1
|
Gerlai R. The importance of understanding the ethology and ecology of the zebrafish, and of other fish species, in experimental research. Biol Futur 2025:10.1007/s42977-025-00257-3. [PMID: 40316876 DOI: 10.1007/s42977-025-00257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/07/2025] [Indexed: 05/04/2025]
Abstract
This short review appears in a special issue assembled to celebrate the 90th birthday of a Hungarian ethologist, Professor Vilmos Csányi. As such, it includes some autobiographical details specific to that scientist and the author of this review. However, these details also serve an important general message. They exemplify how science, i.e., specifically the use of fish in the analysis of behaviour and brain function progressed from the mid-1970s to the current day. They illuminate how scientists choose their study species, and how this choice influences the research questions one may be able to pose. The review discusses why the zebrafish has become a popular research subject of biology, including behavioural neuroscience. It argues that behavioural analysis should be an integral part of research into the analysis of brain function. It considers the dichotomy between the historical effect of North American behaviourism vs. the legacy of European Nobel laureate ethologists. It demonstrates, through a theoretical example, why merging these two "schools" of thoughts is the appropriate way to conduct behavioural research. It provides a few examples for how combining knowledge of ethology and ecology of the species with systematic laboratory studies may be beneficial. And it presents a brief outlook for the future of fish in biology research.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, Rm CCT4004, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
2
|
Bernardo HT, Lodetti G, de Farias ACS, de Pieri Pickler K, Baldin SL, Dondossola ER, Rico EP. Naltrexone Alters Neurochemical and Behavioral Parameters in a Zebrafish Model of Repeated Alcohol Exposure. Neurochem Res 2025; 50:97. [PMID: 39920352 DOI: 10.1007/s11064-025-04349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/04/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
Between the neurotransmission systems modulated by alcohol, the opioid system has been receiving attention in studies that seek to understand its relationship to the effects of addictive substances and different neuropsychiatric disorders. The use of naltrexone stands out in determining the mechanisms of the opioid system, as it acts as an opioid antagonist and consequently generates neurochemical responses. This study aimed to evaluate the pharmacological modulation of opioids on behavioral and neurobiological aspects in adult zebrafish submitted to the protocol of repeated exposure to ethanol and treated with naltrexone. Opioid modulation using naltrexone has been shown to modulate anxiety-like behavior, presenting anxiolytic properties in isolation, in addition to reversing the anxiogenic effect of ethanol through the Novel tank and Light/dark test. Naltrexone increased serotonin and dopamine levels, while ethanol antagonized these effects. In contrast, the interaction between ethanol and naltrexone raised noradrenaline levels. Naltrexone altered glutamate levels, however, ethanol reversed it. Ethanol acted on glutamate transporters increasing their activities, while naltrexone treatment reduced activities. No significant results were found in the pro-oxidant parameters, however, ethanol reduced SOD activity while naltrexone reversed. The same occurred in CAT activity. Also, naltrexone up-regulated the expression of genes related to the dopaminergic, glutamatergic, and opioid systems. The genes used as markers of the inflammatory process and glial activity were modulated by ethanol and together with naltrexone, respectively. Taken together, our findings reinforce the importance of opioid signaling on biochemical and molecular bases related to neuropsychiatric behaviors and diseases, such as anxiety and substance dependence.
Collapse
Affiliation(s)
- Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Guilherme Lodetti
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ana Caroline Salvador de Farias
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Karolyne de Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Samira Leila Baldin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
3
|
Resmim CM, Borba JV, Gonçalves FL, Santos LW, Canzian J, Fontana BD, Rubin MA, Rosemberg DB. Understanding sex and populational differences in spatio-temporal exploration patterns and homebase dynamics of zebrafish following repeated ethanol exposure. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111171. [PMID: 39395733 DOI: 10.1016/j.pnpbp.2024.111171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Ethanol (EtOH) is one of the most widely consumed substance, affecting neurobehavioral functions depending on multiple environmental and biological factors. Although EtOH modulates zebrafish (Danio rerio) anxiety-like behaviors in novelty-based paradigms, the potential role of biological sex and populational variability in the exploratory dynamics in the open field test (OFT) is unknown. Here, we explored whether a repeated EtOH exposure protocol modulates the spatio-temporal exploration and homebase-related parameters in a population- and sex-dependent manner. Male and female fish from the short-fin (SF) and leopard (LEO) phenotypes were exposed to EtOH for 7 days (1 % v/v, 20 min per day). On the 8th day, the OFT was performed to assess locomotor and exploratory behaviors. We verified significant populational differences in the baseline spatio-temporal exploration patterns, supporting a pronounced anxiety in LEO with a higher homebase index compared to SF. We also found sex-dependent differences in EtOH sensitivity, where SF was more sensitive to EtOH, especially in females, which showed marked alterations in thigmotaxis and homebase occupancy. Conversely, only LEO female subjects showed increased center occupancy following EtOH. Principal component analysis (PCA) showed the main components that explained data variability, which were sex- and population-dependent. Overall, our novel findings support the utility of zebrafish-based models to assess how EtOH influences the exploratory profile in the OFT, as well as to elucidate potential differences of sex and population in the neurobehavioral responses of alcohol exposure in a translational perspective.
Collapse
Affiliation(s)
- Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Falco L Gonçalves
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Laura W Santos
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Barbara D Fontana
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Maribel A Rubin
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
4
|
Hagen EV, Zhang Y, Hamilton TJ. From colours to cravings: Exploring conditioned colour preference to ethanol in zebrafish. Pharmacol Biochem Behav 2025; 246:173909. [PMID: 39579875 DOI: 10.1016/j.pbb.2024.173909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Conditioned preference paradigms like conditioned colour preference tests (CCP) can be used to investigate addictive drug seeking in zebrafish (Danio rerio), but many aspects of this procedure require further study. Conditioned preference can be tested with either biased or unbiased conditioning methods, each with their own strengths and weaknesses. The present study used unbiased stimuli to test seeking behaviour in ethanol-exposed zebrafish at different durations of drug withdrawal. Zebrafish were exposed to one of two equally preferred colours (red or yellow) while dosed with 0.8 % vol/vol ethanol or with habitat water (controls) for 1 h each day for 21 days. Next, fish experienced withdrawal for either 2-, 4-, or 8-days then were tested in a two-way red and yellow task for 10 min with their movement recorded via motion-tracking software. Fish conditioned to red showed a main effect of ethanol and a significant preference for red compared to yellow at 8-days of withdrawal but not at 2-days or 4-days of withdrawal. Fish conditioned to yellow did not show any colour preference during the 2-, 4-, or 8-days of withdrawal, but did show a main effect of withdrawal duration. This work expands our understanding of CCP paradigms in zebrafish and highlights the capacity of zebrafish to develop an association to red but not yellow under our experimental conditions.
Collapse
Affiliation(s)
- Ethan V Hagen
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada; Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Yanbo Zhang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Teixeira JRDS, Souza AMD, Macedo-Sampaio JVD, Tavares LADM, Pereira BF, Medeiros SRBD, Luchiari AC. Chronic exposure to low concentration of diflubenzuron and pyriproxyfen induces brain oxidative stress and inflammation and alters locomotion in zebrafish (Danio rerio). ENVIRONMENTAL RESEARCH 2025; 264:120278. [PMID: 39489275 DOI: 10.1016/j.envres.2024.120278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Diflubenzuron (DFB1) and pyriproxyfen (PPF) are pesticides widely used in agriculture and urban environments to control insect actions. The aim of this study was to evaluate the effects of chronic 30-day exposure to DFB (0.025 and 0.125 mg/L) and PPF (0.379 and 0.758 mg/L) on the behavior of juvenile zebrafish (Danio rerio). Fish were exposed to insecticides from early stage (4 h post fertilization) to 30 days post fertilization (dpf). At 45 dpf, fish were evaluated in the novel tank test, social behavior test, and mirror aggressive test. Brain gene expression related to oxidative stress and inflammation was also evaluated. DFB reduced locomotor parameters in the novel tank and aggression tests, while it induced to hyperactivity in the social behavior test. PPF reduced anxiety-like behavior, measured by the time spent in risky areas of the novel tank, and reduced aggression against the mirror image. There was a significant reduction in mRNA levels of the nfe2l2 gene (∼0.54 fold downregulated) and increase in levels of cat (PPF ∼1.8 fold change), gsr (PPF ∼1.5 fold change), gpx1a (PPF ∼1.6 and DFB 1.1 fold change), tnf-α (PPF 1.9 and DFB 2.2 fold change), and il-6 (PPF ∼1.2 and DFB 2.3 fold change). These endpoints are indicative of the threatening effects of insecticides to aquatic organisms and the need for alternative methods to control pests by using less harmful and safer substances for animal and human well-being, as well as for the environment.
Collapse
Affiliation(s)
- Júlia Robert de Sousa Teixeira
- FishLab, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil; Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Augusto Monteiro de Souza
- FishLab, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil; Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Bruno Fiorelini Pereira
- Department of Biology, Federal University of São Paulo (UNIFESP), Diadema, São Paulo, SP, Brazil; Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Ana Carolina Luchiari
- FishLab, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil; Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
6
|
Kaur K, Narang RK, Singh S. Neuroprotective potential of Betulinic acid against TIO 2NP induced neurotoxicity in zebrafish. Int Immunopharmacol 2024; 138:112604. [PMID: 38968863 DOI: 10.1016/j.intimp.2024.112604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/04/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
Betulinic acid (BA) is a natural triterpenoid extracted from Bacopa monnieri. BA has been reported to be used as a neuroprotective agent, but their molecular mechanisms are still unknown. Therefore, in this study, we attempted to investigate the precise mechanism of BA for its protective effect against Titanium dioxide nanoparticles (TiO2NP) induced neurotoxicity in zebrafish. Hence, our study observation showed that 10 µg/ml dose of TiO2NP caused a rigorous behavioral deficit in zebrafish. Further, biochemical analysis revealed TiO2NP significantly decreased GSH, and SOD, and increased MDA, AChE, TNF-α, IL-1β, and IL-6 levels, suggesting it triggers oxidative stress and neuroinflammation. However, BA at doses of 2.5,5,10 mg/kg improved behavioral as well as biochemical changes in zebrafish brain. Moreover, BA also significantly raised the levels of DA, NE, 5-HT, and GABA and decreased glutamate levels in TiO2NP-treated zebrafish brain. Our histopathological analysis proved that TiO2NP causes morphological changes in the brain. These changes were expressed by increasing pyknotic neurons, which were dose-dependently reduced by Betulinic acid. Likewise, BA upregulated the levels of NRF-2 and HO-1, which can reduce oxidative stress and neuroinflammation. Thus, our study provides evidence for the molecular mechanism behind the neuroprotective effect of Betulinic acid. Rendering to the findings, we can consider BA as a suitable applicant for the treatment of AD-like symptoms.
Collapse
Affiliation(s)
- Karamjeet Kaur
- Research Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001; Research Scholar, I.K. Gujral Punjab Technical University, Jalandhar Punjab, India, 144603
| | - R K Narang
- Nanomedicine Research Centre, Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001.
| |
Collapse
|
7
|
Abozaid A, Gerlai R. A search for effective reinforcers in appetitive conditioning for adult zebrafish: Ecologically relevant unconditioned stimuli. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110946. [PMID: 38237886 DOI: 10.1016/j.pnpbp.2024.110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Learning and memory related brain disorders represent a large unmet medical need. Laboratory studies with animals may model brain disorders and facilitate uncovering their mechanisms. The zebrafish has been proposed for such studies. However, numerous factors that influence performance in learning tasks have yet to be understood in zebrafish. One such factor is what motivates zebrafish. Here we introduce a novel reinforcer, an ecologically relevant unconditioned stimulus (US). We placed a photograph of gravel underneath quarter of the bottom of an experimental tank on one side and also positioned artificial plants there, the "natural" US. First, we showed that this stimulus was preferred by zebrafish. Next, we investigated whether this stimulus could serve as US for associative learning. We marked the walls of the tank on the side where the US was presented with red paper, the conditioned stimulus (CS+) we found neutral before, and we also marked the walls on the other side of the tank where no US was placed with blue paper (CS-). In addition to fish receiving this "paired" training, we also ran unpaired training with another group of zebrafish, in which the fish saw the US associated with blue and red in a random manner. After having trained the fish in this manner, we tested the performance of the paired and unpaired group of zebrafish in a memory probe trial during which no US was present, and only the CSs (blue and red walls) were shown. We found the paired group of zebrafish to show significant preference for the CS+, as they spent more time and swam closer to the red side compared to the unpaired group and compared to chance. We conclude that ecologically relevant stimuli can serve as efficient US in appetitive conditioning of zebrafish.
Collapse
Affiliation(s)
- Amira Abozaid
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street Toronto, Ontario, M5S 3G5, Canada
| | - Robert Gerlai
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street Toronto, Ontario, M5S 3G5, Canada; Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada.
| |
Collapse
|
8
|
Kaur K, Narang RK, Singh S. Glabridin mitigates TiO 2NP induced cognitive deficit in adult zebrafish. Neurochem Int 2023; 169:105585. [PMID: 37499946 DOI: 10.1016/j.neuint.2023.105585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Glabridin is extracted from the roots of Glycyrrhiza glabra, which has anti-oxidative and anti-inflammatory properties. We investigated the neuroprotective potential of Glabridin against the learning and memory deficit by triggering NRF2/HO-1 signaling in Titanium dioxide nanoparticles (TiO2NP) treated zebrafish. Our study suggests that Glabridin at doses of 12.5, 25, and 50 mg/kg/day for 7 days improved memory and lowered anxiety in the novel object recognition test, T-maze, and novel diving tank respectively. Biochemical analysis showed that Glabridin treatment in TiO2NP-exposed zebrafish enhanced GSH, CAT, SOD, and GPx activity and reduced MDA levels; inhibited proinflammatory mediators, namely, TNF-α, IL-1β, and IL-6. In histopathological evaluation, Glabridin significantly reduced pycnotic neurons in TiO2NP-treated zebrafish brains. Furthermore, Glabridin upregulated NRF2 and HO-1 levels, which leads to a decline in oxidative stress and neuroinflammation and were reversed by ML385 treatment. ML385 as a probe molecule that specifically inhibit NRF2 and prevents its downstream gene expression. Thus, these considerable outcomes provide new insights into the neuroprotective effect of glabridin.
Collapse
Affiliation(s)
- Karamjeet Kaur
- Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga, Punjab, 142001, India; Affiliated to IKG- Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - R K Narang
- Nanomedicine Research Centre, Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
9
|
Araujo-Silva H, de Souza AM, Mamede JPM, de Medeiros SRB, Luchiari AC. Individual differences in response to alcohol and nicotine in zebrafish: Gene expression and behavior. Dev Growth Differ 2023; 65:434-445. [PMID: 37435714 DOI: 10.1111/dgd.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
Alcohol and nicotine are psychoactive substances responsible for serious health consequences. Although the biological mechanisms of alcohol and nicotine have been studied extensively, individual differences in the response to these drugs have received little attention. Here we evaluated gene expression and behavior of bold and shy individuals after acute exposure to alcohol and nicotine. For this, zebrafish were classified as bold and shy individuals based on emergence tests, and then fish were exposed to 0.00, 0.10, and 0.50% alcohol or 0.00, 1.00, and 5.00 mg/L nicotine and their anxiety-like and locomotor behavior was observed. After behavioral assessment, brain mRNA expression (ache, bdnf, gaba1, gad1b, th1, and tph1) was evaluated. Locomotion patterns differed between profiles depending on alcohol and nicotine concentration. Anxiety increased in shy fish and decreased in bold fish after exposure to both drugs. Alcohol exposure induced an increase in tph1 mRNA expression in bold fish, while bdnf mRNA expression was increased in shy fish. Nicotine increased ache, bdnf, and tph1 mRNA levels in both profiles, but at higher levels in bold fish. Based on our research, we found that alcohol induces anxiogenic effects in both bold and shy zebrafish. Additionally, shy individuals exposed to a low concentration of nicotine exhibited stronger anxiety-like responses than their bold counterparts. These findings further support the validity of using zebrafish as a dependable tool for studying the effects of drugs and uncovering the underlying mechanisms associated with individual variations.
Collapse
Affiliation(s)
- Heloysa Araujo-Silva
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Augusto Monteiro de Souza
- Department of Molecular Biology and Genetics, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - João Paulo Medeiros Mamede
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
10
|
Clayman CL, Hwang C, Connaughton VP. Ethanol and caffeine age-dependently alter brain and retinal neurochemical levels without affecting morphology of juvenile and adult zebrafish (Danio rerio). PLoS One 2023; 18:e0286596. [PMID: 37405983 PMCID: PMC10321635 DOI: 10.1371/journal.pone.0286596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/19/2023] [Indexed: 07/07/2023] Open
Abstract
Adolescent alcohol exposure in humans is predictive of adult development of alcoholism. In rodents, caffeine pre-exposure enhances adult responsiveness to ethanol via a pathway targeted by both compounds. Embryonic exposure to either compound adversely affects development, and both compounds can alter zebrafish behaviors. Here, we evaluate whether co-exposure to caffeine and/or alcohol in adolescence exerts neurochemical changes in retina and brain. Zebrafish (Danio rerio) were given daily 20 min treatments to ethanol (1.5% v/v), caffeine (25-100 mg/L), or caffeine + ethanol for 1 week during mid-late adolescence (53-92 days post fertilization (dpf)) or early adulthood (93-142 dpf). Immediately after exposure, anatomical measurements were taken, including weight, heart rate, pigment density, length, girth, gill width, inner and outer eye distance. Brain and retinal tissue were subsequently collected either (1) immediately, (2) after a short interval (2-4d) following exposure, or (3) after a longer interval that included an acute 1.5% ethanol challenge. Chronic ethanol and/or caffeine exposure did not alter anatomical parameters. However, retinal and brain levels of tyrosine hydroxylase were elevated in fish sacrificed after the long interval following exposure. Protein levels of glutamic acid decarboxylase were also increased, with the highest levels observed in 70-79 dpf fish exposed to caffeine. The influence of ethanol and caffeine exposure on neurochemistry demonstrates specificity of their effects during postembryonic development. Using the zebrafish model to assess neurochemistry relevant to reward and anxiety may inform understanding of the mechanisms that reinforce co-addiction to alcohol and stimulants.
Collapse
Affiliation(s)
- Carly L. Clayman
- Department of Biology and Center for Neuroscience and Behavior, American University, Washington, DC, United States of America
| | - Christina Hwang
- Department of Biology and Center for Neuroscience and Behavior, American University, Washington, DC, United States of America
| | - Victoria P. Connaughton
- Department of Biology and Center for Neuroscience and Behavior, American University, Washington, DC, United States of America
| |
Collapse
|
11
|
Sartori BM, Moreira Júnior RE, Paiva IM, Moraes IB, Murgas LDS, Brunialti-Godard AL. Acute ethanol exposure leads to long-term effects on memory, behavior, and transcriptional regulation in the zebrafish brain. Behav Brain Res 2023; 444:114352. [PMID: 36842314 DOI: 10.1016/j.bbr.2023.114352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
Alcohol consumption is associated with alterations in memory and learning processes in humans and animals. In this context, research models such as the zebrafish (Danio rerio) arise as key organisms in behavioral and molecular studies that attempt to clarify alterations in the Central Nervous System (CNS), like those related to alcohol use. Accordingly, we used the zebrafish as a model to evaluate the effects of ethanol on the learning and memory process, as well as its relationship with behavior and transcriptional regulation of lrfn2, lrrk2, grin1a, and bdnf genes in the brain. To this end, for the memory and learning evaluation, we conducted the Novel Object Recognition test (NOR); for behavior, the Novel Tank test; and for gene transcription, qPCR, after 2 h, 24 h, and 8 days of ethanol exposure. As a result, we noticed in the NOR that after 8 days of ethanol exposure, the control group spent more time exploring the novel object than when compared to 2 h post-exposure, indicating that naturally zebrafish remember familiar objects. In animals in the Treatment group, however, no object recognition behavior was observed, suggesting that alcohol affected the learning and memory processes of the animals and stimulated an anxiolytic effect in them. Regarding transcriptional regulation, 24 h after alcohol exposure, we found hyper-regulation of bdnf and, after 8 days, a hypo-regulation of lrfn2 and lrrk2. To conclude, we demonstrated that ethanol exposure may have influenced learning ability and memory formation in zebrafish, as well as behavior and regulation of gene transcription. These data are relevant for further understanding the application of zebrafish in research associated with ethanol consumption and behavior.
Collapse
Affiliation(s)
- Barbara Miranda Sartori
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Renato Elias Moreira Júnior
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Isadora Marques Paiva
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Centro de Pesquisas em Doenças Inflamatórias (CRID), Faculdade de Medicina de Ribeirão Preto, Departamento de Farmacologia, Universidade de São Paulo (FMRP), Ribeirão Preto, Brazil
| | - Izabela Barbosa Moraes
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia (UFOB), Barreiras, Brazil
| | - Luis David Solis Murgas
- Biotério Central, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - Ana Lúcia Brunialti-Godard
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| |
Collapse
|
12
|
Zebrafish, a biological model for pharmaceutical research for the management of anxiety. Mol Biol Rep 2023; 50:3863-3872. [PMID: 36757551 DOI: 10.1007/s11033-023-08263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023]
Abstract
The zebrafish (Danio rerio) is a valuable animal model rapidly becoming more commonly used in pharmaceutical studies. Due to its low-cost maintenance and high breeding potential, the zebrafish is a suitable substitute for most adult rodents (mice and rats) in neuroscience research. It is widely used in various anxiety models. This species has been used to develop a conceptual framework for anxiety behavior studies with broad applications in the laboratory, including the study of herbal and chemical drugs. This review discusses the latest studies of anxiety-related behavior in the zebrafish model.
Collapse
|
13
|
Acute Administration of Ethanol and of a D1-Receptor Antagonist Affects the Behavior and Neurochemistry of Adult Zebrafish. Biomedicines 2022; 10:biomedicines10112878. [DOI: 10.3390/biomedicines10112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Alcohol abuse represents major societal problems, an unmet medical need resulting from our incomplete understanding of the mechanisms underlying alcohol’s actions in the brain. To uncover these mechanisms, animal models have been proposed. Here, we explore the effects of acute alcohol administration in zebrafish, a promising animal model in alcohol research. One mechanism via which alcohol may influence behavior is the dopaminergic neurotransmitter system. As a proof-of-concept analysis, we study how D1 dopamine-receptor antagonism may alter the effects of acute alcohol on the behavior of adult zebrafish and on whole brain levels of neurochemicals. We conduct these analyses using a quasi-inbred strain, AB, and a genetically heterogeneous population SFWT. Our results uncover significant alcohol x D1-R antagonist interaction and main effects of these factors in shoaling, but only additive effects of these factors in measures of exploratory behavior. We also find interacting and main effects of alcohol and the D1-R antagonist on dopamine and DOPAC levels, but only alcohol effects on serotonin. We also uncover several strain dependent effects. These results demonstrate that acute alcohol may act through dopaminergic mechanisms for some but not all behavioral phenotypes, a novel discovery, and also suggest that strain differences may, in the future, help us identify molecular mechanisms underlying acute alcohol effects.
Collapse
|
14
|
Kitson JE, Ord J, Watt PJ. Maternal Chronic Ethanol Exposure Decreases Stress Responses in Zebrafish Offspring. Biomolecules 2022; 12:biom12081143. [PMID: 36009037 PMCID: PMC9405564 DOI: 10.3390/biom12081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
In humans, prenatal alcohol exposure can cause serious health issues in children, known collectively as Foetal Alcohol Spectrum Disorders (FASD). Despite the high prevalence of FASD and a lack of effective treatments, the underlying mechanisms causing the teratogenic action of ethanol are still obscure. The limitations of human studies necessitate the use of animal models for identifying the underlying processes, but few studies have investigated the effects of alcohol in the female germline. Here, we used the zebrafish Danio rerio to investigate the effects of chronic (repeated for seven days) exposure to alcohol. Specifically, we tested whether the offspring of females chronically exposed to ethanol during oogenesis exhibited hormonal abnormalities when subjected to a stressor (alarm cue) as larvae, and if they exhibited anxiety-like behaviours as adults. Exposure to alarm cue increased whole-body cortisol in control larvae but not in those of ethanol-treated females. Furthermore, adult offspring of ethanol-treated females showed some reduced anxiety-like behaviours. These findings suggest that the offspring of ethanol-treated females had reduced stress responses. This study is the first to investigate how maternal chronic ethanol exposure prior to fertilisation influences hormonal and behavioural effects in a non-rodent model.
Collapse
Affiliation(s)
- Juliet E. Kitson
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - James Ord
- Centre for Fish and Wildlife Health, University of Bern, 3012 Bern, Switzerland
| | - Penelope J. Watt
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Correspondence:
| |
Collapse
|
15
|
Kaur K, Narang RK, Singh S. AlCl 3 induced learning and memory deficit in zebrafish. Neurotoxicology 2022; 92:67-76. [PMID: 35843305 DOI: 10.1016/j.neuro.2022.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
Aluminium is a metal known to cause neurotoxicity in the brain, by promoting neurodegeneration and affecting memory and cognitive ability. AlCl3 has been reported to enhance reactive oxygen species (ROS) and inflammatory markers which are further responsible for the degeneration of neurons. AlCl3 exposure to zebrafish causes behavioral, biochemical, and neurochemical changes in the brain. In our study, Zebrafish were exposed to AlCl3 at three different doses (50 µg/L, 100 µg/L, and 200 µg/L) for four consecutive days. On days 1st and 4th, a novel diving test was performed to check anxiety in zebrafish. T - maze and novel object recognition test were used to check the memory on days 3rd and 4th with the help of ANY-maze software. On the last day (4th day), zebrafishes were sacrificed and whole brains were used to perform the biochemical, neurotransmitters, histopathological, and immunohistochemistry analysis. Our study revealed that AlCl3 exposure significantly decreased the total distance traveled, and the number of entries in the top zone and increased the time spent in the bottom zone, checked through the novel diving test. In the T maze test, AlCl3 treated zebrafish showed significantly increased transfer latency to the favorable zone and time spent, and the number of entries to the unfavorable zone. The exploration time with the novel object was reduced significantly after AlCl3 treatment. Moreover, reduced glutathione (GSH) and superoxide dismutase (SOD) levels were significantly reduced in AlCl3 treated zebrafish whereas malondialdehyde (MDA) level was found to be increased, indicating high oxidative stress. The neurotransmitters level was also disturbed indicated by the significantly decreased GABA, dopamine, noradrenaline, and Serotonin levels and increased glutamate level in the brain of zebrafish treated with AlCl3. Moreover, histopathological and immunohistochemistry study shows a markedly increased number of pyknotic neurons and reduced the expression of Nrf2 in the zebrafish brain after AlCl3 exposure. These findings suggest that AlCl3 significantly causes behavioral, biochemical, neurotransmitters, morphological, and molecular changes in zebrafish, ultimately causing AD.
Collapse
Affiliation(s)
- Karamjeet Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India; Affiliated to IKG, Punjab Technical University, Jalandhar, Punjab 144603, India
| | - R K Narang
- Nanomedicine Research Centre, Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India.
| |
Collapse
|
16
|
Vossen LE, Brunberg R, Rådén P, Winberg S, Roman E. Sex-Specific Effects of Acute Ethanol Exposure on Locomotory Activity and Exploratory Behavior in Adult Zebrafish ( Danio rerio). Front Pharmacol 2022; 13:853936. [PMID: 35721152 PMCID: PMC9201571 DOI: 10.3389/fphar.2022.853936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
The zebrafish (Danio rerio) is an established model organism in pharmacology and biomedicine, including in research on alcohol use disorders and alcohol-related disease. In the past 2 decades, zebrafish has been used to study the complex effects of ethanol on the vertebrate brain and behavior in both acute, chronic and developmental exposure paradigms. Sex differences in the neurobehavioral response to ethanol are well documented for humans and rodents, yet no consensus has been reached for zebrafish. Here, we show for the first time that male zebrafish of the AB strain display more severe behavioral impairments than females for equal exposure concentrations. Adult zebrafish were immersed in 0, 1 or 2% (v/v) ethanol for 30 min, after which behavior was individually assessed in the zebrafish Multivariate Concentric Square Field™ (zMCSF) arena. Males exposed to 2% ethanol showed clear signs of sedation, including reduced activity, increased shelter seeking and reduced exploration of shallow zones. The 1% male group displayed effects in the same direction but of smaller magnitude; this group also explored the shallow areas less, but did not show a general reduction in activity nor an increase in shelter seeking. By contrast, 1 and 2% exposed females showed no alterations in explorative behavior. Females exposed to 2% ethanol did not display a general reduction in activity, rather activity gradually increased from hypoactivity to hyperactivity over the course of the test. This mixed stimulatory/depressant effect was only quantifiable when locomotory variables were analyzed over time and was not apparent from averages of the whole 30-min test, which may explain why previous studies failed to detect sex-specific effects on locomotion. Our results emphasize the importance of explicitly including sex and time as factors in pharmacological studies of zebrafish behavior. We hypothesize that the lower sensitivity of female zebrafish to ethanol may be explained by their greater body weight and associated larger distribution volume for ethanol, which may render lower brain ethanol concentrations in females.
Collapse
Affiliation(s)
- Laura E. Vossen
- Division of Anatomy and Physiology, Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ronja Brunberg
- Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Pontus Rådén
- Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Svante Winberg
- Behavioral Neuroendocrinology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Behavioral Neuroendocrinology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Division of Anatomy and Physiology, Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Gundlach M, Di Paolo C, Chen Q, Majewski K, Haigis AC, Werner I, Hollert H. Clozapine modulation of zebrafish swimming behavior and gene expression as a case study to investigate effects of atypical drugs on aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152621. [PMID: 34968598 DOI: 10.1016/j.scitotenv.2021.152621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Mental illnesses affect more than 150 million people in Europe and lead to an increasing consumption of neuroactive drugs during the last twenty years. The antipsychotic compound, clozapine, is one of the most used psychotropic drugs worldwide, with potentially negative consequences for the aquatic environment. Hence, the objectives of the study presented here were the quantification of clozapine induced changes in swimming behavior of exposed Danio rerio embryos and the elucidation of the molecular effects on the serotonergic and dopaminergic systems. Yolk-sac larvae were exposed to different concentrations (0.2 mg/L, 0.4 mg/L, 0.8 mg/L, 1.6 mg/L, 3.2 mg/L and 6.4 mg/L) of clozapine for 116 h post-fertilization, and changes in the swimming behavior of the larvae were assessed. Further, quantitative real-time PCR was performed to analyze the expression of selected genes. The qualitative evaluation of changes in the swimming behavior of D. rerio larvae revealed a significant decrease of the average swimming distance and velocity in the light-dark transition test, with more than a 36% reduction at the highest exposure concentration of 6.4 mg/L. Furthermore, the total larval body length was reduced at the highest concentration. An in-depth analysis based on expression of selected target genes of the serotonin (slc6a4a) and dopamine (drd2a) system showed an upregulation at a concentration of 1.6 mg/L and above. In addition, a lower increase in expression was detected for biomarkers of general stress (adra1a and cyp1a2). Our data show that exposure to clozapine during development inhibits swimming activity of zebrafish larvae, which could, in part, be due to disruption of the serotonin- and dopamine system.
Collapse
Affiliation(s)
- Michael Gundlach
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Carolina Di Paolo
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Kendra Majewski
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Ann-Cathrin Haigis
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology, Überlandstrasse 131, 8600 Dübendorf, Switzerland
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Campos SM, Erley A, Ashraf Z, Wilczynski W. Signaler's Vasotocin Alters the Relationship between the Responder's Forebrain Catecholamines and Communication Behavior in Lizards (Anolis carolinensis). BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:184-196. [PMID: 35320812 DOI: 10.1159/000524217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Dynamic fluctuations in the distribution of catecholamines across the brain modulate the responsiveness of vertebrates to social stimuli. Previous work demonstrates that green anoles (Anolis carolinensis) increase chemosensory behavior in response to males treated with exogenous arginine vasotocin (AVT), but the neurochemical mechanisms underlying this behavioral shift remains unclear. Since central catecholamine systems, including dopamine, rapidly activate in response to social stimuli, we tested whether exogenous AVT in signalers (stimulus animals) impacts catecholamine concentrations in the forebrain (where olfactory and visual information are integrated and processed) of untreated lizard responders. We also tested whether AVT influences the relationship between forebrain catecholamine concentrations and communication behavior in untreated receivers. We measured global catecholamine (dopamine = DA, epinephrine = Epi, and norepinephrine = NE) concentrations in the forebrain of untreated responders using high-performance liquid chromatography-mass spectrometry following either a 30-min social interaction with a stimulus male or a period of social isolation. Stimulus males were injected with exogenous AVT or vehicle saline (SAL). We found that global DA, but not Epi or NE, concentrations were elevated in lizards responding to SAL-males relative to isolated lizards. Lizards interacting with AVT-males had DA, Epi and NE concentrations that were not significantly different from SAL or isolated groups. For behavior, we found a significant effect of social treatment (AVT vs. SAL) on the relationships between (1) DA concentrations and the motivation to perform a chemical display (latency to tongue flick) and (2) Epi concentrations and time spent displaying mostly green body coloration. We also found a significant negative correlation between DA concentrations and the latency to perform a visual display but found no effect of social treatment on this relationship. These data suggest that catecholamine concentrations in the forebrain of untreated responders are associated with chemical and visual communication in lizards and that signaler AVT alters this relationship for some, but not all, aspects of social communication.
Collapse
Affiliation(s)
- Stephanie M Campos
- Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, USA
| | | | - Zoha Ashraf
- Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| | - Walter Wilczynski
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Agues-Barbosa T, da Silva Junior FC, Gomes-de-Lima JN, Batistuzzo de Medeiros SR, Luchiari AC. Behavioral genetics of alcohol's effects in three zebrafish (Danio rerio) populations. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110495. [PMID: 34915060 DOI: 10.1016/j.pnpbp.2021.110495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Alcohol abuse is one of the most dangerous and serious problems for patients and society. Interpopulation studies are important in understanding how genetic background contributes to the effects of alcohol. In this study, we applied a chronic alcohol exposure protocol in three zebrafish populations (Danio rerio; both sexes; AB, TU, and outbred fish - OB). We analyzed the behavioral responses and mRNA expression involved in neurotransmitter metabolism - th1, tph1, ache, ada1, gaba1, gad1b, and bdnf. Locomotion patterns were similar between populations (increased speed after acute alcohol and unaltered locomotion after chronic and withdrawal treatments). All populations exhibited increased expression of genes associated with locomotion (th1, gad1b, and gaba1) after acute alcohol exposure. Anxiety-like responses increased in AB and TU fish during withdrawal and decreased in AB fish after acute alcohol exposure. Genes related to anxiety-like behavior (tph1 and ada1) were overexpressed in AB and TU fish after acute and withdrawal treatments, while OB fish exhibited unaltered responses. Bdnf levels decreased during withdrawal in AB and OB fish, while TU showed upregulated levels in both chronic and withdrawal treatments. Our results suggest that zebrafish populations respond differently to alcohol exposure, which may contribute to understanding the mechanisms underlying alcohol use and dependence. Moreover, we found that a more diverse genetic background (OB) was related to higher variability in behavioral and mRNA expression, demonstrating that inbred populations (AB and TU) may be useful tools in identifying alcohol use and abuse mechanisms.
Collapse
Affiliation(s)
- Thais Agues-Barbosa
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | | | | | | | - Ana Carolina Luchiari
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil.
| |
Collapse
|
20
|
Mao K, Li X, Chen Z, Dong X, Zhangsun D, Zhu X, Luo S. α-Conotoxin TxIB Improved Behavioral Abnormality and Changed Gene Expression in Zebrafish ( Danio rerio) Induced by Alcohol Withdrawal. Front Pharmacol 2022; 13:802917. [PMID: 35177988 PMCID: PMC8844014 DOI: 10.3389/fphar.2022.802917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Purpose: Alcohol use disorder (AUD) is a serious public health issue and affects the lives of numerous people. Previous studies have shown a link between nicotinic acetylcholine receptors (nAChR) and alcohol addiction. However, the role of α6β2* nAChR in alcohol addiction remains obscure, and whether α6β2* nAChR can be used as a potential drug target for alcohol withdrawal need to be studied. Methods: Zebrafish (Danio rerio) were exposed to 0.2% alcohol for 14 days followed by 7 days of repeated withdrawal and then retro-orbitally injected with α-conotoxin TxIB (a selective α6β2* nAChR antagonist). Open Field Test was applied to characterize zebrafish behavior parameters. The monoamine neurotransmitter amounts and their mRNA expression in the zebrafish brain were identified using ELISA and quantitative real-time PCR (RT-PCR). RNA-sequencing (RNA-seq) and subsequent bioinformatics analysis were employed to explore the potential network regulation of TxIB after alcohol withdrawal. Results: The max speed in the center area of the Open Field Test was significantly higher in the withdrawal group whereas TxIB injection corrected this abnormality. The amount and mRNA expression of monoamine neurotransmitters did not change significantly after alcohol withdrawal and TxIB administration. RNA sequencing of zebrafish brain indicated a total of 657 genes showed aberrant expression and among which 225 were reversed after TxIB injection. These reversed genes were significantly enriched in the calcium ion binding pathway and the gene expression profile was further validated by RT-PCR. Conclusion: Our finding suggests α-conotoxin TxIB improved behavioral abnormality induced by alcohol-withdrawal, and changed gene expression mainly in the calcium signaling pathway. Therefore, α-conotoxin TxIB is expected to become a potential therapeutic agent for alcohol withdrawal.
Collapse
Affiliation(s)
- Kailin Mao
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, China
| | - Xiaodan Li
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, China
| | - Zongde Chen
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, China
| | - Xiaoqian Dong
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, China.,Medical School, Guangxi University, Nanning, China
| | - Xiaopeng Zhu
- Medical School, Guangxi University, Nanning, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, China.,Medical School, Guangxi University, Nanning, China
| |
Collapse
|
21
|
Li F, Lin J, Li T, Jian J, Zhang Q, Zhang Y, Liu X, Li Q. Rrn3 gene knockout affects ethanol-induced locomotion in adult heterozygous zebrafish. Psychopharmacology (Berl) 2022; 239:621-630. [PMID: 35006303 DOI: 10.1007/s00213-021-06056-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/28/2021] [Indexed: 11/26/2022]
Abstract
Genome-wide analysis has identified the transcription factor, RRN3 (or TIF-1A), on human chromosome 16p13.11 as a candidate gene associated with mental disorders. Both genetic and biochemical experiments have demonstrated that RRN3 plays a major role in the transcriptional regulation of ribosomal DNA and cell growth. Previous research has suggested that loss of RRN3 from mature neurons reproduces the chronic nature of neurodegenerative processes. Here, we report the first generation and characterization of rrn3 mutant zebrafish in larval and adult stages using the CRISPR/Cas9 genome editing technique. Homozygous knockout zebrafish exhibited morphological changes, such as pericardial oedema and deformed heads, and died at the larval stage of embryonic development. Behaviourally, the locomotion and shoaling behaviour of adult rrn3+/- zebrafish was not significantly different compared with rrn3+/+ zebrafish. Notably, rrn3+/- zebrafish demonstrated abnormal locomotor activity in response to ethanol. We found decreased norepinephrine expression in the brains of rrn3+/- zebrafish when treated with ethanol. In summary, our results indicated that rrn3 was closely associated with early embryonic development in zebrafish. Furthermore, behavioural and neurochemical research revealed the importance of genetic differences in drug sensitivity. The results suggest that caution should be taken when treating RRN3 heterozygous patients.
Collapse
Affiliation(s)
- Fei Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jia Lin
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Tingting Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jing Jian
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qi Zhang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yinglan Zhang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiuyun Liu
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
22
|
Abozaid A, Hung J, Tsang B, Motlana K, Al-Ani R, Gerlai R. Behavioral effects of acute ethanol in larval zebrafish (D. rerio) depend on genotype and volume of experimental well. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110411. [PMID: 34363865 DOI: 10.1016/j.pnpbp.2021.110411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/10/2023]
Abstract
Ethanol consumption is a worldwide problem. Sensitivity to acute effects of ethanol influences the development of chronic ethanol abuse and ethanol dependence. Environmental and genetic factors have been found to contribute to differential effects of acute ethanol. Animal models have been employed to investigate these factors. An increasingly frequently utilized animal model in ethanol research is the zebrafish. A large proportion of ethanol studies with zebrafish have been conducted with adult zebrafish. However, high throughput drug and mutation screens are particularly well adapted to larval zebrafish. These studies are often carried out using the 96-well-plate that allows monitoring large numbers of fish efficiently. Here, we investigate the effects of acute (30 min long) ethanol exposure in 8-day post-fertilization (dpf) old zebrafish. We compare four genetically distinct populations (strains) of zebrafish, measuring numerous parameters of their swim path in two well sizes, i.e., in the 96-well-plate (small volume wells) and in the 6-well-plate (large volume wells). In general, we found that the highest dose of ethanol (1% vol/vol) reduced swim speed, increased duration of immobility, increased turn angle, and increased intra-individual variance of turn angle, while the intermediate dose (0.5%) had a less strong effect, compared to control. However, we also found that these ethanol effects were strain dependent and, in general, were better detected in the larger volume well. We conclude that larval zebrafish are appropriate for quantification of acute ethanol effects and also for the analysis of environmental and genetic factors that influence these effects. We also speculate that using larger wells will likely increase sensitivity of detection and precision in screening applications.
Collapse
Affiliation(s)
- Amira Abozaid
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Joshua Hung
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Critical Care Medicine, Hospital for Sick Children, Toronto, Canada; Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, United Kingdom
| | - Keza Motlana
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Reem Al-Ani
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
23
|
Ponzoni L, Melzi G, Marabini L, Martini A, Petrillo G, Teh MT, Torres-Perez JV, Morara S, Gotti C, Braida D, Brennan CH, Sala M. Conservation of mechanisms regulating emotional-like responses on spontaneous nicotine withdrawal in zebrafish and mammals. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110334. [PMID: 33905756 PMCID: PMC8380689 DOI: 10.1016/j.pnpbp.2021.110334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nicotine withdrawal syndrome is a major clinical problem. Animal models with sufficient predictive validity to support translation of pre-clinical findings to clinical research are lacking. AIMS We evaluated the behavioural and neurochemical alterations in zebrafish induced by short- and long-term nicotine withdrawal. METHODS Zebrafish were exposed to 1 mg/L nicotine for 2 weeks. Dependence was determined using behavioural analysis following mecamylamine-induced withdrawal, and brain nicotinic receptor binding studies. Separate groups of nicotine-exposed and control fish were assessed for anxiety-like behaviours, anhedonia and memory deficits following 2-60 days spontaneous withdrawal. Gene expression analysis using whole brain samples from nicotine-treated and control fish was performed at 7 and 60 days after the last drug exposure. Tyrosine hydroxylase (TH) immunoreactivity in pretectum was also analysed. RESULTS Mecamylamine-precipitated withdrawal nicotine-exposed fish showed increased anxiety-like behaviour as evidenced by increased freezing and decreased exploration. 3H-Epibatidine labeled heteromeric nicotinic acethylcholine receptors (nAChR) significantly increased after 2 weeks of nicotine exposure while 125I-αBungarotoxin labeled homomeric nAChR remained unchanged. Spontaneous nicotine withdrawal elicited anxiety-like behaviour (increased bottom dwelling), reduced motivation in terms of no preference for the enriched side in a place preference test starting from Day 7 after withdrawal and a progressive decrease of memory attention (lowering discrimination index). Behavioural differences were associated with brain gene expression changes: nicotine withdrawn animals showed decreased expression of chrna 4 and chrna7 after 60 days, and of htr2a from 7 to 60 days.The expression of c-Fos was significantly increased at 7 days. Finally, Tyrosine hydroxylase (TH) immunoreactivity increased in dorsal parvocellular pretectal nucleus, but not in periventricular nucleus of posterior tuberculum nor in optic tectum, at 60 days after withdrawal. CONCLUSIONS Our findings show that nicotine withdrawal induced anxiety-like behaviour, cognitive alterations, gene expression changes and increase in pretectal TH expression, similar to those observed in humans and rodent models.
Collapse
Affiliation(s)
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Laura Marabini
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | | | | | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, England, UK
| | - Jose V Torres-Perez
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | | | | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | |
Collapse
|
24
|
Suresh S, Abozaid A, Tsang B, Gerlai R. Exposure of parents to alcohol alters behavior of offspring in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110143. [PMID: 33096155 DOI: 10.1016/j.pnpbp.2020.110143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/12/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Alcoholism and alcohol abuse represent a significant medical and societal problem, and have been thoroughly investigated in humans as well as using animal models. A less well understood aspect of alcohol related disorders is the possible effect of this drug on offspring whose parents were exposed prior to conception. The zebrafish has been successfully employed in alcohol research, however, the effect of exposing the parents to alcohol before fertilization of the eggs on offspring has not been demonstrated in this species. In this proof of concept study, we attempt to address this hiatus. We exposed both adult male and female zebrafish to 0.0% (control) or 0.5% (vol/vol) alcohol chronically for 7 days, subsequently bred the fish within their respective treatment group, collected the fertilized eggs, allowed them to develop, and tested the behavior of free-swimming offspring at their age of 7-9 days post-fertilization. We conducted the analysis in two genetically distinct quasi-inbred strains of zebrafish, AB and TL. Although gross morphology and general activity of the fish appeared unaffected, we found significant behavioral alterations in offspring of alcohol exposed parents compared to offspring of control parents in both strains. These alterations included robustly increased duration and reduced frequency of immobility, increased turn angle, and increased intra-individual variance of turn angle in offspring of alcohol exposed parents in both strains. The mechanisms underlying these behavioral effects or whether the effects are due to exposure of the father, the mother, or both to alcohol are unknown. Nevertheless, our results now set the stage for future studies with zebrafish that will address these questions.
Collapse
Affiliation(s)
| | - Amira Abozaid
- Department of Cell & System Biology, University of Toronto, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Canada; Department of Cell & System Biology, University of Toronto, Canada.
| |
Collapse
|
25
|
Clayman CL, Connaughton VP. Neurochemical and Behavioral Consequences of Ethanol and/or Caffeine Exposure: Effects in Zebrafish and Rodents. Curr Neuropharmacol 2021; 20:560-578. [PMID: 34766897 DOI: 10.2174/1570159x19666211111142027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Zebrafish are increasingly being utilized to model the behavioral and neurochemical effects of pharmaceuticals and, more recently, pharmaceutical interactions. Zebrafish models of stress establish that both caffeine and ethanol influence anxiety, though few studies have implemented co-administration to assess the interaction of anxiety and reward-seeking. Caffeine exposure in zebrafish is teratogenic, causing developmental abnormalities in the cardiovascular, neuromuscular, and nervous systems of embryos and larvae. Ethanol is also a teratogen and, as an anxiolytic substance, may be able to offset the anxiogenic effects of caffeine. Co-exposure to caffeine and alcohol impacts neuroanatomy and behavior in adolescent animal models, suggesting stimulant substances may moderate the impact of alcohol on neural circuit development. Here, we review the literature describing neuropharmacological and behavioral consequences of caffeine and/or alcohol exposure in the zebrafish model, focusing on neurochemistry, locomotor effects, and behavioral assessments of stress/anxiety as reported in adolescent/juvenile and adult animals. The purpose of this review is twofold: (1) describe the work in zebrafish documenting the effects of ethanol and/or caffeine exposure and (2) compare these zebrafish studies with comparable experiments in rodents. We focus on specific neurochemical pathways (dopamine, serotonin, adenosine, GABA, adenosine), anxiety-type behaviors (assessed with novel tank, thigmotaxis, shoaling), and locomotor changes resulting from both individual and co-exposure. We compare findings in zebrafish with those in rodent models, revealing similarities across species and identifying conservation of mechanisms that potentially reinforce co-addiction.
Collapse
Affiliation(s)
- Carly L Clayman
- Department of Biology and Center for Neuroscience and Behavior American University, Washington, DC 20016, United States
| | - Victoria P Connaughton
- Department of Biology and Center for Neuroscience and Behavior American University, Washington, DC 20016, United States
| |
Collapse
|
26
|
Fernandes Y, Lovely CB. Zebrafish models of fetal alcohol spectrum disorders. Genesis 2021; 59:e23460. [PMID: 34739740 DOI: 10.1002/dvg.23460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) describes a wide range of structural deficits and cognitive impairments. FASD impacts up to 5% of children born in the United States each year, making ethanol one of the most common teratogens. Due to limitations and ethical concerns, studies in humans are limited in their ability to study FASD. Animal models have proven critical in identifying and characterizing the mechanisms underlying FASD. In this review, we will focus on the attributes of zebrafish that make it a strong model in which to study ethanol-induced developmental defects. Zebrafish have several attributes that make it an ideal model in which to study FASD. Zebrafish produced large numbers of externally fertilized, translucent embryos. With a high degree of genetic amenability, zebrafish are at the forefront of identifying and characterizing the gene-ethanol interactions that underlie FASD. Work from multiple labs has shown that embryonic ethanol exposures result in defects in craniofacial, cardiac, ocular, and neural development. In addition to structural defects, ethanol-induced cognitive and behavioral impairments have been studied in zebrafish. Building upon these studies, work has identified ethanol-sensitive loci that underlie the developmental defects. However, analyses show there is still much to be learned of these gene-ethanol interactions. The zebrafish is ideally suited to expand our understanding of gene-ethanol interactions and their impact on FASD. Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD.
Collapse
Affiliation(s)
- Yohaan Fernandes
- Department of Biology, University of South Dakota, Vermillion, South Dakota, USA
| | - C Ben Lovely
- Department of Biochemistry and Molecular Genetics, Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
27
|
Vizuete AFK, Mussulini BH, Zenki KC, Baggio S, Pasqualotto A, Rosemberg DB, Bogo MR, de Oliveira DL, Rico EP. Prolonged ethanol exposure alters glutamate uptake leading to astrogliosis and neuroinflammation in adult zebrafish brain. Neurotoxicology 2021; 88:57-64. [PMID: 34728274 DOI: 10.1016/j.neuro.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
High ethanol (EtOH) consumption is a serious condition that induces tremors, alcoholic psychosis, and delirium, being considered a public health problem worldwide. Prolonged EtOH exposure promotes neurodegeneration, affecting several neurotransmitter systems and transduction signaling pathways. Glutamate is the major excitatory amino acid in the central nervous system (CNS) and the extracellular glutamatergic tonus is controlled by glutamate transporters mostly located in astrocytes. Here, we explore the effects of prolonged EtOH exposure on the glutamatergic uptake system and its relationship with astroglial markers (GFAP and S100B), neuroinflammation (IL-1β and TNF-α), and brain derived neurotrophic factor (BDNF) levels in the CNS of adult zebrafish. Animals were exposed to 0.5% EtOH for 7, 14, and 28 days continuously. Glutamate uptake was significantly decreased after 7 and 14 days of EtOH exposure, returning to baseline levels after 28 days of exposure. No alterations were observed in crucial enzymatic activities linked to glutamate uptake, like Na,K-ATPase or glutamine synthetase. Prolonged EtOH exposure increased GFAP, S100B, and TNF-α levels after 14 days. Additionally, increased BDNF mRNA levels were observed after 14 and 28 days of EtOH exposure, while BDNF protein levels increased only after 28 days. Collectively, our data show markedly brain astroglial, neuroinflammatory and neurotrofic responses after an initial impairment of glutamate uptake following prolonged EtOH exposure. This neuroplasticity event could play a key role in the modulatory effect of EtOH on glutamate uptake after 28 days of continuous exposure.
Collapse
Affiliation(s)
- Adriana Fernanda Kuckartz Vizuete
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Ben Hur Mussulini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Kamila Cagliari Zenki
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Suelen Baggio
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Amanda Pasqualotto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Denis Broock Rosemberg
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, 97105-900, Santa Maria, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA
| | - Maurício Reis Bogo
- Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | - Diogo Lösch de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
28
|
Souza TP, Franscescon F, Stefanello FV, Müller TE, Santos LW, Rosemberg DB. Acute effects of ethanol on behavioral responses of male and female zebrafish in the open field test with the influence of a non-familiar object. Behav Processes 2021; 191:104474. [PMID: 34371127 DOI: 10.1016/j.beproc.2021.104474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/26/2022]
Abstract
In this report, we investigate whether the acute effects of different ethanol (EtOH) concentrations are sex-dependent in zebrafish subjected to the open field test (OFT) with the influence of a non-familiar object. Male and female zebrafish were separated into four groups and exposed to EtOH (0%, 0.25%, 0.5%, or 1.0% v/v) for 1 h. Fish were tested individually in the OFT, in which tank was divided into three areas: periphery, intermediate, and center area. An object (black sphere; diameter: 1 cm) was placed in the center of the tank and behaviors were recorded for 5 min. At the baseline, females had a distinct exploratory activity and interaction pattern with the object, reflecting a more anxious and shyer behavior in relation to males. Females exposed to 0.5% EtOH performed more rapid investigation to the object than males, while 1.0% EtOH reduced locomotion in both sexes and increased immobility only in males. Principal component analyses revealed that anxiety-like behaviors, exploratory activity, and locomotion were the components that most accounted for total variances. Collectively, our novel findings show the existence of a sex-dependent effect in the zebrafish models acutely exposed to EtOH tested in the OFT with a non-familiar object.
Collapse
Affiliation(s)
- Thiele P Souza
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Flavia V Stefanello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Laura W Santos
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA.
| |
Collapse
|
29
|
Ariyasiri K, Choi TI, Gerlai R, Kim CH. Acute ethanol induces behavioral changes and alters c-fos expression in specific brain regions, including the mammillary body, in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110264. [PMID: 33545226 DOI: 10.1016/j.pnpbp.2021.110264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Ethanol is one of the most commonly abused substances in the world, and ethanol abuse and dependence disorders represent major societal problems. However, appropriate treatment is lacking as we still do not fully understand the molecular bases of these disorders. The zebrafish is one of the model organisms utilized for studying such mechanisms. In this study, we examined the effects of acute ethanol administration on the behavior of zebrafish, and we also analyzed correlated gene expression changes using whole-mount in situ hybridization focusing on a number of genes associated with different neurotransmitter systems, stress response, and neuronal activity. We found ethanol treatment to result in hyperactivity and reduced shoal cohesion compared to control. Analysis of c-fos expression demonstrated altered activity patterns in certain brain regions, including intense activation of the mammillary body in zebrafish with acute ethanol treatment. We also found reduced level of gad1b expression in the cerebellum of ethanol treated fish compared to control. However, we could not detect significant changes in the expression level of other genes, including vglut2b, th, crh, hdc, avp, pomc, and galn in ethanol treated fish compared controls. Our results suggest that zebrafish is a promising animal model for the study of mechanisms underlying alcohol induced behavioral changes and alcohol related human disorders.
Collapse
Affiliation(s)
- Krishan Ariyasiri
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
30
|
Wang D, Wang X, Huang H, Wang H. Triclosan regulates alternative splicing events of nerve-related genes through RNA-binding protein CELF2 to induce zebrafish neurotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125414. [PMID: 33621777 DOI: 10.1016/j.jhazmat.2021.125414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/29/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Herein, we demonstrated that triclosan (TCS) induced neurotoxicity mediated by pre-mRNA alternative splicing (AS). TCS exposure resulted in a series of phenotypic malformations, abnormal locomotor behavior, circadian rhythm disorder and inhibited AChE activity. High throughput mRNA sequencing revealed that TCS regulated the AS events of nerve-related genes. Meanwhile, abnormal expression was observed in marker genes related to nerve cell migration, axon guidance and myelination. The expression of mitochondrial apoptosis activator bcl2l11 was significantly increased under TCS exposure. Interestingly, CELF2 as one of the important RNA-binding proteins was closely related to the AS events, and its mRNA and protein expression levels were significantly increased in zebrafish brain under acute or chronic TCS exposure. Functional knock-down and over-expression of celf2 confirmed that TCS led to nervous system injury and developmental defects through the CELF2-mediated AS events of genes (mbpa, mef2d, u2af2b and matn3b). Histopathological injury, phenotypic malformation, abnormal locomotor behavior and changes in neuromarkers all confirmed the biological functions of CELF2 in zebrafish brain. These findings demonstrate that TCS might regulate some of the AS events of nerve-related genes through upregulating the expression of CELF2. Thus, CELF2 may serve as a target for the prevention, diagnosis and treatment of contaminant-induced neurological diseases.
Collapse
Affiliation(s)
- Danting Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
31
|
Siregar P, Audira G, Feng LY, Lee JH, Santoso F, Yu WH, Lai YH, Li JH, Lin YT, Chen JR, Hsiao CD. Pharmaceutical Assessment Suggests Locomotion Hyperactivity in Zebrafish Triggered by Arecoline Might Be Associated with Multiple Muscarinic Acetylcholine Receptors Activation. Toxins (Basel) 2021; 13:toxins13040259. [PMID: 33916832 PMCID: PMC8066688 DOI: 10.3390/toxins13040259] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 04/01/2021] [Indexed: 12/02/2022] Open
Abstract
Arecoline is one of the nicotinic acid-based alkaloids, which is found in the betel nut. In addition to its function as a muscarinic agonist, arecoline exhibits several adverse effects, such as inducing growth retardation and causing developmental defects in animal embryos, including zebrafish, chicken, and mice. In this study, we aimed to study the potential adverse effects of waterborne arecoline exposure on zebrafish larvae locomotor activity and investigate the possible mechanism of the arecoline effects in zebrafish behavior. The zebrafish behavior analysis, together with molecular docking and the antagonist co-exposure experiment using muscarinic acetylcholine receptor antagonists were conducted. Zebrafish larvae aged 96 h post-fertilization (hpf) were exposed to different concentrations (0.001, 0.01, 0.1, and 1 ppm) of arecoline for 30 min and 24 h, respectively, to find out the effect of arecoline in different time exposures. Locomotor activities were measured and quantified at 120 hpf. The results showed that arecoline caused zebrafish larvae locomotor hyperactivities, even at a very low concentration. For the mechanistic study, we conducted a structure-based molecular docking simulation and antagonist co-exposure experiment to explore the potential interactions between arecoline and eight subtypes, namely, M1a, M2a, M2b, M3a, M3b, M4a, M5a, and M5b, of zebrafish endogenous muscarinic acetylcholine receptors (mAChRs). Arecoline was predicted to show a strong binding affinity to most of the subtypes. We also discovered that the locomotion hyperactivity phenotypes triggered by arecoline could be rescued by co-incubating it with M1 to M4 mAChR antagonists. Taken together, by a pharmacological approach, we demonstrated that arecoline functions as a highly potent hyperactivity-stimulating compound in zebrafish that is mediated by multiple muscarinic acetylcholine receptors.
Collapse
Affiliation(s)
- Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan; (P.S.); (G.A.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 3020314, Taiwan;
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan; (P.S.); (G.A.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 3020314, Taiwan;
| | - Ling-Yi Feng
- School of Pharmacy and Ph.D. Program in Toxicology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Substance and Behavior Addiction Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jia-Hau Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-H.L.); (W.-H.Y.)
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fiorency Santoso
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 3020314, Taiwan;
| | - Wen-Hao Yu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-H.L.); (W.-H.Y.)
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Jih-Heng Li
- School of Pharmacy and Ph.D. Program in Toxicology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Substance and Behavior Addiction Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.L.); (Y.-T.L.); (C.-D.H.)
| | - Ying-Ting Lin
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-H.L.); (W.-H.Y.)
- Drug Development & Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.L.); (Y.-T.L.); (C.-D.H.)
| | - Jung-Ren Chen
- Department of Biological Science & Technology, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan; (P.S.); (G.A.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 3020314, Taiwan;
- Correspondence: (J.-H.L.); (Y.-T.L.); (C.-D.H.)
| |
Collapse
|
32
|
Nahar M, Jat D. Long-Term Exposure of Alcohol Induced Behavioral Impairments and Oxidative Stress in the Brain Mitochondria and Synaptosomes of Adult Zebrafish. Zebrafish 2021; 18:110-124. [PMID: 33728993 DOI: 10.1089/zeb.2020.1913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alcoholism causes deleterious effects such as physiological and neuronal alterations leading to the cognitive and other behavioral impairments. Mitochondrial and synaptosomal deteriorations in the brain of alcoholic persons exhibited metabolic, biochemical changes and other related risk factors, which mainly affect the brain function. This study aimed to assess the effect of chronic alcohol-induced mitochondrial and synaptosomal oxidative damage along with behavioral impairment in adult zebrafish. Zebrafish of control group received the system water and normal diet ad libitum (group I); the other groups were treated with 0.20% alcohol (group II) and 0.40% alcohol (group III) directly in fish tank for 22 days. The result revealed significant increase in lipid peroxidation, protein carbonylation, superoxide dismutase, and glutathione, and significant decline in the activity of catalase and Na+/K+ ATPase compared to control. Furthermore, the alcohol-treated zebrafish also showed significant behavioral alterations. Collectively, this regulatory mechanism demonstrates the effect of long-term alcohol consumption in the zebrafish. Our results indicate that this recreational drug "alcohol" is harmful to brain mitochondria and synaptosomes, which are the main organelles, and play an important role in memory, learning, cognitive function, and ATP formation in the brain, which may represent a significant public health concern.
Collapse
Affiliation(s)
- Manisha Nahar
- Neuroscience Research Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Deepali Jat
- Neuroscience Research Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
33
|
Ogi A, Licitra R, Naef V, Marchese M, Fronte B, Gazzano A, Santorelli FM. Social Preference Tests in Zebrafish: A Systematic Review. Front Vet Sci 2021; 7:590057. [PMID: 33553276 PMCID: PMC7862119 DOI: 10.3389/fvets.2020.590057] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
The use of animal models in biology research continues to be necessary for the development of new technologies and medicines, and therefore crucial for enhancing human and animal health. In this context, the need to ensure the compliance of research with the principles Replacement, Reduction and Refinement (the 3 Rs), which underpin the ethical and human approach to husbandry and experimental design, has become a central issue. The zebrafish (Danio rerio) is becoming a widely used model in the field of behavioral neuroscience. In particular, studying zebrafish social preference, by observing how an individual fish interacts with conspecifics, may offer insights into several neuropsychiatric and neurodevelopmental disorders. The main aim of this review is to summarize principal factors affecting zebrafish behavior during social preference tests. We identified three categories of social research using zebrafish: studies carried out in untreated wild-type zebrafish, in pharmacologically treated wild-type zebrafish, and in genetically engineered fish. We suggest guidelines for standardizing social preference testing in the zebrafish model. The main advances gleaned from zebrafish social behavior testing are discussed, together with the relevance of this method to scientific research, including the study of behavioral disorders in humans. The authors stress the importance of adopting an ethical approach that considers the welfare of animals involved in experimental procedures. Ensuring a high standard of animal welfare is not only good for the animals, but also enhances the quality of our science.
Collapse
Affiliation(s)
- Asahi Ogi
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy.,Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Rosario Licitra
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| | - Valentina Naef
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| | - Maria Marchese
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| | | | - Angelo Gazzano
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Filippo M Santorelli
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| |
Collapse
|
34
|
Davis R, Luchtenburg F, Richardson M, Schaaf M, Tudorache C, Slabbekoorn H. The importance of individual variation for the interpretation of behavioural studies: ethanol effects vary with basal activity level in zebrafish larvae. Psychopharmacology (Berl) 2021; 238:3155-3166. [PMID: 34510233 PMCID: PMC8605963 DOI: 10.1007/s00213-021-05932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Standardization and reduction of variation is key to behavioural screening of animal models in toxicological and pharmacological studies. However, individual variation in behavioural and physiological phenotypes remains in each laboratory population and can undermine the understanding of toxicological and pharmaceutical effects and their underlying mechanisms. Here, we used zebrafish (ABTL-strain) larvae to explore individual consistency in activity level and emergence time, across subsequent days of early development (6-8 dpf). We also explored the correlation between these two behavioural parameters. We found inter-individual consistency over time in activity level and emergence time, but we did not find a consistent correlation between these parameters. Subsequently, we investigated the impact of variation in activity level on the effect of a 1% ethanol treatment, suitable for our proof-of-concept case study about whether impact from pharmacological treatments might be affected by inter-individual variation in basal locomotion. The inter-individual consistency over time in activity level did not persist in this test. This was due to the velocity change from before to after exposure, which turned out to be a dynamic individual trait related to basal activity level: low-activity individuals raised their swimming velocity, while high-activity individuals slowed down, yielding diametrically opposite response patterns to ethanol exposure. We therefore argue that inter-individual consistency in basal activity level, already from 6 dpf, is an important factor to take into account and provides a practical measure to improve the power of statistical analyses and the scope for data interpretation from behavioural screening studies.
Collapse
Affiliation(s)
- Raissa Davis
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | | | | | - Marcel Schaaf
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | | | - Hans Slabbekoorn
- Institute of Biology, Leiden University, Leiden, the Netherlands
| |
Collapse
|
35
|
Araujo-Silva H, Leite-Ferreira ME, Luchiari AC. Behavioral Screening of Alcohol Effects and Individual Differences in Zebrafish (Danio rerio). Alcohol Alcohol 2020; 55:591-597. [PMID: 32533153 DOI: 10.1093/alcalc/agaa046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023] Open
Abstract
AIM To better understand the individual differences that make up a population, this study aimed to evaluate the effects of different alcoholic concentrations on the behavioral profiles of zebrafish (Danio rerio). METHODS For this purpose, adult animals were separated into two behavioral profiles: bold and shy, according to the emergence order. Bold and shy fish were individually tested for exploration after exposure to the drug. Acute exposure treatments were alcohol 0.00, 0.10, 0.25 and 0.50%. The behavioral parameters evaluated were speed while moving, maximum speed, total distance traveled and distance from the bottom of the tank. RESULTS For the groups that did not receive alcohol, bold animals showed higher speed while moving. Shy 0.00% and shy 0.10% had the highest maximum speed compared with other concentrations and profiles. For the distance from the bottom tank, our results showed that the increase induced by the low acute dose (0.10%) was observed for both profiles. CONCLUSIONS Our results corroborate with previous findings that alcohol affects the behavioral profiles of zebrafish differently, with bold animals apparently more resistant to these changes.
Collapse
Affiliation(s)
- Heloysa Araujo-Silva
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria Elisa Leite-Ferreira
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
36
|
Goodman AC, Wong RY. Differential effects of ethanol on behavior and GABA A receptor expression in adult zebrafish (Danio rerio) with alternative stress coping styles. Sci Rep 2020; 10:13076. [PMID: 32753576 PMCID: PMC7403336 DOI: 10.1038/s41598-020-69980-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Variation in stress responses between individuals are linked to factors ranging from stress coping styles to sensitivity of neurotransmitter systems. Many anxiolytic compounds (e.g. ethanol) can increase stressor engagement through modulation of neurotransmitter systems and are used to investigate stress response mechanisms. There are two alternative suites of correlated behavioral and physiological responses to stressors (stress coping styles) that differ in exploration tendencies: proactive and reactive stress coping styles. By chronically treating individuals differing in stress coping style with ethanol, a GABA-acting drug, we assessed the role of the GABAergic system on the behavioral stress response. Specifically, we investigated resulting changes in stress-related behavior (i.e. exploratory behavior) and whole-brain GABAA receptor subunits (gabra1, gabra2, gabrd, & gabrg2) in response to a novelty stressor. We found that ethanol-treated proactive individuals showed lower stress-related behaviors than their reactive counterparts. Proactive individuals showed significantly higher expression of gabra1, gabra2, and gabrg2 compared to reactive individuals and ethanol treatment resulted in upregulation of gabra1 and gabrg2 in both stress coping styles. These results suggest that impacts of ethanol on stress-related behaviors vary by stress coping style and that expression of select GABAA receptor subunits may be one of the underlying mechanisms.
Collapse
Affiliation(s)
- Alexander C Goodman
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| | - Ryan Y Wong
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| |
Collapse
|
37
|
Preclinical methodological approaches investigating of the effects of alcohol on perinatal and adolescent neurodevelopment. Neurosci Biobehav Rev 2020; 116:436-451. [PMID: 32681938 DOI: 10.1016/j.neubiorev.2020.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
Despite much evidence of its economic and social costs, alcohol use continues to increase. Much remains to be known as to the effects of alcohol on neurodevelopment across the lifespan and in both sexes. We provide a comprehensive overview of the methodological approaches to ethanol administration when using animal models (primarily rodent models) and their translational relevance, as well as some of the advantages and disadvantages of each approach. Special consideration is given to early developmental periods (prenatal through adolescence), as well as to the types of research questions that are best addressed by specific methodologies. The zebrafish is used increasingly in alcohol research, and how to use this model effectively as a preclinical model is reviewed as well.
Collapse
|
38
|
Müller TE, Fontana BD, Bertoncello KT, Franscescon F, Mezzomo NJ, Canzian J, Stefanello FV, Parker MO, Gerlai R, Rosemberg DB. Understanding the neurobiological effects of drug abuse: Lessons from zebrafish models. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109873. [PMID: 31981718 DOI: 10.1016/j.pnpbp.2020.109873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Drug abuse and brain disorders related to drug comsumption are public health problems with harmful individual and social consequences. The identification of therapeutic targets and precise pharmacological treatments to these neuropsychiatric conditions associated with drug abuse are urgently needed. Understanding the link between neurobiological mechanisms and behavior is a key aspect of elucidating drug abuse-related targets. Due to various molecular, biochemical, pharmacological, and physiological features, the zebrafish (Danio rerio) has been considered a suitable vertebrate for modeling complex processes involved in drug abuse responses. In this review, we discuss how the zebrafish has been successfully used for modeling neurobehavioral phenotypes related to drug abuse and review the effects of opioids, cannabinoids, alcohol, nicotine, and psychedelic drugs on the central nervous system (CNS). Moreover, we summarize recent advances in zebrafish-based studies and outline potential advantages and limitations of the existing zebrafish models to explore the neurochemical bases of drug abuse and addiction. Finally, we discuss how the use of zebrafish models may present fruitful approaches to provide valuable clinically translatable data.
Collapse
Affiliation(s)
- Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, Portsmouth PO1 2DT, UK
| | - Kanandra T Bertoncello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Nathana J Mezzomo
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Flavia V Stefanello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, Portsmouth PO1 2DT, UK
| | - Robert Gerlai
- Department of Psychology, University of Toronto, Mississauga, Canada; Department of Cell and Systems Biology, University of Toronto, Canada
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
39
|
Behavioral plasticity and gene regulation in the brain during an intermittent ethanol exposure in adult zebrafish population. Pharmacol Biochem Behav 2020; 192:172909. [DOI: 10.1016/j.pbb.2020.172909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 01/04/2023]
|
40
|
Abozaid A, Trzuskot L, Najmi Z, Paul I, Tsang B, Gerlai R. Developmental stage and genotype dependent behavioral effects of embryonic alcohol exposure in zebrafish larvae. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109774. [PMID: 31655157 DOI: 10.1016/j.pnpbp.2019.109774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/29/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) represent a worldwide problem. The severity and types of symptoms of FASD vary, which may be due to the genotype of the fetus and the developmental stage at which the fetus is exposed to alcohol. The most prevalent forms of FASD present less severe symptoms, including behavioral and cognitive abnormalities, and arise from exposure to low amounts of alcohol consumed infrequently. Treating or diagnosing FASD patients has been difficult because we do not understand the mechanisms underlying FASD. Animal models, including the zebrafish, have been suggested to answer this question. Here, we present a proof of concept analysis studying the behavioral effects of embryonic alcohol exposure in one-week old juvenile zebrafish. We exposed zebrafish embryos at one of five developmental stages (8, 16, 24, 32, or 40 hour post-fertilization) to 0% (control) or 1% (vol/vol) ethanol for 2 h, and tested the behavior of these fish at their age of 7-9 days post-fertilization. We employed two genetically distinct zebrafish populations, a quasi-inbred AB derivative strain, and a genetically variable WT population. We report significant developmental time and genotype dependent effects of alcohol on certain measures of motor function and/or anxiety-like responses. For example, we found embryonic alcohol exposed AB fish to swim faster, vary their speed more, stop moving more often and turn less compared to control fish, alcohol induced changes that were absent or less robust in WT fish. We conclude that our results open new avenues to the identification of genetic mechanisms that mediate or influence alcohol induced developmental alteration of brain function and behavior, which, on the long run, may allow us to identify diagnostic biomarkers and treatment options for human FASD.
Collapse
Affiliation(s)
- Amira Abozaid
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Lidia Trzuskot
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Zelaikha Najmi
- Department of Biology, University of Toronto Mississauga, Canada
| | - Ishti Paul
- Department of Biology, University of Toronto Mississauga, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Canada; Department of Cell & System Biology, University of Toronto, Canada.
| |
Collapse
|
41
|
Wang C, Huang W, Lin J, Fang F, Wang X, Wang H. Triclosan-induced liver and brain injury in zebrafish (Danio rerio) via abnormal expression of miR-125 regulated by PKCα/Nrf2/p53 signaling pathways. CHEMOSPHERE 2020; 241:125086. [PMID: 31627110 DOI: 10.1016/j.chemosphere.2019.125086] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Triclosan (TCS) is widely used in personal care products, and its chronic exposure leads to severely toxic effects in zebrafish (Danio rerio). PKCα, Nrf2 and p53 are three important signaling pathways concerned with cell development. Herein, we speculated on and verified a novel TCS regulatory pathway: (1) TCS acted on GPER (G-protein-coupled estrogen receptor) to activate MAPK/ERK pathway, further resulting in the expression changes of protein kinase C (PKC) family; (2) PKC participated in Nrf2 phosphorylation; (3) The expression of miR-125b was regulated by Nrf2; and (4) The expression changes of related genes in the PKCs-Nrf2-ARE pathway showed the specificity of zebrafish tissue and organ. TCS exposure led to down-regulation of the Nrf2 and phosphorylated Nrf2(Ser40) protein in diencephalon nucleus, stratum marginale and stratum centrale areas in adult zebrafish brain. The phosphorylated Nrf2(Ser40) was mainly expressed in PGz area, while it was not the case for Nrf2. Both Nrf2 and phosphorylated Nrf2 were activated by TCS exposure; however, the changing trend of PKCs was opposite to that of Nrf2 in the liver. Both DAPI staining and Merge images demonstrated that TCS induced oxidative phosphorylation, and phosphorylated Nrf2 is translocated into the nucleus as the transcription factor to regulate gene transcription in liver and brain. Nrf2 over-expression increased accumulation of lipid droplets in yolk, brain and liver, resulting from the upregulation of pri-miR-125b1, pri-miR-125b3, but not pri-miR-125b2. These findings reveal the upstream regulation mechanism of miR-125b for TCS-induced fat-metabolism disorder from the regulatory perspective of the pri-miR-125b promoter region.
Collapse
Affiliation(s)
- Caihong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenhao Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiebo Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fang Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
42
|
Chagas TQ, da Silva Alvarez TG, Montalvão MF, Mesak C, Rocha TL, da Costa Araújo AP, Malafaia G. Behavioral toxicity of tannery effluent in zebrafish (Danio rerio) used as model system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:923-933. [PMID: 31247439 DOI: 10.1016/j.scitotenv.2019.06.253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
The ecotoxicity of untreated tannery effluent (UTE) in several animal models has been reported; however, its effects on fish behavior, and neurotoxicity, remain unknown. Thus, the hypothesis that the chronic exposure to UTE can induce behavioral changes in adult zebrafish (Danio rerio) representatives, even when it is highly diluted in water, was tested. Animals exposed to 0.1% and 0.3% UTE for 30 days showed behavioral changes in visual social preference tests through their co-specific and antipredator defensive responses, which had indicated neurotoxic actions. Zebrafish exposed to UTE appeared to have not co-specific preference when it is paired with Poecilia sphrenops. In addition, only animals in the control group showed aversive behavior in the presence of the herein used predatory stimulus (Oreochromis niloticus). However, Cr, Na and Mg bioaccumulation was higher in zebrafish exposed to 0.1% and 0.3% UTE, although anxiogenic and anxiolytic effects were not observed in the models exposed to UTE in the novel tank diving or aggressiveness-increase-in-the-mirror tests. This outcome allowed associating the exposure to the pollutant and bioaccumulation with the observed behavioral changes. The present study is pioneer in scientifically evidencing the sublethal impact caused by chronic exposure to UTE in experimental environment simulating realistic aquatic pollution conditions. Accordingly, results in the current research should motivate further investigations to broaden the knowledge about the real magnitude of UTE biological impacts on the aquatic biota.
Collapse
Affiliation(s)
- Thales Quintão Chagas
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil
| | - Tenilce Gabriela da Silva Alvarez
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil
| | - Mateus Flores Montalvão
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil
| | - Carlos Mesak
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil; Post-graduation Program in Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil; Post-graduation Program in Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
43
|
Altmieme Z, Jubouri M, Touma K, Coté G, Fonseca M, Julian T, Mennigen JA. A reproductive role for the nonapeptides vasotocin and isotocin in male zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 2019; 238:110333. [PMID: 31499217 DOI: 10.1016/j.cbpb.2019.110333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022]
Abstract
Two distinct nonapeptide systems, vasotocin- and oxytocin-related peptides, evolved in vertebrates. Their role in male zebrafish reproduction has not been formally investigated. We hypothesized that the teleost nonapeptides vasotocin and isotocin stimulate male zebrafish reproductive physiology and success by affecting central neuronal and/or peripheral endocrine pathways. Pharmacological inhibition experiments revealed that both vasotocin and isotocin contribute significantly to male reproductive success, which in the case of vasotocin correlated significantly with indices of male courtship behavior. Interestingly, co-administration of vasotocin and isotocin antagonists completely abolished male reproductive success without affecting male courtship behavior and endocrine indices, possibly linked to a synergistic action of nonapeptides on male pheromone release. To further probe the nonapeptides' role in male zebrafish reproduction, we subsequently tested whether male zebrafish nonapeptide systems were acutely activated by the female releaser pheromone PGF2α, a strong chemoattractant and important reproductive cue in males which stimulates courtship behavior. Male zebrafish attracted to PGF2α in a choice assay exhibited acute increases in neuronal activation marker p-ERK immunoreactivity in the ventral glomerulus of the olfactory bulb and the preoptic area, however no co-localization with isotocin was observed. Conversely, PGF2α time-dependently stimulated whole brain isotocin mRNA abundance, suggesting secondary longer-term effects of PGF2α exposure on the central isotocinergic system. While the current lack of vasotocin-specific antibodies for zebrafish does not allow to probe acute activation of vasotocinergic neurons, whole brain vasotocin mRNA was not significantly affected by PGF2α exposure. Together, our results identify a role for nonapeptides in male zebrafish reproductive physiology and success.
Collapse
Affiliation(s)
- Z Altmieme
- Department of Biology, University of Ottawa, 20 Marie-Curie, K1N 6N5 Ottawa, Ontario, Canada
| | - M Jubouri
- Department of Biology, University of Ottawa, 20 Marie-Curie, K1N 6N5 Ottawa, Ontario, Canada
| | - K Touma
- Department of Biology, University of Ottawa, 20 Marie-Curie, K1N 6N5 Ottawa, Ontario, Canada
| | - G Coté
- Department of Biology, University of Ottawa, 20 Marie-Curie, K1N 6N5 Ottawa, Ontario, Canada
| | - M Fonseca
- Department of Biology, University of Ottawa, 20 Marie-Curie, K1N 6N5 Ottawa, Ontario, Canada
| | - T Julian
- Department of Biology, University of Ottawa, 20 Marie-Curie, K1N 6N5 Ottawa, Ontario, Canada
| | - J A Mennigen
- Department of Biology, University of Ottawa, 20 Marie-Curie, K1N 6N5 Ottawa, Ontario, Canada.
| |
Collapse
|
44
|
Alexandre MCM, Mendes NV, Torres CA, Baldin SL, Bernardo HT, Scussel R, Baggio S, Mussulini BHM, Zenki KC, da Rosa MI, Rico EP. Weekly ethanol exposure alters dopaminergic parameters in zebrafish brain. Neurotoxicol Teratol 2019; 75:106822. [DOI: 10.1016/j.ntt.2019.106822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 11/15/2022]
|
45
|
Bertoncello KT, Müller TE, Fontana BD, Franscescon F, Filho GLB, Rosemberg DB. Taurine prevents memory consolidation deficits in a novel alcohol-induced blackout model in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:39-45. [PMID: 30880191 DOI: 10.1016/j.pnpbp.2019.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Ethanol is one of the most consumed substance worldwide that impairs learning and memory processes, resulting in amnesia or blackout. Due to the genetic conservation, rich behavioral repertoire, and high pharmacological tractability, the zebrafish (Danio rerio) has emerged as a powerful model organism for assessing preventive strategies against the noxious effects of ethanol in vertebrates. Here, we used an inhibitory avoidance apparatus to investigate the potential preventive effects of taurine in a novel ethanol-induced amnesia model in zebrafish. The experimental tank consisted of two compartments of the same size, one dark and another white, which were separated by a guillotine-type door. Three parallel metal bars coupled to an electrical stimulator were connected on each lateral wall of the dark compartment as electrical stimulus source. Differences on the latency to enter the dark compartment were used as retention indexes. A mild electric shock (125 mA, 3 ± 0.2 V) at 10 and 1000 Hz did not promote significant learning, while 100 Hz facilitated memory retention. Posttraining administration of MK-801 blocked this response, reinforcing the predictive validity of the test. Treatments were performed immediately after the training session using the 100 Hz frequency. Animals were exposed to water (control), taurine (42, 150, 400 mg/L), ethanol (0.25%, 1.0% v/v) or taurine plus ethanol to assess the effects on memory consolidation. Test session was performed 24 h following training. Ethanol at 0.25% did not affect memory consolidation, but 1.0% impaired memory without changing locomotion. Although taurine alone did not modulate learning, all concentrations tested exerted prevented ethanol-induced memory impairment. Overall, we describe a novel ethanol-induced blackout model, where a high ethanol concentration acutely impairs memory consolidation in zebrafish. Moreover, since taurine showed a protective role, we reinforce the growing utility of zebrafish models for assessing the deleterious effects of ethanol and potential therapeutic strategies.
Collapse
Affiliation(s)
- Kanandra T Bertoncello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Barbara D Fontana
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Gilvan L B Filho
- Department of Biomedical Equipment. Federal Institute of Education, Science and Technology. s/n BR 406, Km 145. Ceará-Mirim, RN 59570-000, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
46
|
Krook JT, Duperreault E, Newton D, Ross MS, Hamilton TJ. Repeated ethanol exposure increases anxiety-like behaviour in zebrafish during withdrawal. PeerJ 2019; 7:e6551. [PMID: 30842911 PMCID: PMC6397752 DOI: 10.7717/peerj.6551] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/01/2019] [Indexed: 11/20/2022] Open
Abstract
Zebrafish (Danio rerio) are quickly becoming an important model organism in behavioural neuroscience and drug addiction research. Conditioned place preference studies show that drugs of abuse produce responses in zebrafish that are similar to mammalian animal models. Repeated administration of ethanol in zebrafish results in withdrawal-induced behavioural responses that vary with dose and exposure duration, requiring additional investigation. Here, we examine the effects of ethanol withdrawal on anxiety-like behaviours in adult zebrafish after a 21-day ethanol dosing schedule at either 0.4% or 0.8%. Anxiety-like behaviour was measured with the novel object approach test; this test involves placing a fish in a circular arena with a novel object in the centre and observing the amount of exploration of the object. We found increased anxiety-like behaviour during ethanol withdrawal. This study adds to the growing body of literature that validates the zebrafish as a model organism in the field of behavioural neuroscience and addiction.
Collapse
Affiliation(s)
- Jeffrey T Krook
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | | | - Dustin Newton
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Matthew S Ross
- Department of Physical Sciences, MacEwan University, Edmonton, AB, Canada
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
47
|
Tsang B, Ansari R, Gerlai R. Dose dependent behavioral effects of acute alcohol administration in zebrafish fry. Pharmacol Biochem Behav 2019; 179:124-133. [PMID: 30807782 DOI: 10.1016/j.pbb.2019.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/19/2022]
Abstract
The zebrafish is becoming increasingly utilized in behavioral neuroscience as it appears to strike a good compromise between practical simplicity and system complexity. Particularly in alcohol (ethanol) research, the zebrafish has been employed as a translationally relevant model organism. However, the majority of studies investigating the effects of alcohol on brain function and behavior has used adult zebrafish. In the current study, we utilize 6-8 post-fertilization day old larval zebrafish (fry) to investigate the effects of a 40 min-long, acute, immersion into the alcohol bath. We measure the behavioral responses of the fry during the immersion session in relatively large arenas, the petri dish, instead of the often employed 96 well plate, and report on significant modification of behavior induced by alcohol. For example, we found the intermediate dose of alcohol (0.5%, vol/vol) to exert a stimulant effect manifesting as slight elevation of swim speed, robust increase of turning, temporal variability of swim speed and turning, and diminished frequency of staying immobile. We also found the high dose of 1% alcohol to elicit an opposite response, a sedative effect. This biphasic dose response of alcohol mimics what has been found in mammals, including humans, and thus we conclude that a few day-old zebrafish fry may be a cost effective and efficient tool with which one can screen for small molecules or mutations with alcohol-effect modifying properties.
Collapse
Affiliation(s)
- Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Rida Ansari
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Canada; Department of Cell and Systems Biology, University of Toronto, Canada.
| |
Collapse
|
48
|
Ariyasiri K, Choi TI, Kim OH, Hong TI, Gerlai R, Kim CH. Pharmacological (ethanol) and mutation (sam2 KO) induced impairment of novelty preference in zebrafish quantified using a new three-chamber social choice task. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:53-65. [PMID: 29958859 DOI: 10.1016/j.pnpbp.2018.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Social behavior is a fundamental aspect of our own species, a feature without which our society would not function. There are numerous human brain disorders associated with abnormal social behavior, among them are the autism spectrum disorders whose causal factors include a genetic component. Environmental factors, including drugs of abuse such as alcohol, also contribute to numerous abnormalities related to social behavior. Several such disorders have been modeled using laboratory animals. Perhaps one of the newest among them is the zebrafish. However, the paucity of standardized behavioral assays specifically developed for the zebrafish have hindered progress. Here, we present a newly developed zebrafish behavioral paradigm, the three-chamber social choice task. This task, which was adapted from a murine model, assesses sociality and social novelty preference in zebrafish in three phases: habituation, phase-I to evaluate sociality, and phase-II to quantify social novelty preference. Test fish are placed in the middle chamber, while conspecifics are introduced to the flanking chambers during phase-I and II. Both male and female zebrafish displayed sociality (preference for conspecifics) during phase-I and social novelty preference (preference for unfamiliar conspecifics) during phase-II. We found the paradigm to be able to detect both environmentally (alcohol) as well as genetically (targeted knock out of sam2) induced alterations of behavioral phenotypes. Although ethanol-treated fish displayed similar levels of sociality to those of control (not alcohol exposed) male and female zebrafish, they were found to exhibit significantly impaired social novelty preference, a finding compatible with altered motivational or perhaps mnemonic processes. Moreover, we found that knock out of sam2, previously shown to lead to emotional dysregulation, also disrupted social novelty preference, while leaving sociality relatively intact. We conclude that our novel behavioral paradigm is appropriate for the modeling and quantification of social behavior deficits in zebrafish.
Collapse
Affiliation(s)
- Krishan Ariyasiri
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Oc-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Ted Inpyo Hong
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
49
|
Lutte AH, Nazario LR, Majolo JH, Pereira TCB, Altenhofen S, Dadda ADS, Bogo MR, Da Silva RS. Persistent increase in ecto‑5'‑nucleotidase activity from encephala of adult zebrafish exposed to ethanol during early development. Neurotoxicol Teratol 2018; 70:60-66. [PMID: 30366104 DOI: 10.1016/j.ntt.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Prenatal alcohol exposure causes alterations to the brain and can lead to numerous cognitive and behavioral outcomes. Long-lasting effects of early ethanol exposure have been registered in glutamatergic and dopaminergic systems. The purinergic system has been registered as an additional target of ethanol exposure. The objective of this research was to evaluate if the ecto‑5'‑nucleotidase and adenosine deaminase activities and gene expression of adult zebrafish exposed to 1% ethanol during early development could be part of the long-lasting targets of ethanol. Zebrafish embryos were exposed to 1% ethanol in two distinct developmental phases: gastrula/segmentation (5-24 h post-fertilization) or pharyngula (24-48 h post-fertilization). At the end of three months, after checking for morphological outcomes, the evaluation of enzymatic activity and gene expression was performed. Exposure to ethanol did not promote gross morphological defects; however, a significant decrease in the body length was observed (17% in the gastrula and 22% in the pharyngula stage, p < 0.0001). Ethanol exposure during the gastrula/segmentation stage promoted an increase in ecto‑5'‑nucleotidase activity (39.5%) when compared to the control/saline group (p < 0.0001). The ecto‑5'‑nucleotidase gene expression and the deamination of adenosine exerted by ecto and cytosolic adenosine deaminase were not affected by exposure to ethanol in both developmental stages. HPLC experiments did not identify differences in adenosine concentration on the whole encephala of adult animals exposed to ethanol during the gastrula stage or on control animals (p > 0.05). Although the mechanism underlying these findings requires further investigation, these results indicate that ethanol exposure during restricted periods of brain development can have long-term consequences on ecto‑5'‑nucleotidase activity, which could have an impact on subtle sequels of ethanol early exposure.
Collapse
Affiliation(s)
- Aline Haab Lutte
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza Reali Nazario
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlia Huppes Majolo
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Talita Carneiro Brandão Pereira
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adilio da Silva Dadda
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rosane Souza Da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
50
|
Rajesh V, Mridhulmohan M, Jayaseelan S, Sivakumar P, Ganesan V. Mefenamic Acid Attenuates Chronic Alcohol Induced Cognitive Impairment in Zebrafish: Possible Role of Cholinergic Pathway. Neurochem Res 2018; 43:1392-1404. [PMID: 29796737 DOI: 10.1007/s11064-018-2554-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/20/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022]
Abstract
Based on the scientific evidence supporting the neuroinflammatory response contributes the cognitive impairment associated with chronic alcoholism and the neuroprotective actions of mefenamic acid with reversal of memory loss and brain inflammation in mice, this study was designed to evaluate the effect of mefenamic acid against chronic alcohol induced cognitive impairment in zebrafish model. Zebrafish were grouped and subjected to normal behavioral analysis in light-dark chamber for 10 days. The preference to dark compartment was noted in zebrafish. Zebrafish were grouped and exposed to escalating doses of alcohol for 28 days with and without mefenamic acid exposure (100 and 200 µg/L) and subjected to a fear conditioning passive avoidance task from day 13 of 28. The cognitive evaluation was performed for 10 days and the brain tissue was isolated to estimate acetylcholinesterase activity. In cognitive evaluation study, the normal zebrafish retained the memory of the learned task and avoided the dark. The alcohol exposed zebrafish showed impairment in retaining the memory of learned task. Mefenamic acid exposed zebrafish showed a significant protection against cognitive impairment caused by alcohol and retained the memory of learned task with a significant decrease in AChE activity in brain homogenate compared to alcohol exposed zebrafish. The results of this study suggest that the memory enhancing activity of mefenamic acid might be due to activation of cholinergic transmission that has protected neuroinflammatory and neurodegenerative conditions caused by alcohol.
Collapse
Affiliation(s)
- Venugopalan Rajesh
- Department of Pharmacology, The Erode College of Pharmacy, Veppampalayam, Vallipurathampalayam (Po), Erode, Tamil Nadu, 638112, India.
| | - Mohanan Mridhulmohan
- Department of Pharmacology, Devaki Amma Memorial College of Pharmacy, Malappuram District, Chelembra, Kerala, 673634, India
| | - Subramanian Jayaseelan
- Department of Pharmaceutical Analysis, The Erode College of Pharmacy, Veppampalayam, Vallipurathampalayam (Po), Erode, Tamil Nadu, 638112, India
| | - Palanivel Sivakumar
- Department of Pharmaceutical chemistry, The Erode College of Pharmacy, Veppampalayam, Vallipurathampalayam (Po), Erode, Tamil Nadu, 638112, India
| | - Vellaiyachamy Ganesan
- Department of Pharmaceutics, The Erode College of Pharmacy, Veppampalayam, Vallipurathampalayam (Po), Erode, Tamil Nadu, 638112, India
| |
Collapse
|