, Fanous AH, Kuo PH, Wormley BK, O’Neill FA, Walsh D, Riley BP, Kendler KS. No association of dysbindin with symptom factors of schizophrenia in an Irish case-control sample. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:700-705. [PMID: 19760674 PMCID: PMC2859300 DOI: 10.1002/ajmg.b.31029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Robust associations between the dysbindin gene (DTNBP1) and schizophrenia have been demonstrated in many but not all samples, and evidence that this gene particularly predisposes to negative symptoms in this illness has been presented. The current study sought to replicate the previously reported negative symptom associations in an Irish case-control sample. Association between dysbindin and schizophrenia has been established in this cohort, and a factor analysis of the assessed symptoms yielded three factors, Positive, Negative, and Schneiderian. The sequential addition method was applied using UNPHASED to assess the relationship between these symptom factors and the high-risk haplotype. No associations were detected for any of the symptom factors indicating that the dysbindin risk haplotype does not predispose to a particular group of symptoms in this sample. Several possibilities, such as differing risk haplotypes, may explain this finding.
Collapse
Affiliation(s)
- Sarah E. Bergen
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia,Correspondence to: Sarah E. Bergen, Department of Human Genetics, Medical College of Virginia, Virginia Commonwealth University, Box 980126, Richmond, VA 23219.
| | - Ayman H. Fanous
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia,Washington VA Medical Center, Washington, District of Columbia,Department of Psychiatry, Georgetown University Medical Center, Washington, District of Columbia
| | - Po-Hsiu Kuo
- Department of Public Health, National Taiwan University, Taipei, Taiwan
| | - Brandon K. Wormley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | | | | | - Brien P. Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - Kenneth S. Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia,Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
35
|
Dysbindin regulates the transcriptional level of myristoylated alanine-rich protein kinase C substrate via the interaction with NF-YB in mice brain. PLoS One 2010; 5:e8773. [PMID: 20098743 PMCID: PMC2808252 DOI: 10.1371/journal.pone.0008773] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/09/2009] [Indexed: 01/21/2023] Open
Abstract
Background An accumulating body of evidence suggests that Dtnbp1 (Dysbindin) is a key susceptibility gene for schizophrenia. Using the yeast-two-hybrid screening system, we examined the candidate proteins interacting with Dysbindin and revealed one of these candidates to be the transcription factor NF-YB. Methods We employed an immunoprecipitation (IP) assay to demonstrate the Dysbindin-NF-YB interaction. DNA chips were used to screen for altered expression of genes in cells in which Dysbindin or NF-YB was down regulated, while Chromatin IP and Reporter assays were used to confirm the involvement of these genes in transcription of Myristoylated alanine-rich protein kinase C substrate (MARCKS). The sdy mutant mice with a deletion in Dysbindin, which exhibit behavioral abnormalities, and wild-type DBA2J mice were used to investigate MARCKS expression. Results We revealed an interaction between Dysbindin and NF-YB. DNA chips showed that MARCKS expression was increased in both Dysbindin knockdown cells and NF-YB knockdown cells, and Chromatin IP revealed interaction of these proteins at the MARCKS promoter region. Reporter assay results suggested functional involvement of the interaction between Dysbindin and NF-YB in MARCKS transcription levels, via the CCAAT motif which is a NF-YB binding sequence. MARCKS expression was increased in sdy mutant mice when compared to wild-type mice. Conclusions These findings suggest that abnormal expression of MARCKS via dysfunction of Dysbindin might cause impairment of neural transmission and abnormal synaptogenesis. Our results should provide new insights into the mechanisms of neuronal development and the pathogenesis of schizophrenia.
Collapse
|
36
|
Abstract
A three-marker C-A-T dysbindin haplotype identified by Williams et al (PMID: 15066891) is associated with increased risk for schizophrenia, decreased mRNA expression, poorer cognitive performance, and early sensory processing deficits. We investigated whether this same dysbindin risk haplotype was also associated with structural variation in the gray matter volume (GMV). Using voxel-based morphometry, whole-volume analysis revealed significantly reduced GMVs in both the right dorsolateral prefrontal and left occipital cortex, corresponding to the behavioral findings of impaired spatial working memory and EEG findings of impaired visual processing already reported. These data provide important evidence of the influence of dysbindin risk variants on brain structure, and suggest a possible mechanism by which disease risk is being increased.
Collapse
|
37
|
Jentsch JD, Trantham-Davidson H, Jairl C, Tinsley M, Cannon TD, Lavin A. Dysbindin modulates prefrontal cortical glutamatergic circuits and working memory function in mice. Neuropsychopharmacology 2009; 34:2601-8. [PMID: 19641486 PMCID: PMC2762021 DOI: 10.1038/npp.2009.90] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Behavioral genetic studies of humans have associated variation in the DTNBP1 gene with schizophrenia and its cognitive deficit phenotypes. The protein coded for by DTNBP1, dysbindin, is expressed within forebrain glutamatergic neurons, in which it interacts with proteins involved in vesicular trafficking and exocytosis. In order to further delineate the cellular, physiological, and behavioral phenotypes associated with reduced dysbindin expression, we conducted studies in mice carrying a null mutation within the dtnbp1 gene. Dysbindin mutants showed impairments of spatial working memory compared with wild-type controls; heterozygous mice showed intermediate levels of cognitive dysfunction. Deep-layer pyramidal neurons recorded in the prefrontal cortex of mutant mice showed reductions in paired-pulse facilitation, and evoked and miniature excitatory post-synaptic currents, indicating a difference in the function of pre-synaptic glutamatergic terminals as well as elevated spike thresholds. Taken together, these data indicate that dysbindin potently regulates excitatory transmission in the prefrontal cortex, potentially through a pre-synaptic mechanism, and consequently modulates cognitive functions depending on this brain region, providing new insights into the molecular mechanisms underlying cortical dysfunction in schizophrenia.
Collapse
Affiliation(s)
- J. David Jentsch
- Department of Psychology, University of California, Los Angeles,Staglin Family Music Festival Center for Cognitive Neuroscience, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles,Consortium for Neuropsychiatric Phenomics, University of California, Los Angeles,Correspondence to: J. David Jentsch, Ph.D., UCLA Department of Psychology, PO Box 951563, Los Angeles, CA 90095-1563, Tel: 1-310-825-8258; Fax: 1-310-206-5895,
| | | | - Corey Jairl
- Department of Psychology, University of California, Los Angeles
| | - Matthew Tinsley
- Department of Psychology, University of California, Los Angeles
| | - Tyrone D Cannon
- Department of Psychology, University of California, Los Angeles,Staglin Family Music Festival Center for Cognitive Neuroscience, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles,Consortium for Neuropsychiatric Phenomics, University of California, Los Angeles
| | - Antonieta Lavin
- Consortium for Neuropsychiatric Phenomics, University of California, Los Angeles,Department of Neurosciences, Medical University of South Carolina, Charleston
| |
Collapse
|
38
|
Markov V, Krug A, Krach S, Whitney C, Eggermann T, Zerres K, Stöcker T, Shah N, Nöthen M, Treutlein J, Rietschel M, Kircher T. Genetic variation in schizophrenia-risk-gene dysbindin 1 modulates brain activation in anterior cingulate cortex and right temporal gyrus during language production in healthy individuals. Neuroimage 2009; 47:2016-22. [DOI: 10.1016/j.neuroimage.2009.05.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 05/06/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022] Open
|
39
|
Kirby BP, Waddington JL, O'Tuathaigh CMP. Advancing a functional genomics for schizophrenia: psychopathological and cognitive phenotypes in mutants with gene disruption. Brain Res Bull 2009; 83:162-76. [PMID: 19800398 DOI: 10.1016/j.brainresbull.2009.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 08/18/2009] [Accepted: 09/21/2009] [Indexed: 12/19/2022]
Abstract
Schizophrenia is a complex, heritable psychotic disorder in which numerous genes and environmental adversities appear to interact in determining disease phenotype. In addition to genes regulating putative pathophysiological mechanisms, a new generation of molecular studies has indicated numerous candidate genes to be associated with risk for schizophrenia. The present review focuses on studies in mice mutant for genes associated with putative pathophysiological mechanisms and candidate risk genes for the disorder. It seeks to evaluate the extent to which each mutation of a schizophrenia-related gene accurately models multiple aspects of the schizophrenia phenotype or more circumscribed, distinct endophenotypes in terms of psychopathology and pathobiology; in doing so, it places particular emphasis on positive symptoms, negative symptoms and cognitive dysfunction. To further this goal, it juxtaposes continually evolving mutant genomics with emergent clinical genomic studies. Opportunities and challenges associated with the use of such mutants, including diagnostic specificity and the translational barrier associated with modelling schizophrenia, are discussed. The potential value of genetic models for exploring gene-gene and gene-environment interactions relating to schizophrenia is highlighted. Elucidation of the contribution of genetic variation to specific symptom clusters and underlying aspects of pathobiology will have important implications for identifying treatments that target distinct domains of psychopathology and dysfunction on an individual patient basis.
Collapse
Affiliation(s)
- Brian P Kirby
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | | |
Collapse
|
40
|
Payton A. The Impact of Genetic Research on our Understanding of Normal Cognitive Ageing: 1995 to 2009. Neuropsychol Rev 2009; 19:451-77. [DOI: 10.1007/s11065-009-9116-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
|
41
|
Sabb FW, Burggren AC, Higier RG, Fox J, He J, Parker DS, Poldrack RA, Chu W, Cannon TD, Freimer NB, Bilder RM. Challenges in phenotype definition in the whole-genome era: multivariate models of memory and intelligence. Neuroscience 2009; 164:88-107. [PMID: 19450667 DOI: 10.1016/j.neuroscience.2009.05.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 04/01/2009] [Accepted: 05/06/2009] [Indexed: 12/22/2022]
Abstract
Refining phenotypes for the study of neuropsychiatric disorders is of paramount importance in neuroscience. Poor phenotype definition provides the greatest obstacle for making progress in disorders like schizophrenia, bipolar disorder, Attention Deficit/Hyperactivity Disorder (ADHD), and autism. Using freely available informatics tools developed by the Consortium for Neuropsychiatric Phenomics (CNP), we provide a framework for defining and refining latent constructs used in neuroscience research and then apply this strategy to review known genetic contributions to memory and intelligence in healthy individuals. This approach can help us begin to build multi-level phenotype models that express the interactions between constructs necessary to understand complex neuropsychiatric diseases. These results are available online through the http://www.phenowiki.org database. Further work needs to be done in order to provide consensus-building applications for the broadly defined constructs used in neuroscience research.
Collapse
Affiliation(s)
- F W Sabb
- Consortium for Neuropsychiatric Phenomics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|