1
|
Khandwala N, Besirli C, Bohnsack BL. Outcomes and surgical management of persistent fetal vasculature. BMJ Open Ophthalmol 2021; 6:e000656. [PMID: 34013048 PMCID: PMC8094357 DOI: 10.1136/bmjophth-2020-000656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/13/2021] [Accepted: 04/16/2021] [Indexed: 11/11/2022] Open
Abstract
Objective To analyse outcomes in different forms of persistent fetal vasculature (PFV). Methods and analysis Retrospective cohort study at a university-based practice of children presenting with PFV between 2011 and 2020. Exclusion criteria was surgical management outside of our institution and follow-up less than 1 month. Wilcoxon and Student’s t-tests were used for statistical analysis. Results Forty-six eyes of 45 patients presented with PFV at 16.7±31.3 (median 2.8) months old with 32.6±29.8 (median 22.5) months of follow-up. Types of PFV included: mild combined anterior-posterior (23 eyes, 50%), severe combined anterior-posterior (18 eyes, 39%), severe anterior (3 eyes, 7%), mild anterior (1 eye, 2%) and posterior (1 eye, 2%). Thirty-two eyes (70%) underwent PFV surgical correction; lensectomy (13 mild combined), vitrectomy (3 mild combined), sequential lensectomy then vitrectomy (3 severe combined), combined lensectomy-vitrectomy (11 severe anterior or severe combined), laser retinopexy (1 mild combined). Five eyes required additional vitrectomy surgery for retinal detachment, fold or cyclitic membrane. Nine eyes developed glaucoma, six requiring Intraocular pressure (IOP)-lowering surgery. At final follow-up, 32 eyes had at least form vision and 6 eyes were aversive to light. Eight eyes, all which were severe combined, and four that did not undergo PFV surgery, were unable to detect light due to phthisis bulbi (7) and optic nerve hypoplasia (1). Conclusions Classification of PFV is important in determining surgical approach with severe cases often requiring both lensectomy and vitrectomy for optimal anatomic and functional outcomes.
Collapse
Affiliation(s)
- Nikhila Khandwala
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Cagri Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Brenda L Bohnsack
- Ophthalmology and Visual Sciences, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
|
3
|
Bayramov AV, Ermakova GV, Eroshkin FM, Kucheryavyy AV, Martynova NY, Zaraisky AG. Presence of homeobox gene of Anf class in Pacific lamprey Lethenteron camtschaticum confirms the hypothesis about the importance of emergence of Anf genes for the origin of telencephalon in vertebrate evolution. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417040026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Bayramov AV, Ermakova GV, Eroshkin FM, Kucheryavyy AV, Martynova NY, Zaraisky AG. The presence of Anf/Hesx1 homeobox gene in lampreys suggests that it could play an important role in emergence of telencephalon. Sci Rep 2016; 6:39849. [PMID: 28008996 PMCID: PMC5180219 DOI: 10.1038/srep39849] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022] Open
Abstract
Accumulated evidence indicates that the core genetic mechanisms regulating early patterning of the brain rudiment in vertebrates are very similar to those operating during development of the anterior region of invertebrate embryos. However, the mechanisms underlying the morphological differences between the elaborate vertebrate brain and its simpler invertebrate counterpart remain poorly understood. Recently, we hypothesized that the emergence of the most anterior unit of the vertebrate brain, the telencephalon, could be related to the appearance in vertebrates’ ancestors of a unique homeobox gene, Anf/Hesx1(further Anf), which is absent from all invertebrates and regulates the earliest steps of telencephalon development in vertebrates. However, the failure of Anf to be detected in one of the most basal extant vertebrate species, the lamprey, seriously compromises this hypothesis. Here, we report the cloning of Anf in three lamprey species and demonstrate that this gene is indeed expressed in embryos in the same pattern as in other vertebrates and executes the same functions by inhibiting the expression of the anterior general regulator Otx2 in favour of the telencephalic regulator FoxG1. These results are consistent with the hypothesis that the Anf homeobox gene may have been important in the evolution of the telencephalon.
Collapse
Affiliation(s)
- Andrey V Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Fedor M Eroshkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexandr V Kucheryavyy
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Natalia Y Martynova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
5
|
Fang Q, Figueredo Benedetti AF, Ma Q, Gregory L, Li JZ, Dattani M, Sadeghi-Nejad A, Arnhold IJ, de Mendonça BB, Camper SA, Carvalho LR. HESX1 mutations in patients with congenital hypopituitarism: variable phenotypes with the same genotype. Clin Endocrinol (Oxf) 2016; 85:408-14. [PMID: 27000987 PMCID: PMC4988903 DOI: 10.1111/cen.13067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/22/2016] [Accepted: 03/16/2016] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Mutations in the transcription factor HESX1 can cause isolated growth hormone deficiency (IGHD) or combined pituitary hormone deficiency (CPHD) with or without septo-optic dysplasia (SOD). So far there is no clear genotype-phenotype correlation. PATIENTS AND RESULTS We report four different recessive loss-of-function mutations in three unrelated families with CPHD and no midline defects or SOD. A homozygous p.R160C mutation was found by Sanger sequencing in two siblings from a consanguineous family. These patients presented with ACTH, TSH and GH deficiencies, severe anterior pituitary hypoplasia (APH) or pituitary aplasia (PA) and normal posterior pituitary. The p.R160C mutation was previously reported in a case with SOD, CPHD and ectopic posterior pituitary (EPP). Using exome sequencing, a homozygous p.I26T mutation was found in a Brazilian patient born to consanguineous parents. This patient had evolving CPHD, normal ACTH, APH and normal posterior pituitary (NPP). A previously reported patient homozygous for p.I26T had evolving CPHD and EPP. Finally, we identified compound heterozygous mutations in HESX1, p.[R159W];[R160H], in a patient with PA and CPHD. We showed that both of these mutations abrogate the ability of HESX1 to repress PROP1-mediated transcriptional activation. A patient homozygous for p.R160H was previously reported in a patient with CPHD, EPP, APH. CONCLUSION These three examples demonstrate that HESX1 mutations cause variable clinical features in patients, which suggests an influence of modifier genes or environmental factors on the phenotype.
Collapse
Affiliation(s)
- Qing Fang
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anna Flavia Figueredo Benedetti
- Division of Endocrinology, Unit of Endocrinology and Development, Laboratory of Hormones and Molecular Genetics, Clinical Hospital of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Qianyi Ma
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Louise Gregory
- Developmental Endocrinology Research Group, Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, University College London, Institute of Child Health, London, UK
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mehul Dattani
- Developmental Endocrinology Research Group, Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, University College London, Institute of Child Health, London, UK
| | - Abdollah Sadeghi-Nejad
- Division of Pediatric Endocrinology, Floating Hospital for Children at Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Ivo J.P. Arnhold
- Division of Endocrinology, Unit of Endocrinology and Development, Laboratory of Hormones and Molecular Genetics, Clinical Hospital of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Berenice Bilharinho de Mendonça
- Division of Endocrinology, Unit of Endocrinology and Development, Laboratory of Hormones and Molecular Genetics, Clinical Hospital of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Sally A. Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Correspondence should be addressed to: Sally A. Camper, Ph.D., Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA, Fax: 1-734-763-3784, , Luciani R. Carvalho, M.D., Ph.D., Endocrinology Discipline of Internal Medicine Department, University of Sao Paulo Medical School, Sao Paulo, Brazil, Fax: 55-11-2661-7519,
| | - Luciani R. Carvalho
- Division of Endocrinology, Unit of Endocrinology and Development, Laboratory of Hormones and Molecular Genetics, Clinical Hospital of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
- Correspondence should be addressed to: Sally A. Camper, Ph.D., Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA, Fax: 1-734-763-3784, , Luciani R. Carvalho, M.D., Ph.D., Endocrinology Discipline of Internal Medicine Department, University of Sao Paulo Medical School, Sao Paulo, Brazil, Fax: 55-11-2661-7519,
| |
Collapse
|
6
|
Schoenmakers N, Alatzoglou KS, Chatterjee VK, Dattani MT. Recent advances in central congenital hypothyroidism. J Endocrinol 2015; 227:R51-71. [PMID: 26416826 PMCID: PMC4629398 DOI: 10.1530/joe-15-0341] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 09/17/2015] [Accepted: 09/28/2015] [Indexed: 01/23/2023]
Abstract
Central congenital hypothyroidism (CCH) may occur in isolation, or more frequently in combination with additional pituitary hormone deficits with or without associated extrapituitary abnormalities. Although uncommon, it may be more prevalent than previously thought, affecting up to 1:16 000 neonates in the Netherlands. Since TSH is not elevated, CCH will evade diagnosis in primary, TSH-based, CH screening programs and delayed detection may result in neurodevelopmental delay due to untreated neonatal hypothyroidism. Alternatively, coexisting growth hormones or ACTH deficiency may pose additional risks, such as life threatening hypoglycaemia. Genetic ascertainment is possible in a minority of cases and reveals mutations in genes controlling the TSH biosynthetic pathway (TSHB, TRHR, IGSF1) in isolated TSH deficiency, or early (HESX1, LHX3, LHX4, SOX3, OTX2) or late (PROP1, POU1F1) pituitary transcription factors in combined hormone deficits. Since TSH cannot be used as an indicator of euthyroidism, adequacy of treatment can be difficult to monitor due to a paucity of alternative biomarkers. This review will summarize the normal physiology of pituitary development and the hypothalamic-pituitary-thyroid axis, then describe known genetic causes of isolated central hypothyroidism and combined pituitary hormone deficits associated with TSH deficiency. Difficulties in diagnosis and management of these conditions will then be discussed.
Collapse
Affiliation(s)
- Nadia Schoenmakers
- University of Cambridge Metabolic Research LaboratoriesWellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Level 4, PO Box 289, Hills Road, Cambridge CB2 0QQ, UKDevelopmental Endocrinology Research GroupSection of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - Kyriaki S Alatzoglou
- University of Cambridge Metabolic Research LaboratoriesWellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Level 4, PO Box 289, Hills Road, Cambridge CB2 0QQ, UKDevelopmental Endocrinology Research GroupSection of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - V Krishna Chatterjee
- University of Cambridge Metabolic Research LaboratoriesWellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Level 4, PO Box 289, Hills Road, Cambridge CB2 0QQ, UKDevelopmental Endocrinology Research GroupSection of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - Mehul T Dattani
- University of Cambridge Metabolic Research LaboratoriesWellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Level 4, PO Box 289, Hills Road, Cambridge CB2 0QQ, UKDevelopmental Endocrinology Research GroupSection of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| |
Collapse
|
7
|
Jutley-Neilson J, Harris G, Kirk J. The identification and measurement of autistic features in children with septo-optic dysplasia, optic nerve hypoplasia and isolated hypopituitarism. RESEARCH IN DEVELOPMENTAL DISABILITIES 2013; 34:4310-4318. [PMID: 24210356 DOI: 10.1016/j.ridd.2013.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
This study aimed to highlight the occurrence of autism spectrum disorders (ASDs) in children with septo-optic dysplasia (SOD) and optic nerve hypoplasia (ONH). A cross-sectional study was designed, including 28 children with SOD and 14 children with ONH. Clinician diagnosis of ASD was reported in 14 children. The Social Communication Questionnaire (SCQ) reported that 23 children met the cut-off point for ASD, and 9 children met the cut-off point for autism. Greater levels of intellectual disability and visual loss were reported in children with ASD in comparison to those without ASD, but, of the two, intellectual disability was a better predictor for ASD. The SCQ lost its sensitivity and specificity in children who had greater visual loss which highlights a requirement for a measure that is sensitive to visual loss. It is also recommended that children with SOD/ONH would benefit from routine screening for ASDs.
Collapse
|
8
|
Cornelia de Lange Syndrome: NIPBL haploinsufficiency downregulates canonical Wnt pathway in zebrafish embryos and patients fibroblasts. Cell Death Dis 2013; 4:e866. [PMID: 24136230 PMCID: PMC3824680 DOI: 10.1038/cddis.2013.371] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/21/2023]
Abstract
Cornelia de Lange Syndrome is a severe genetic disorder characterized by malformations affecting multiple systems, with a common feature of severe mental retardation. Genetic variants within four genes (NIPBL (Nipped-B-like), SMC1A, SMC3, and HDAC8) are believed to be responsible for the majority of cases; all these genes encode proteins that are part of the 'cohesin complex'. Cohesins exhibit two temporally separated major roles in cells: one controlling the cell cycle and the other involved in regulating the gene expression. The present study focuses on the role of the zebrafish nipblb paralog during neural development, examining its expression in the central nervous system, and analyzing the consequences of nipblb loss of function. Neural development was impaired by the knockdown of nipblb in zebrafish. nipblb-loss-of-function embryos presented with increased apoptosis in the developing neural tissues, downregulation of canonical Wnt pathway genes, and subsequent decreased Cyclin D1 (Ccnd1) levels. Importantly, the same pattern of canonical WNT pathway and CCND1 downregulation was observed in NIPBL-mutated patient-specific fibroblasts. Finally, chemical activation of the pathway in nipblb-loss-of-function embryos rescued the adverse phenotype and restored the physiological levels of cell death.
Collapse
|
9
|
Ribeiro M, Machado A, Soares-Fernandes J. Septo-optic dysplasia with olfactory tract hypoplasia. J Pediatr Neurosci 2011; 4:49. [PMID: 21887179 PMCID: PMC3162841 DOI: 10.4103/1817-1745.49112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Manuel Ribeiro
- Department of Neuradiology, Hospital de São Marcos, Braga, Portugal
| | | | | |
Collapse
|
10
|
Abstract
Growth hormone (GH) deficiency (GHD) represents a condition characterized by reduced GH secretion, isolated or associated with other pituitary hormone deficiencies. Diagnosis of GHD in childhood is achieved by secretagogs testing in combination with auxological parameters, such as height and growth velocity and biochemical and radiological findings. Only after excluding other causes of growth failure should a careful assessment of the pituitary-IGF-1 axis be undertaken, using GH-provocative tests and basal serum IGF-I values. As recommended by the GH Research Society, patients with GHD should be treated with recombinant human GH in order to normalize height during childhood and, ultimately, attain a normal adult height.
Collapse
Affiliation(s)
- Mauro Bozzola
- a Dipartimento di Scienze Pediatriche, Università degli Studi di Pavia, Piazzale C. Golgi 2, 27100 Pavia, Italy.
| | - Cristina Meazza
- b Pediatric Department, University of Pavia, Foundation IRCCS San Matteo, Pavia, Italy
| |
Collapse
|
11
|
Muthukrishnan J, Harikumar KVS, Verma A, Modi K. Central hypothyroidism. Indian J Pediatr 2010; 77:94-6. [PMID: 19936667 DOI: 10.1007/s12098-009-0248-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 02/25/2009] [Indexed: 11/28/2022]
Abstract
A 15-mth-old male child of consanguineous parents, presented with classical features of congenital hypothyroidism. Serum total thyroxine (T4), total triiodothyronine (T3) and TSH were low. There was no evidence of deficiency of other pituitary hormones. Magnetic resonance imaging of the pituitary was normal. TSHB gene sequencing revealed a homozygous missense mutation due to single base substitution G?A at codon 85 resulting in change from Glycine to Arginine. This mutation in TSHB gene has been reported earlier in three cases with similar phenotype from Japan.
Collapse
|
12
|
Affiliation(s)
- Harvey B Sarnat
- University of Calgary Faculty of Medicine and Alberta Children's Hospital, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Affiliation(s)
- Harvey B Sarnat
- Department of Paediatric Neurology, Cedars-Sinai Medical Center and UCLA School of Medicine, 4221 NT, 8700 Beverly Blvd, Los Angeles, CA 90048, USA.
| |
Collapse
|
14
|
Sherr EH. The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): one gene leads to many phenotypes. Curr Opin Pediatr 2003; 15:567-71. [PMID: 14631200 DOI: 10.1097/00008480-200312000-00004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Infantile spasms, mental retardation, autism, and dystonia represent disabling diseases for which little etiologic information is available. Mutations in the Aristaless related homeobox gene (ARX) have been found in patients with these conditions. This discovery provides important genetic information and may ultimately offer treatment options for these patients. RECENT FINDINGS Recent work has demonstrated that mutations in ARX cause X-linked West syndrome, X-linked myoclonic epilepsy with spasticity and intellectual disability, Partington syndrome (mental retardation, ataxia, and dystonia), as well as nonsyndromic forms of mental retardation. Patients with these aforementioned diseases and ARX mutations were not reported to have brain imaging abnormalities. In contrast, mutations in ARX mutations have also been found in X-linked lissencephaly with abnormal genitalia, which typically includes severe brain malformations (lissencephaly, agenesis of the corpus callosum, and midbrain malformations), intractable seizures, and a severely shortened lifespan. ARX knockout mice manifest defects in overall neuroblast proliferation as well as selective abnormalities in gamma-aminobutyric acid-ergic interneuron migration. Consistent with these findings in mice, phenotype/genotype studies in humans suggest that truncating mutations cause X-linked lissencephaly with abnormal genitalia, and insertion/missense mutations result in epilepsy and mental retardation without cortical dysplasia. SUMMARY Mutations in the homeobox gene, ARX, cause a diverse spectrum of disease that includes cognitive impairment, epilepsy, and in another group of patients severe cortical malformations. Although the precise prevalence of ARX mutations is unclear, ARX may rival Fragile X as a cause of mental retardation and epilepsy in males.
Collapse
Affiliation(s)
- Elliott H Sherr
- Departments of Neurology and Pediatrics, University of California, San Francisco, California 94143-0748, USA.
| |
Collapse
|
15
|
Affiliation(s)
- Harvey B Sarnat
- Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California, USA.
| |
Collapse
|
16
|
Abstract
We systematically reviewed a series of patients (n = 85) with midline cerebral and cranial malformations to correlate the endocrinopathy with the neuroanatomic defect. Midline cleft lip and palate was associated not only with growth hormone deficiency (GHD) but also with diabetes insipidus (DI); holoprosencephaly and optic nerve hypoplasia with absence of the septum pellucidum had a similar incidence of GHD and DI. Optic nerve hypoplasia with absence of the septum pellucidum had the highest incidence of multiple pituitary endocrinopathies and of neonatal hypoglycaemia. Unilateral, although more commonly bilateral, optic nerve hypoplasia was associated with GHD.
Collapse
Affiliation(s)
- Cristina Traggiai
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | | |
Collapse
|
17
|
Brickman JM, Clements M, Tyrell R, McNay D, Woods K, Warner J, Stewart A, Beddington RS, Dattani M. Molecular effects of novel mutations in Hesx1/HESX1 associated with human pituitary disorders. Development 2001; 128:5189-99. [PMID: 11748154 DOI: 10.1242/dev.128.24.5189] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The homeobox gene Hesx1/HESX1 has been implicated in the establishment of anterior pattern in the central nervous system (CNS) in a number of vertebrate species. Its role in pituitary development has been documented through loss-of-function studies in the mouse. A homozygous missense point mutation resulting in a single amino acid substitution, Arg160Cys (R160C), is associated with a heritable form of the human condition of septo-optic dysplasia (SOD). We have examined the phenotype of affected members in this pedigree in more detail and demonstrate for the first time a genetic basis for midline defects associated with an undescended or ectopic posterior pituitary. A similar structural pituitary abnormality was observed in a second patient heterozygous for another mutation in HESX1, Ser170Leu (S170L). Association of S170L with a pituitary phenotype may be a direct consequence of the HESX1 mutation since S170L is also associated with a dominant familial form of pituitary disease. However, a third mutation in HESX1, Asn125Ser (N125S), occurs at a high frequency in the Afro-Caribbean population and may therefore reflect a population-specific polymorphism. To investigate the molecular basis for these clinical phenotypes, we have examined the impact of these mutations on the regulatory functions of HESX1. We show that Hesx1 is a promoter-specific transcriptional repressor with a minimal 36 amino acid repression domain which can mediate promoter-specific repression by suppressing the activity of homeodomain-containing activator proteins. Mutations in HESX1 associated with pituitary disease appear to modulate the DNA-binding affinity of HESX1 rather than its transcriptional activity. Wild-type HESX1 binds a dimeric homeodomain site with high affinity (Kd 31 nM) whilst HESX1(S170L) binds with a 5-fold lower activity (Kd 150 nM) and HESX1(R160C) does not bind at all. Although HESX1(R160C) has only been shown to be associated with the SOD phenotype in children homozygous for the mutation, HESX1(R160C) can inhibit DNA binding by wild-type HESX1 both in vitro and in vivo in cell culture. This dominant negative activity of HESX1(R160C) is mediated by the Hesx1 repression domain, supporting the idea that the repression domain is implicated in interactions between homeodomain proteins. Our data suggest a possible molecular paradigm for the dominant inheritance observed in some pituitary disorders.
Collapse
Affiliation(s)
- J M Brickman
- Division of Mammalian Development, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Bhasin S, Mallidis C, Ma K. The genetic basis of infertility in men. BAILLIERE'S BEST PRACTICE & RESEARCH. CLINICAL ENDOCRINOLOGY & METABOLISM 2000; 14:363-88. [PMID: 11097781 DOI: 10.1053/beem.2000.0085] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Subfertility in men is a heterogeneous syndrome, its pathophysiology remaining unknown in the majority of affected men. A large number of genes and loci are associated with sterility in experimental animals, but the human homologues of most of these genes have not been characterized. A British study suggested that, in a large proportion of men with idiopathic infertility, the disorder is inherited as an autosomal recessive trait; this provocative hypothesis needs confirmation. Because normal germ cell development requires the temporally and spatially co-ordinated expression of a number of gene products at the hypothalamic, pituitary and testicular levels, it is safe to predict that a large number of autosomal, as well as X- and Y-linked, genes will probably be implicated in different subsets of male subfertility.
Collapse
Affiliation(s)
- S Bhasin
- UCLA School of Medicine, CA 90059, USA
| | | | | |
Collapse
|