1
|
Sohouli MH, Tavakoli S, Reis MG, Hekmatdoost A, Guimarães NS. Changes in glucose metabolism, C-reactive protein, and liver enzymes following intake of NAD + precursor supplementation: a systematic review and meta-regression analysis. Nutr Metab (Lond) 2024; 21:35. [PMID: 38915015 PMCID: PMC11195006 DOI: 10.1186/s12986-024-00812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND There are contradictory effects regarding the effect of NAD + precursor on glucose metabolism and liver enzymes. In order to obtain a better viewpoint from them, this study aimed to comprehensively investigate the effects of NAD + precursor supplementation on glucose metabolism, C-reactive protein (CRP), and liver enzymes. METHODS PubMed/MEDLINE, Web of Science, SCOPUS, and Embase databases were searched using standard keywords to identify all controlled trials investigating the glucose metabolism, CRP, and liver enzymes effects of NAD + precursor. Pooled weighted mean difference (WMD) and 95% confidence intervals (95% CI) were achieved by random-effects model analysis for the best estimation of outcomes. RESULTS Forty-five articles with 9256 participants' were included in this article. The pooled findings showed that NAD + precursor supplementation had a significant increase in glucose (WMD: 2.17 mg/dL, 95% CI: 0.68, 3.66, P = 0.004) and HbA1c (WMD: 0.11, 95% CI: 0.06, 0.16, P < 0.001) as well as a significant decrease in CRP (WMD: -0.93 mg/l, 95% CI -1.47 to -0.40, P < 0.001) compared with control group, and was not statistically significant with respect to insulin and homeostasis model assessment of insulin resistance (HOMA-IR). However, we found no systemic changes in aspartate transaminase (AST), alanine transaminase (ALT), or alkaline phosphatase (ALP) levels after NAD + precursor supplementation. The results of the subgroup analysis showed that the intake of NAD + precursor during the intervention of more than 12 weeks caused a greater increase in the glucose level. Furthermore, Nicotinic acid supplementation (NA) causes a greater increase in glucose and HbA1c levels than nicotinamide (NE) supplementation. CONCLUSIONS Overall, these findings suggest that NAD + precursor supplementation might have an increase effect on glucose metabolism as well as a decrease in CRP.
Collapse
Affiliation(s)
- Mohammad Hassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sogand Tavakoli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcela Gomes Reis
- Health Science at Faculdade, Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nathalia Sernizon Guimarães
- Department of Nutrition, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| |
Collapse
|
2
|
Lei L, Zhang X, Lin J, Liang Q, Sohouli MH, Izze da Silva Magalhães E, Fatahi S, Yang L, Xu W, Wang X, Li W, Yang J. Effects of NAD+ precursors on blood pressure, C-reactive protein concentration and carotid intima-media thickness: A meta-analysis of randomized controlled trials. Eur J Clin Invest 2023; 53:e14078. [PMID: 37593976 DOI: 10.1111/eci.14078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND There are contradictory effects regarding the effect of NAD+ precursor on blood pressure and inflammation. In order to obtain a better viewpoint from them, this study aimed to comprehensively investigate the effects of NAD+ precursor supplementation on blood pressure, C-reactive protein (CRP) and carotid intima-media thickness (CIMT). METHODS PubMed/MEDLINE, Web of Science, SCOPUS and Embase databases were searched using standard keywords to identify all controlled trials investigating the effects of NAD+ precursor on blood pressure, CRP and CIMT. Pooled weighted mean difference (WMD) and 95% confidence intervals (95% CI) were achieved by random-effects model analysis for the best estimation of outcomes. RESULTS Twenty-nine articles (with 8664 participants) were included in this article. Results from meta-analyses of RCTs from random-effects models indicated a significant reduction in systolic (SBP) (weighted mean difference (WMD): -2.54 mmHg, p < .001) and diastolic blood pressure (DBP) (WMD: -2.15 mmHg, p < .001), as well as in CRP (WMD: -.93 mg/L, 95% CI -1.47 to -.40, p < .001) concentrations and CIMT (WMD: -.01 mm, 95% CI -.02 to -.00, p = .005) with the NAD+ precursors supplementation compared with the control group. In addition, a greater effect of supplementation with NAD+ precursors in reducing blood pressure (BP) were observed with the highest dose (≥2 g) and duration of the intervention (>12 weeks), as well as with NA supplementation when compared to NE. CONCLUSIONS Overall, these findings suggest that NAD+ precursor supplementation might have a beneficial effect on cardiovascular risk factors such as BP, CRP concentration and CIMT.
Collapse
Affiliation(s)
- Langhuan Lei
- Research Center of Health Management, Guangxi Zhuang Autonomous Region People's Hospital and Guangxi Academy of Medical Sciences, Nanning, China
| | - Xiaoli Zhang
- Department of Clinical Hematology, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jiali Lin
- Research Center of Health Management, Guangxi Zhuang Autonomous Region People's Hospital and Guangxi Academy of Medical Sciences, Nanning, China
| | - Qiuyu Liang
- Research Center of Health Management, Guangxi Zhuang Autonomous Region People's Hospital and Guangxi Academy of Medical Sciences, Nanning, China
| | - Mohammad Hassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Somaye Fatahi
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lihua Yang
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wanting Xu
- Pediatric Department, Chengdu Second People's Hospital, Chengdu, China
| | - Xingyong Wang
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Li
- Research Center of Health Management, Guangxi Zhuang Autonomous Region People's Hospital and Guangxi Academy of Medical Sciences, Nanning, China
- Department of Health Management, Guangxi Zhuang Autonomous Region People's Hospital and Guangxi Academy of Medical Sciences, Nanning, China
| | - Jianrong Yang
- Research Center of Health Management, Guangxi Zhuang Autonomous Region People's Hospital and Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
3
|
Lipoprotein(a) and Atherosclerotic Cardiovascular Disease, the Impact of Available Lipid-Lowering Medications on Lipoprotein(a): An Update on New Therapies. Endocr Pract 2022:S1530-891X(22)00901-6. [PMID: 36563785 DOI: 10.1016/j.eprac.2022.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To review evidence of existing and new pharmacological therapies for lowering lipoprotein(a) (Lp[a]) concentrations and their impact on clinically relevant outcomes. METHODS We searched for literature pertaining to Lp(a) and pharmacological treatments in PubMed. We reviewed articles published between 1963 and 2020. RESULTS We found that statins significantly increased Lp(a) concentrations. Therapies that demonstrated varying degrees of Lp(a) reduction included ezetimibe, niacin, proprotein convertase subtilisin/kexin type 9 inhibitors, lipoprotein apheresis, fibrates, aspirin, hormone replacement therapy, antisense oligonucleotide therapy, and small interfering RNA therapy. There was limited data from large observational studies and post hoc analyses showing the potential benefits of these therapies in improving cardiovascular outcomes. CONCLUSION There are multiple lipid-lowering agents currently being used to treat hyperlipidemia that also have a Lp(a)-lowering effect. Two RNA therapies specifically targeted to lower Lp(a) are being investigated in phase 3 clinical trials and, thus far, have shown promising results. However, evidence is lacking to determine the clinical relevance of reducing Lp(a). At present, there is a need for large-scale, randomized, controlled trials to evaluate cardiovascular outcomes associated with lowering Lp(a).
Collapse
|
4
|
Gil-Extremera B, Jiménez-López P, Mediavilla-García J. Clinical trials. A pending subject. Rev Clin Esp 2018. [DOI: 10.1016/j.rceng.2017.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Schandelmaier S, Briel M, Saccilotto R, Olu KK, Arpagaus A, Hemkens LG, Nordmann AJ. Niacin for primary and secondary prevention of cardiovascular events. Cochrane Database Syst Rev 2017; 6:CD009744. [PMID: 28616955 PMCID: PMC6481694 DOI: 10.1002/14651858.cd009744.pub2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Nicotinic acid (niacin) is known to decrease LDL-cholesterol, and triglycerides, and increase HDL-cholesterol levels. The evidence of benefits with niacin monotherapy or add-on to statin-based therapy is controversial. OBJECTIVES To assess the effectiveness of niacin therapy versus placebo, administered as monotherapy or add-on to statin-based therapy in people with or at risk of cardiovascular disease (CVD) in terms of mortality, CVD events, and side effects. SEARCH METHODS Two reviewers independently and in duplicate screened records and potentially eligible full texts identified through electronic searches of CENTRAL, MEDLINE, Embase, Web of Science, two trial registries, and reference lists of relevant articles (latest search in August 2016). SELECTION CRITERIA We included all randomised controlled trials (RCTs) that either compared niacin monotherapy to placebo/usual care or niacin in combination with other component versus other component alone. We considered RCTs that administered niacin for at least six months, reported a clinical outcome, and included adults with or without established CVD. DATA COLLECTION AND ANALYSIS Two reviewers used pre-piloted forms to independently and in duplicate extract trials characteristics, risk of bias items, and outcomes data. Disagreements were resolved by consensus or third party arbitration. We conducted random-effects meta-analyses, sensitivity analyses based on risk of bias and different assumptions for missing data, and used meta-regression analyses to investigate potential relationships between treatment effects and duration of treatment, proportion of participants with established coronary heart disease and proportion of participants receiving background statin therapy. We used GRADE to assess the quality of evidence. MAIN RESULTS We included 23 RCTs that were published between 1968 and 2015 and included 39,195 participants in total. The mean age ranged from 33 to 71 years. The median duration of treatment was 11.5 months, and the median dose of niacin was 2 g/day. The proportion of participants with prior myocardial infarction ranged from 0% (4 trials) to 100% (2 trials, median proportion 48%); the proportion of participants taking statin ranged from 0% (4 trials) to 100% (12 trials, median proportion 100%).Using available cases, niacin did not reduce overall mortality (risk ratio (RR) 1.05, 95% confidence interval (CI) 0.97 to 1.12; participants = 35,543; studies = 12; I2 = 0%; high-quality evidence), cardiovascular mortality (RR 1.02, 95% CI 0.93 to 1.12; participants = 32,966; studies = 5; I2 = 0%; moderate-quality evidence), non-cardiovascular mortality (RR 1.12, 95% CI 0.98 to 1.28; participants = 32,966; studies = 5; I2 = 0%; high-quality evidence), the number of fatal or non-fatal myocardial infarctions (RR 0.93, 95% CI 0.87 to 1.00; participants = 34,829; studies = 9; I2 = 0%; moderate-quality evidence), nor the number of fatal or non-fatal strokes (RR 0.95, 95% CI 0.74 to 1.22; participants = 33,661; studies = 7; I2 = 42%; low-quality evidence). Participants randomised to niacin were more likely to discontinue treatment due to side effects than participants randomised to control group (RR 2.17, 95% CI 1.70 to 2.77; participants = 33,539; studies = 17; I2 = 77%; moderate-quality evidence). The results were robust to sensitivity analyses using different assumptions for missing data. AUTHORS' CONCLUSIONS Moderate- to high-quality evidence suggests that niacin does not reduce mortality, cardiovascular mortality, non-cardiovascular mortality, the number of fatal or non-fatal myocardial infarctions, nor the number of fatal or non-fatal strokes but is associated with side effects. Benefits from niacin therapy in the prevention of cardiovascular disease events are unlikely.
Collapse
Affiliation(s)
- Stefan Schandelmaier
- McMaster UniversityDepartment of Health Research Methods, Evidence, and Impact1280 Main Street WestHamiltonONCanadaL8S4L8
| | - Matthias Briel
- University of BaselBasel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical ResearchBaselSwitzerland
| | - Ramon Saccilotto
- University of BaselBasel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical ResearchBaselSwitzerland
| | - Kelechi K Olu
- University of BaselBasel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical ResearchBaselSwitzerland
| | - Armon Arpagaus
- University of BaselBasel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical ResearchBaselSwitzerland
| | - Lars G Hemkens
- University of BaselBasel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical ResearchBaselSwitzerland
| | - Alain J Nordmann
- University of BaselBasel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical ResearchBaselSwitzerland
| | | |
Collapse
|
6
|
Sahebkar A, Reiner Ž, Simental-Mendía LE, Ferretti G, Cicero AFG. Effect of extended-release niacin on plasma lipoprotein(a) levels: A systematic review and meta-analysis of randomized placebo-controlled trials. Metabolism 2016; 65:1664-1678. [PMID: 27733255 DOI: 10.1016/j.metabol.2016.08.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023]
Abstract
AIM Lipoprotein(a) (Lp(a)) is a proatherogenic and prothrombotic lipoprotein. Our aim was to quantify the extended-release nicotinic acid Lp(a) reducing effect with a meta-analysis of the available randomized clinical trials. METHODS A meta-analysis and random-effects meta-regression were performed on data pooled from 14 randomized placebo-controlled clinical trials published between 1998 and 2015, comprising 17 treatment arms, which included 9013 subjects, with 5362 in the niacin arm. RESULTS The impact of ER niacin on plasma Lp(a) concentrations was reported in 17 treatment arms. Meta-analysis suggested a significant reduction of Lp(a) levels following ER niacin treatment (weighted mean difference - WMD: -22.90%, 95% CI: -27.32, -18.48, p<0.001). Results also remained similar when the meta-analysis was repeated with standardized mean difference as summary statistic (WMD: -0.66, 95% CI: -0.82, -0.50, p<0.001). When the studies were categorized according to the administered dose, there was a comparable effect between the subsets of studies with administered doses of <2000mg/day (WMD: -21.85%, 95% CI: -30.61, -13.10, p<0.001) and ≥2000mg/day (WMD: -23.21%, 95% CI: -28.41, -18.01, p<0.001). The results of the random-effects meta-regression did not suggest any significant association between the changes in plasma concentrations of Lp(a) with dose (slope: -0.0001; 95% CI: -0.01, 0.01; p=0.983), treatment duration (slope: -0.40; 95% CI: -0.97, 0.17; p=0.166), and percentage change in plasma HDL-C concentrations (slope: 0.44; 95% CI: -0.48, 1.36; p=0.350). CONCLUSION In this meta-analysis of randomized placebo-controlled clinical trials, treatment with nicotinic acid was associated with a significant reduction in Lp(a) levels.
Collapse
Affiliation(s)
- Amirhosssein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran; Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Željko Reiner
- University Hospital Center Zagreb, Department of Internal medicine, Kišpatićeva 12, Zagreb, Croatia
| | | | - Gianna Ferretti
- Dipartimento di Scienze cliniche Specialistiche ed Odontostomatologiche (DISCO), Università Politecnica delle Marche, Italy
| | - Arrigo F G Cicero
- Medicine and Surgery Sciences Dept., Alma Mater Studiorum University of Bologna, Italy.
| |
Collapse
|
7
|
Cooper DL, Murrell DE, Roane DS, Harirforoosh S. Effects of formulation design on niacin therapeutics: mechanism of action, metabolism, and drug delivery. Int J Pharm 2015; 490:55-64. [PMID: 25987211 DOI: 10.1016/j.ijpharm.2015.05.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022]
Abstract
Niacin is a highly effective, lipid regulating drug associated with a number of metabolically induced side effects such as prostaglandin (PG) mediated flushing and hepatic toxicity. In an attempt to reduce the development of these adverse effects, scientists have investigated differing methods of niacin delivery designed to control drug release and alter metabolism. However, despite successful formulation of various orally based capsule and tablet delivery systems, patient adherence to niacin therapy is still compromised by adverse events such as PG-induced flushing. While the primary advantage of orally dosed formulations is ease of use, alternative delivery options such as transdermal delivery or polymeric micro/nanoparticle encapsulation for oral administration have shown promise in niacin reformulation. However, the effectiveness of these alternative delivery options in reducing inimical effects of niacin and maintaining drug efficacy is still largely unknown and requires more in-depth investigation. In this paper, we present an overview of niacin applications, its metabolic pathways, and current drug delivery formulations. Focus is placed on oral immediate, sustained, and extended release niacin delivery as well as combined statin and/or prostaglandin antagonist niacin formulation. We also examine and discuss current findings involving transdermal niacin formulations and polymeric micro/nanoparticle encapsulated niacin delivery.
Collapse
Affiliation(s)
- Dustin L Cooper
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, United States
| | - Derek E Murrell
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, United States
| | - David S Roane
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, United States
| | - Sam Harirforoosh
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, United States.
| |
Collapse
|
8
|
McKenney J, Bays H, Gleim G, Mitchel Y, Kuznetsova O, Sapre A, Sirah W, Maccubbin D. Safety and tolerability of extended-release niacin-laropiprant: Pooled analyses for 11,310 patients in 12 controlled clinical trials. J Clin Lipidol 2015; 9:313-25. [PMID: 26073389 DOI: 10.1016/j.jacl.2015.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/29/2015] [Accepted: 02/25/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND The Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events (HPS2-THRIVE) showed that adding extended-release niacin-laropiprant (ERN-LRPT) to statin provided no incremental cardiovascular benefit vs placebo (PBO). ERN-LRPT was also associated with an excess of serious adverse experiences (AEs), some of which were unexpected (infections and bleeding). These findings led to the withdrawal of ERN-LRPT from all markets. OBJECTIVE We examined the safety profile of ERN-LRPT vs the comparators ERN alone and statins in the ERN-LRPT development program to assess whether similar safety signals were observed to those seen in HPS-THRIVE and whether these might be attributed to ERN or LRPT. METHODS Postrandomization safety data from 12 clinical studies, 12 to 52 weeks in duration and involving 11,310 patients, were analyzed across 3 treatments: (1) ERN-LRPT; (2) ERN-NSP (ERN, Merck & Co, Inc or Niaspan [NSP], Abbott Laboratories); and (3) statin-PBO (statin or PBO). RESULTS The safety profiles of ERN-LRPT and ERN-NSP were similar, except for less flushing with ERN-LRPT. Nonflushing AEs reported more frequently with ERN-LRPT or ERN-NSP than with statin-PBO were mostly nonserious and typical of niacin (nausea, diarrhea, and increased blood glucose). There was no evidence for an increased risk of serious AEs related to diabetes, muscle, infection, or bleeding. CONCLUSIONS Pooled data from 11,310 patients revealed that, except for reduced flushing, the safety profile of ERN-LRPT was similar to that of ERN-NSP; LRPT did not appear to adversely affect the side-effect profile of ERN. The inability to replicate the unexpected AE findings in HPS2-THRIVE could be because of the smaller sample size and substantially shorter duration of these studies.
Collapse
Affiliation(s)
- James McKenney
- Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Harold Bays
- Louisville Metabolic and Atherosclerosis Research Center, Louisville, KY, USA
| | - Gilbert Gleim
- Clinical Research, Merck & Co, Inc, Kenilworth, NJ, USA
| | - Yale Mitchel
- Clinical Research, Merck & Co, Inc, Kenilworth, NJ, USA.
| | - Olga Kuznetsova
- Late Development Statistics, Merck & Co, Inc, Kenilworth, NJ, USA
| | - Aditi Sapre
- Late Development Statistics, Merck & Co, Inc, Kenilworth, NJ, USA
| | - Waheeda Sirah
- Clinical Research, Merck & Co, Inc, Kenilworth, NJ, USA
| | | |
Collapse
|
9
|
A reappraisal of the risks and benefits of treating to target with cholesterol lowering drugs. Drugs 2014; 73:1025-54. [PMID: 23754124 DOI: 10.1007/s40265-013-0072-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Atherosclerotic cardiovascular disease (CVD) is the number one cause of death globally, and lipid modification, particularly lowering of low density lipoprotein cholesterol (LDLc), is one of the cornerstones of prevention and treatment. However, even after lowering of LDLc to conventional goals, a sizeable number of patients continue to suffer cardiovascular events. More aggressive lowering of LDLc and optimization of other lipid parameters like triglycerides (TG) and high density lipoprotein cholesterol (HDLc) have been proposed as two potential strategies to address this residual risk. These strategies entail use of maximal doses of highly potent HMG CoA reductase inhibitors (statins) and combination therapy with other lipid modifying agents. Though statins in general are fairly well tolerated, adverse events like myopathy are dose related. There are further risks with combination therapy. In this article, we review the adverse effects of lipid modifying agents used alone and in combination and weigh these effects against the evidence demonstrating their efficacy in reducing cardiovascular events, cardiovascular mortality, and all cause mortality. For patients with established CVD, statins are the only group of drugs that have shown consistent reductions in hard outcomes. Though more aggressive lipid lowering with high dose potent statins can reduce rates of non fatal events and need for interventions, the incremental mortality benefits remain unclear, and their use is associated with a higher rate of drug related adverse effects. Myopathy and renal events have been a significant concern with the use of high potency statin drugs, in particular simvastatin and rosuvastatin. For patients who have not reached target LDL levels or have residual lipid abnormalities on maximal doses of statins, the addition of other agents has not been shown to improve clinical outcomes and carries an increased risk of adverse events. The clinical benefits of drugs to raise HDLc remain unproven. In patients without known cardiovascular disease, there is conflicting evidence as to the benefits of aggressive pursuit of numerical lipid targets, particularly with respect to all cause mortality. Certainly, in statin intolerant patients, alternative agents with a low side effect profile are desirable. Bile acid sequestrants are an effective and safe choice for decreasing LDLc, and omega-3 fatty acids are safe agents to decrease TG. There remains an obvious need to design and carry out large scale studies to help determine which agents, when combined with statins, have the greatest benefit on cardiovascular disease with the least added risk. These studies should be designed to assess the impact on clinical outcomes rather than surrogate endpoints, and require a comprehensive assessment and reporting of safety outcomes.
Collapse
|
10
|
Zamora A, Fernández de Bobadilla F, Carrion C, Vázquez G, Paluzie G, Elosua R, Vilaseca M, Martín-Urda A, Rivera A, Plana N, Masana L. Pilot study to validate a computer-based clinical decision support system for dyslipidemia treatment (HTE-DLP). Atherosclerosis 2013; 231:401-4. [DOI: 10.1016/j.atherosclerosis.2013.09.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 11/24/2022]
|
11
|
Larach DB, deGoma EM, Rader DJ. Targeting high density lipoproteins in the prevention of cardiovascular disease? Curr Cardiol Rep 2013; 14:684-91. [PMID: 22991041 DOI: 10.1007/s11886-012-0317-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent studies involving HDL-raising therapeutics have greatly changed our understanding of this field. Despite effectively raising HDL-C levels, niacin remains of uncertain clinical benefit. Synthetic niacin receptor agonists are unlikely to raise HDL-C or have other beneficial effects on plasma lipids. Despite the failure in phase 3 of 2 CETP inhibitors, 2 potent CETP inhibitors that raise HDL-C levels by >100 % (and reduce LDL-C substantially) are in late stage clinical development. Infusions of recombinant HDL containing 'wild-type' apoA-I or apoA-I Milano, as well as autologous delipidated HDL, all demonstrated promising early results, and remain in clinical development. A small molecule that causes upregulation of endogenous apoA-I production is also in clinical development. Finally, upregulation of macrophage cholesterol efflux pathways through agonism of liver X receptors or antagonism of miR-33 remains of substantial interest. The field of HDL therapeutics is poised to transition from the 'HDL-cholesterol hypothesis' to the 'HDL flux hypothesis' in which the impact on flux from macrophage to feces is deemed to be of greater therapeutic benefit than the increase in steady-state concentrations of HDL cholesterol.
Collapse
Affiliation(s)
- Daniel B Larach
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, 19104, USA.
| | | | | |
Collapse
|
12
|
Abstract
Despite the best available medical therapy inclusive of statins, substantial residual risk remains for atherothrombotic cardiovascular disease. Non-statin lipid-lowering therapy may help address this critical unmet need through reduction of the levels of low-density lipoprotein and other atherogenic lipoproteins. In the past few years, several landmark trials have provided important information regarding the efficacy and safety of non-statin therapy for dyslipidemia and cardiovascular risk reduction.
Collapse
|
13
|
Bays HE, Shah A, Lin J, Sisk CM, Dong Q, Maccubbin D. Consistency of extended-release niacin/laropiprant effects on Lp(a), ApoB, non-HDL-C, Apo A1, and ApoB/ApoA1 ratio across patient subgroups. Am J Cardiovasc Drugs 2012; 12:197-206. [PMID: 22500948 DOI: 10.2165/11631530-000000000-00000] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND According to prior analyses, extended-release niacin/laropiprant (ERN/LRPT) consistently reduces low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG) and increases high-density lipoprotein cholesterol (HDL-C) levels across a wide range of dyslipidemic patient subgroups. OBJECTIVES This analysis examined ERN/LRPT's consistency across four phase III, randomized, double-blind trials in improving other lipid/lipoprotein parameters associated with cardiovascular risk, across several key dyslipidemic patient subgroups. METHODS In three of the studies, the randomized population included patients with primary hypercholesterolemia or mixed hyperlipidemia; in the remaining study, the population included patients with type 2 diabetes mellitus. The lipid-altering consistency of ERN/LRPT's efficacy was evaluated versus the pre-defined comparator (placebo or active control) among key subgroups of sex, race (White, non-White), region (US, ex-US), baseline age (<65 years, ≥65 years), use of statin therapy (yes, no), coronary heart disease (yes, no), risk status (low, multiple, high), and type of hyperlipidemia (primary hypercholesterolemia, mixed dyslipidemia), as well as across baseline LDL-C, HDL-C, and TG levels. The consistency of the treatment effects on lipoprotein(a).[Lp(a)], apolipoprotein B (ApoB), non-HDL-C, ApoA1, and ApoB/ApoA1 ratio was evaluated by examining treatment difference estimates of the percentage change from baseline with 95% confidence intervals. RESULTS Treatment with ERN/LRPT produced significantly greater improvements in Lp(a), ApoB, non-HDL-C, ApoA1, and ApoB/ApoA1 ratio compared with placebo/active comparator in each study. These effects were generally consistent across key subgroups within each study. CONCLUSION ERN/LRPT produced lipid-altering efficacy on the parameters evaluated in four controlled studies; these effects were generally consistent across all examined subgroups. ERN/LRPT represents an effective and reliable therapeutic option for the treatment of dyslipidemia in a wide range of patient types. CLINICAL TRIAL REGISTRATION Registered as Clinicaltrials.gov NCT00269204, NCT00269217, NCT00479388, and NCT00485758.
Collapse
|
14
|
Stern CS, Lebowitz J. Latest drug developments in the field of cardiovascular disease. Int J Angiol 2012; 19:e100-5. [PMID: 22477616 DOI: 10.1055/s-0031-1278379] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease has been responsible for more deaths annually than any other disease category since 1900, except for the influenza epidemic in 1916. Yet, the drug pipeline has been largely bereft of new entrants. In 2008, one new cardiovascular medication was marketed in the United States. In 2009, there were two new cardiovascular medications. In comparison, there were seven new drugs for oncology in 2009. The present review explores new agents within the context of models currently in the drug pipeline. Of course, there is no guarantee that any of these agents will be marketed. A discussion of the models is illustrative of the types of approaches being used to develop new cardiovascular agents.
Collapse
Affiliation(s)
- Craig S Stern
- Pro Pharma Pharmaceutical Consultants Inc, Northridge; and University of Southern California School of Pharmacy, Los Angeles, California, USA
| | | |
Collapse
|
15
|
Yadav R, France M, Younis N, Hama S, Ammori BJ, Kwok S, Soran H. Extended-release niacin with laropiprant: a review on efficacy, clinical effectiveness and safety. Expert Opin Pharmacother 2012; 13:1345-62. [DOI: 10.1517/14656566.2012.690395] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Lipid disorders in elderly hypertensive patients. Int J Hypertens 2012; 2012:684515. [PMID: 22254131 PMCID: PMC3255177 DOI: 10.1155/2012/684515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/20/2011] [Indexed: 12/03/2022] Open
Abstract
Lipid disorders are a common clinical challenge in the western countries. In patients with dyslipemia (total cholesterol > 200 mg/dl, HDL cholesterol < 35 mg/dl, LDL cholesterol > 130 mg/dl and triglycerides > 150 mg/dl) it is mandatory to normalize blood pressure (<130/80 mmHg) as well to reduce LDL-C values to normal levels by using drugs to inhibit of endogenous and exogenous cholesterol, to decrease triglycerides, and increases HDL-C up to normal range. It is also essential to maintain for this purpose suitable dietetic measures (reduction of unsatured fats and salt intakes—<2.5 g/daily) and without interruption, to support pharmacologic treatment in most of the patients.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW A lipid triad involving an atherogenic dyslipidemia characterized by moderate/high LDL-C, low HDL-C, and elevated triglyceride (TG) occurs in numerous clinical settings associated with high cardiovascular risk. This article focuses on optimizing treatment of atherogenic dyslipidemias involving this lipid triad, emphasizing niacin-based or fibrate-based therapies. RECENT FINDINGS Niacin-based therapies comprehensively improve the atherogenic lipid profile, lead to atherosclerosis regression, and exert benefits across a spectrum of cardiovascular endpoints in studies based on limited patient numbers. Fibrates impact TG, HDL-C, and LDL-C according to lipid phenotype and underlying metabolic abnormality. In a recent meta-analysis, fibrates significantly reduced major cardiovascular events (-10%) and coronary events (-13%) across a wide range of lipid phenotypes, but had no impact on stroke, sudden death, or mortality. The Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial in type 2 diabetic patients similarly showed no significant effect of fenofibrate + simvastatin (vs. simvastatin) on nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death; a subgroup (17%) with marked atherogenic dyslipidemia trended toward benefit. Both niacin and fibrates attenuate vascular inflammation but the potential clinical relevance is indeterminate. SUMMARY Optimal cardiovascular risk reduction in patients exhibiting the lipid triad requires integrated pharmacotherapy to normalize LDL-C, HDL-C, TGs, and potentially lipoprotein(a). Ongoing studies may provide definitive evidence of the impact of niacin plus statins on cardiovascular outcomes.
Collapse
|
18
|
Yadav R, Kwok S, Ammori BJ, Issa B, Soran H. Safety and tolerability of extended-release niacin with laropiprant. Expert Opin Drug Saf 2011; 11:151-9. [DOI: 10.1517/14740338.2011.638281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Vosper H. Extended release niacin-laropiprant in patients with hypercholesterolemia or mixed dyslipidemias improves clinical parameters. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2011; 5:85-101. [PMID: 22084607 PMCID: PMC3201109 DOI: 10.4137/cmc.s7601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The progression of atherosclerosis remains a major cause of morbidity and mortality. Plaque formation is an immunological response driven by a number of risk factors, and reduction of risk is the primary goal of treatment. The role of LDL-C is well established and statins have proved effective drugs, although the relative risk reduction is only around 30%. The importance of other factors-notably low HDL-C and high TGs-has become increasingly clear and the search for alternative strategies continues. Niacin is particularly effective in achieving normalization of HDL-C but is clinically underutilized due to the side effect of cutaneous flushing. The discovery that flushing is mediated by mechanisms distinct from the lipid-lowering effects has led to the development of combination drugs with reduced side effects. This review considers the evidence regarding the clinical efficacy of extended-release niacin and the DP1 antagonist laropiprant in the treatment of hypercholesterolemia and mixed dyslipidemias.
Collapse
Affiliation(s)
- Helen Vosper
- School of Pharmacy and Life Sciences, Robert Gordon University, Schoolhill, Aberdeen, AB10 1FR, Scotland, UK
| |
Collapse
|
20
|
Kwong AM, Tippin BL, Materi AM, Buslon VS, French SW, Lin HJ. High dietary niacin may increase prostaglandin formation but does not increase tumor formation in ApcMin/+ mice. Nutr Cancer 2011; 63:950-9. [PMID: 21774590 DOI: 10.1080/01635581.2011.590266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
High doses of niacin (nicotinic acid) used to treat dyslipidemias cause flushing, due to high levels of prostaglandin D(2) (PGD(2)). GPR109A, a G-protein coupled receptor, triggers the flushing in the skin. In addition to boosting PGD(2), niacin binding to GPR109A activates the entire prostanoid cascade. We found that GPR109A occurs throughout the gastrointestinal tract. Mice that alternated between a 1% niacin diet and a control diet had higher urinary prostaglandin E(2) (PGE(2)) metabolite levels when on niacin (2.8-fold increase; 95% confidence interval, 1.8-3.9). PGE(2) promotes tumors in the intestines, whereas PGD(2) may have an opposite effect, on the basis of our report showing that transgenic hematopoietic prostaglandin D synthase suppresses intestinal adenomas in Apc(Min/+) mice. To determine if either tumor growth or tumor suppression prevails, we fed Apc(Min/+) mice a 1% niacin diet and assessed tumor development. A 1% niacin diet did not affect the number of tumors scored histologically in Apc(Min/+) mice at 14 wk (33 mice on niacin, 33 controls). Although niacin stimulates production of various prostaglandins, our results support an interpretation that very high intakes of niacin are safe in relation to intestinal tumors in this model.
Collapse
Affiliation(s)
- Alan M Kwong
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, California 90502, USA
| | | | | | | | | | | |
Collapse
|
21
|
Chapman MJ, Ginsberg HN, Amarenco P, Andreotti F, Borén J, Catapano AL, Descamps OS, Fisher E, Kovanen PT, Kuivenhoven JA, Lesnik P, Masana L, Nordestgaard BG, Ray KK, Reiner Z, Taskinen MR, Tokgözoglu L, Tybjærg-Hansen A, Watts GF. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J 2011. [PMID: 21531743 DOI: 10.1093/eurheartj/ehj112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density lipoprotein cholesterol (HDL-C) as cardiovascular risk factors, and (ii) to advise on therapeutic strategies for management. Current evidence supports a causal association between elevated TRL and their remnants, low HDL-C, and cardiovascular risk. This interpretation is based on mechanistic and genetic studies for TRL and remnants, together with the epidemiological data suggestive of the association for circulating triglycerides and cardiovascular disease. For HDL, epidemiological, mechanistic, and clinical intervention data are consistent with the view that low HDL-C contributes to elevated cardiovascular risk; genetic evidence is unclear however, potentially reflecting the complexity of HDL metabolism. The Panel believes that therapeutic targeting of elevated triglycerides (≥ 1.7 mmol/L or 150 mg/dL), a marker of TRL and their remnants, and/or low HDL-C (<1.0 mmol/L or 40 mg/dL) may provide further benefit. The first step should be lifestyle interventions together with consideration of compliance with pharmacotherapy and secondary causes of dyslipidaemia. If inadequately corrected, adding niacin or a fibrate, or intensifying LDL-C lowering therapy may be considered. Treatment decisions regarding statin combination therapy should take into account relevant safety concerns, i.e. the risk of elevation of blood glucose, uric acid or liver enzymes with niacin, and myopathy, increased serum creatinine and cholelithiasis with fibrates. These recommendations will facilitate reduction in the substantial cardiovascular risk that persists in patients with cardiometabolic abnormalities at LDL-C goal.
Collapse
Affiliation(s)
- M John Chapman
- European Atherosclerosis Society, INSERM UMR-S939, Pitié-Salpetriere University Hospital, Paris 75651, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chapman MJ, Ginsberg HN, Amarenco P, Andreotti F, Borén J, Catapano AL, Descamps OS, Fisher E, Kovanen PT, Kuivenhoven JA, Lesnik P, Masana L, Nordestgaard BG, Ray KK, Reiner Z, Taskinen MR, Tokgözoglu L, Tybjærg-Hansen A, Watts GF. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J 2011; 32:1345-61. [PMID: 21531743 PMCID: PMC3105250 DOI: 10.1093/eurheartj/ehr112] [Citation(s) in RCA: 904] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density lipoprotein cholesterol (HDL-C) as cardiovascular risk factors, and (ii) to advise on therapeutic strategies for management. Current evidence supports a causal association between elevated TRL and their remnants, low HDL-C, and cardiovascular risk. This interpretation is based on mechanistic and genetic studies for TRL and remnants, together with the epidemiological data suggestive of the association for circulating triglycerides and cardiovascular disease. For HDL, epidemiological, mechanistic, and clinical intervention data are consistent with the view that low HDL-C contributes to elevated cardiovascular risk; genetic evidence is unclear however, potentially reflecting the complexity of HDL metabolism. The Panel believes that therapeutic targeting of elevated triglycerides (≥1.7 mmol/L or 150 mg/dL), a marker of TRL and their remnants, and/or low HDL-C (<1.0 mmol/L or 40 mg/dL) may provide further benefit. The first step should be lifestyle interventions together with consideration of compliance with pharmacotherapy and secondary causes of dyslipidaemia. If inadequately corrected, adding niacin or a fibrate, or intensifying LDL-C lowering therapy may be considered. Treatment decisions regarding statin combination therapy should take into account relevant safety concerns, i.e. the risk of elevation of blood glucose, uric acid or liver enzymes with niacin, and myopathy, increased serum creatinine and cholelithiasis with fibrates. These recommendations will facilitate reduction in the substantial cardiovascular risk that persists in patients with cardiometabolic abnormalities at LDL-C goal.
Collapse
Affiliation(s)
- M John Chapman
- European Atherosclerosis Society, INSERM UMR-S939, Pitié-Salpetriere University Hospital, Paris 75651, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Whitley ML, Isleib TG, Hendrix KW, Sanders TH, Dean LO. Environmental and Varietal Effects on Niacin Content of Raw and Roasted Peanuts. ACTA ACUST UNITED AC 2011. [DOI: 10.3146/ps10-9.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Peanuts (Arachis hypogaea L.) are known to be a source of several important B-vitamins, including niacin (Vitamin B3). A total of 39 Florunner and NC7 samples from the 2007 and 2008 Uniform Peanut Performance Test (UPPT) were analyzed to compare their niacin content from 10 different growing locations in the U.S. From the Core of the Core of the peanut germplasm collection, 13 selected samples grown in North Carolina in 2008 were analyzed. Over 2 years and 10 locations, raw Florunner niacin levels ranged from 8.8 to 21.9 mg/100g DW. Mean niacin concentration in 2007 was 15.7 mg/100g DW and 17.8 mg/100g DW in 2008. Raw samples of NC7 averaged 19.0 mg/100g DW in 2007 and 20.3 mg/100g DW in 2008. The varietal difference was statistically significant as were differences among growing locations. The lowest niacin levels were found in the Virginia-Carolina region and the highest in Texas and Oklahoma. Although the 2008 niacin means were higher than 2007, the increase was not statistically significant. Roasting raw 2008 samples caused niacin levels to drop 12% (p = 0.0212) in Florunner and 6% in NC7 (p = 0.0128). Mean niacin concentrations in the Core of the Core samples were found to range from 13.9 to 20.7 mg/100g DW. Levels of niacin in the Core samples tested were found to be higher than Florunner (12.2 mg/100 DW) and NC7 samples (13.8 mg/100g DW) grown at the same location and in the same year. Significant differences in niacin content among NC7 and Florunner UPPT entries across 10 locations indicated a potential for genetic variation that is potentially exploitable by breeders. This is supported by the significant differences found among the Core of the Core entries and NC7 and Florunner samples from the same location and year.
Collapse
|
25
|
Vijayaraghavan K. Treatment of dyslipidemia in patients with type 2 diabetes. Lipids Health Dis 2010; 9:144. [PMID: 21172030 PMCID: PMC3022752 DOI: 10.1186/1476-511x-9-144] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/20/2010] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes is associated with significant cardiovascular morbidity and mortality. Although low-density lipoprotein cholesterol levels may be normal in patients with type 2 diabetes, insulin resistance drives a number of changes in lipid metabolism and lipoprotein composition that render low-density lipoprotein cholesterol and other lipoproteins more pathogenic than species found in patients without type 2 diabetes. Dyslipidemia, which affects almost 50% of patients with type 2 diabetes, is a cardiovascular risk factor characterized by elevated triglyceride levels, low high-density lipoprotein cholesterol levels, and a preponderance of small, dense, low-density lipoprotein particles. Early, aggressive pharmacological management is advocated to reduce low-density lipoprotein cholesterol levels, regardless of baseline levels. A number of lipid-lowering agents, including statins, fibrates, niacin, and bile acid sequestrants, are available to target normalization of the entire lipid profile. Despite use of combination and high-dose lipid-lowering agents, many patients with type 2 diabetes do not achieve lipid targets. This review outlines the characteristics and prevalence of dyslipidemia in patients with type 2 diabetes and discusses strategies that may reduce the risk of cardiovascular disease in this population.
Collapse
|
26
|
|