1
|
Shibata Y, Shibata A, Mizuguchi T, Matsumoto N, Osaka H. A case of severe Aicardi-Goutières syndrome with a homozygous RNASEH2B intronic variant. Hum Genome Var 2024; 11:33. [PMID: 39183359 PMCID: PMC11345432 DOI: 10.1038/s41439-024-00291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024] Open
Abstract
We report a case of severe Aicardi-Goutières syndrome caused by a novel homozygous RNASEH2B intronic variant, NC_000013.10(NM_024570.4):c.65-13G > A p.Glu22Valfs*5. The patient was born with pseudo-TORCH symptoms, including intracranial calcification, cataracts, and hepatosplenomegaly. Furthermore, the patient exhibited profound intellectual impairment and died at 14 months due to aspiration pneumonia accompanied by interstitial lung abnormalities. The severity of the patient's symptoms underscores the critical role of the C-terminal region of RNase H2B.
Collapse
Affiliation(s)
- Yuri Shibata
- Department of Pediatrics, Sano Kosei General Hospital, Tochigi, Japan
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Akimichi Shibata
- Department of Pediatrics, Japanese Red Cross Ashikaga Hospital, Tochigi, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
2
|
Chenhan Z, Jun S, Yang D, Linliang Y, Xiaowen G, Chunya J, Xuedong D. A case of Aicardi-Goutières syndrome caused by TREX1 gene mutation. BMC Pregnancy Childbirth 2023; 23:124. [PMID: 36814213 PMCID: PMC9945611 DOI: 10.1186/s12884-023-05436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Aicardi-Goutières syndrome (AGS) is a rare genetic disorder involving the central nervous system and autoimmune abnormalities, leading to severe intellectual and physical disability with poor prognosis. AGS has a phenotype similar to intrauterine viral infection, which often leads to delays in genetic counseling. In this study, we report a case with a prenatal diagnosis of AGS. The first fetal ultrasound detected bilateral lateral ventricle cystic structures, and fetal MRI was performed to identify other signs. The right parietal lobe signal showed cerebral white matter abnormalities, and fetal brain development level was lower than that of normal fetuses of the same gestational age. Whole-exome sequencing revealed that the fetus carried the TREX1:NM_033629.6:exon2:c.294dup:p. C99Mfs*3 variant, suggesting that the c.294dup mutation of the TREX1 gene was the pathogenic mutation site, and the final comprehensive diagnosis was AGS1. In this article, we also reviewed the previous literature for possible phenotypes in the fetus and found that microcephaly and intrauterine growth retardation may be the first and most important markers of the intrauterine phenotype of AGS.
Collapse
Affiliation(s)
- Zheng Chenhan
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Shao Jun
- Department of Ultrasound, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, China
| | - Ding Yang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Yin Linliang
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China.
| | - Gu Xiaowen
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Ji Chunya
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Deng Xuedong
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
3
|
Sirpilla O, Bauss J, Gupta R, Underwood A, Qutob D, Freeland T, Bupp C, Carcillo J, Hartog N, Rajasekaran S, Prokop JW. SARS-CoV-2-Encoded Proteome and Human Genetics: From Interaction-Based to Ribosomal Biology Impact on Disease and Risk Processes. J Proteome Res 2020; 19:4275-4290. [PMID: 32686937 PMCID: PMC7418564 DOI: 10.1021/acs.jproteome.0c00421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 (COVID-19) has infected millions of people worldwide, with lethality in hundreds of thousands. The rapid publication of information, both regarding the clinical course and the viral biology, has yielded incredible knowledge of the virus. In this review, we address the insights gained for the SARS-CoV-2 proteome, which we have integrated into the Viral Integrated Structural Evolution Dynamic Database, a publicly available resource. Integrating evolutionary, structural, and interaction data with human proteins, we present how the SARS-CoV-2 proteome interacts with human disorders and risk factors ranging from cytokine storm, hyperferritinemic septic, coagulopathic, cardiac, immune, and rare disease-based genetics. The most noteworthy human genetic potential of SARS-CoV-2 is that of the nucleocapsid protein, where it is known to contribute to the inhibition of the biological process known as nonsense-mediated decay. This inhibition has the potential to not only regulate about 10% of all biological transcripts through altered ribosomal biology but also associate with viral-induced genetics, where suppressed human variants are activated to drive dominant, negative outcomes within cells. As we understand more of the dynamic and complex biological pathways that the proteome of SARS-CoV-2 utilizes for entry into cells, for replication, and for release from human cells, we can understand more risk factors for severe/lethal outcomes in patients and novel pharmaceutical interventions that may mitigate future pandemics.
Collapse
Affiliation(s)
- Olivia Sirpilla
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Department of Pharmacology and
Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Jacob Bauss
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
| | - Ruchir Gupta
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Department of Pharmacology and
Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Adam Underwood
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Dinah Qutob
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Tom Freeland
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Caleb Bupp
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Spectrum Health Medical
Genetics, Grand Rapids, Michigan 49503,
United States
| | - Joseph Carcillo
- Department of Critical Care Medicine
and Pediatrics, Children’s Hospital of Pittsburgh,
University of Pittsburgh School of
Medicine, Pittsburgh, Pennsylvania 15421,
United States
| | - Nicholas Hartog
- Allergy & Immunology,
Spectrum Health, Grand Rapids, Michigan 49503,
United States
| | - Surender Rajasekaran
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Pediatric Intensive Care
Unit, Helen DeVos Children’s Hospital,
Grand Rapids, Michigan 49503, United States
- Office of Research,
Spectrum Health, Grand Rapids, Michigan 49503,
United States
| | - Jeremy W. Prokop
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Department of Pharmacology and
Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Grønborg S, Risom L, Ek J, Larsen KB, Scheie D, Petkov Y, Larsen VA, Dunø M, Joensen F, Østergaard E. A Faroese founder variant in TBCD causes early onset, progressive encephalopathy with a homogenous clinical course. Eur J Hum Genet 2018; 26:1512-1520. [PMID: 29921875 PMCID: PMC6138752 DOI: 10.1038/s41431-018-0204-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/22/2018] [Accepted: 06/05/2018] [Indexed: 11/08/2022] Open
Abstract
An intact and dynamic microtubule cytoskeleton is crucial for the development, differentiation, and maintenance of the mammalian cortex. Variants in a host of structural microtubulin-associated proteins have been identified to cause a wide spectrum of malformations of cortical development and alterations of microtubule dynamics have been recognized to cause or contribute to progressive neurodegenerative disorders. TBCD is one of the five tubulin-specific chaperones and is required for reversible assembly of the α-/β-tubulin heterodimer. Recently, variants in TBCD, and one other tubulin-specific chaperone, TBCE, have been identified in patients with distinct progressive encephalopathy with a seemingly broad clinical spectrum. Here, we report the clinical, neuroradiological, and neuropathological features in eight patients originating from the Faroe Islands, who presented with an early onset, progressive encephalopathy with features of primary neurodegeneration, and a homogenous clinical course. These patients were homozygous for a TBCD missense variant c.[3099C>G]; p.(Asn1033Lys), which we show has a high carrier frequency in the Faroese population (2.6%). The patients had similar age of onset as the previously reported patients (n = 24), but much shorter survival, which could be caused by either differences in supportive treatment, or alternatively, that shorter survival is intrinsic to the Faroese phenotype. We present a detailed description of the neuropathology and MR imaging characteristics of a subset of these patients, adding insight into the phenotype of TBCD-related encephalopathy. The finding of a Faroese founder variant will allow targeted genetic diagnostics in patients of Faroese descent as well as improved genetic counseling and testing of at-risk couples.
Collapse
Affiliation(s)
- Sabine Grønborg
- Department of Pediatrics, Center for Rare Diseases, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Lotte Risom
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Jakob Ek
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Karen Bonde Larsen
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Neuropathology and Ocular Pathology, John Radcliffe Hospital, Oxford University Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| | - David Scheie
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Yanko Petkov
- Department of Pediatrics, Esbjerg Hospital, Finsensgade 35, 6700, Esbjerg, Denmark
| | - Vibeke André Larsen
- Department of Radiology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Morten Dunø
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Fróði Joensen
- Department of Pediatrics, National Hospital of the Faroe Islands, Tórshavn, Faroe Islands
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
5
|
Abstract
Innate immune sensing of nucleic acids provides resistance against viral infection and is important in the aetiology of autoimmune diseases. AGS (Aicardi-Goutières syndrome) is a monogenic autoinflammatory disorder mimicking in utero viral infection of the brain. Phenotypically and immunologically, it also exhibits similarities to SLE (systemic lupus erythaematosus). Three of the six genes identified to date encode components of the ribonuclease H2 complex. As all six encode enzymes involved in nucleic acid metabolism, it is thought that pathogenesis involves the accumulation of nucleic acids to stimulate an inappropriate innate immune response. Given that AGS is a monogenic disorder with a defined molecular basis, we use it as a model for common autoimmune disease to investigate cellular processes and molecular pathways responsible for nucleic-acid-mediated autoimmunity. These investigations have also provided fundamental insights into the biological roles of the RNase H2 endonuclease enzyme. In the present article, we describe how human RNase H2 and its role in AGS were first identified, and give an overview of subsequent structural, biochemical, cellular and developmental studies of this enzyme. These investigations have culminated in establishing this enzyme as a key genome-surveillance enzyme required for mammalian genome stability.
Collapse
|
6
|
Rice GI, Reijns MAM, Coffin SR, Forte GMA, Anderson BH, Szynkiewicz M, Gornall H, Gent D, Leitch A, Botella MP, Fazzi E, Gener B, Lagae L, Olivieri I, Orcesi S, Swoboda KJ, Perrino FW, Jackson AP, Crow YJ. Synonymous mutations in RNASEH2A create cryptic splice sites impairing RNase H2 enzyme function in Aicardi-Goutières syndrome. Hum Mutat 2013; 34:1066-70. [PMID: 23592335 DOI: 10.1002/humu.22336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 04/01/2013] [Indexed: 11/09/2022]
Abstract
Aicardi-Goutières syndrome is an inflammatory disorder resulting from mutations in TREX1, RNASEH2A/2B/2C, SAMHD1, or ADAR1. Here, we provide molecular, biochemical, and cellular evidence for the pathogenicity of two synonymous variants in RNASEH2A. Firstly, the c.69G>A (p.Val23Val) mutation causes the formation of a splice donor site within exon 1, resulting in an out of frame deletion at the end of exon 1, leading to reduced RNase H2 protein levels. The second mutation, c.75C>T (p.Arg25Arg), also introduces a splice donor site within exon 1, and the internal deletion of 18 amino acids. The truncated protein still forms a heterotrimeric RNase H2 complex, but lacks catalytic activity. However, as a likely result of leaky splicing, a small amount of full-length active protein is apparently produced in an individual homozygous for this mutation. Recognition of the disease causing status of these variants allows for diagnostic testing in relevant families.
Collapse
Affiliation(s)
- Gillian I Rice
- Genetic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|