1
|
Huang SP, Zhou LC, Wen B, Wang P, Zhu GP. Biochemical Characterization and Crystal Structure of a Novel NAD +-Dependent Isocitrate Dehydrogenase from Phaeodactylum tricornutum. Int J Mol Sci 2020; 21:ijms21165915. [PMID: 32824636 PMCID: PMC7460673 DOI: 10.3390/ijms21165915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
The marine diatom Phaeodactylum tricornutum originated from a series of secondary symbiotic events and has been used as a model organism for studying diatom biology. A novel type II homodimeric isocitrate dehydrogenase from P. tricornutum (PtIDH1) was expressed, purified, and identified in detail through enzymatic characterization. Kinetic analysis showed that PtIDH1 is NAD+-dependent and has no detectable activity with NADP+. The catalytic efficiency of PtIDH1 for NAD+ is 0.16 μM-1·s-1 and 0.09 μM-1·s-1 in the presence of Mn2+ and Mg2+, respectively. Unlike other bacterial homodimeric NAD-IDHs, PtIDH1 activity was allosterically regulated by the isocitrate. Furthermore, the dimeric structure of PtIDH1 was determined at 2.8 Å resolution, and each subunit was resolved into four domains, similar to the eukaryotic homodimeric NADP-IDH in the type II subfamily. Interestingly, a unique and novel C-terminal EF-hand domain was first defined in PtIDH1. Deletion of this domain disrupted the intact dimeric structure and activity. Mutation of the four Ca2+-binding sites in the EF-hand significantly reduced the calcium tolerance of PtIDH1. Thus, we suggest that the EF-hand domain could be involved in the dimerization and Ca2+-coordination of PtIDH1. The current report, on the first structure of type II eukaryotic NAD-IDH, provides new information for further investigation of the evolution of the IDH family.
Collapse
|
2
|
Wang P, Liu T, Zhou X, Zhu G. Evaluation of the Potential Phosphorylation Effect on Isocitrate Dehydrogenases from Saccharomyces cerevisiae and Yarrowia lipolytica. Appl Biochem Biotechnol 2019; 187:1131-1142. [PMID: 30903384 DOI: 10.1007/s12010-019-02974-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/01/2019] [Indexed: 11/28/2022]
Abstract
Escherichia coli isocitrate dehydrogenase (IDH) is regulated by reversible phosphorylation on Ser113. Latest phosphoproteomic studies revealed that eukaryotic IDHs can also be phosphorylated on the analogous Ser site. So as to understand the possible phosphorylation mechanism, the equivalent Ser of NADP-IDHs from yeast Saccharomyces cerevisiae (ScIDH) and Yarrowia lipolytica(YlIDH) were investigated by site-directed mutagenesis. ScIDH Ser110 and YlIDH Ser103 were replaced by Asp or Glu to mimic a continuous phosphorylation state. Meanwhile, the effects of another four amino acids (Thr, Tyr, Gly, Ala) with various side chain on IDH activity were determined as well. Enzymatic analysis showed that replacement of Ser with Asp or Glu nearly inactivated ScIDH and YlIDH. Four other mutant enzymes of ScIDH, S110T, S110G, S110A, and S110Y, retained 38.07%, 3.24%, 2.65%, and 0.01% of its original activity, and four other mutant enzymes of YlIDH, S103T, S103G, S103A, and S103Y retained 44.26%, 27.99%, 16.29%, and 0.01% of its original activity, respectively. These results suggested that phosphorylation on eukaryotic IDHs has identical consequence to that on the bacterial IDHs. We thus presume that phosphorylation on the substrate-binding Ser shall be a common regulatory mechanism among IDHs.
Collapse
Affiliation(s)
- Peng Wang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu, 241000, Anhui, China
| | - Tingting Liu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu, 241000, Anhui, China
| | - Xinxin Zhou
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu, 241000, Anhui, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu, 241000, Anhui, China.
| |
Collapse
|
3
|
Lund BA, Thomassen AM, Carlsen TJO, Leiros HKS. Structure, activity and thermostability investigations of OXA-163, OXA-181 and OXA-245 using biochemical analysis, crystal structures and differential scanning calorimetry analysis. Acta Crystallogr F Struct Biol Commun 2017; 73:579-587. [PMID: 28994407 PMCID: PMC5633926 DOI: 10.1107/s2053230x17013838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/25/2017] [Indexed: 01/20/2023] Open
Abstract
The first crystal structures of the class D β-lactamases OXA-181 and OXA-245 were determined to 2.05 and 2.20 Å resolution, respectively; in addition, the structure of a new crystal form of OXA-163 was resolved to 2.07 Å resolution. All of these enzymes are OXA-48-like and have been isolated from different clinical Klebsiella pneumoniae strains and also from other human pathogens such as Pseudomonas aeruginosa and Escherichia coli. Here, enzyme kinetics and thermostability studies are presented, and the new crystal structures are used to explain the observed variations. OXA-245 had the highest melting point (Tm = 55.8°C), as determined by differential scanning calorimetry, compared with OXA-163 (Tm = 49.4°C) and OXA-181 (Tm = 52.6°C). The differences could be explained by the loss of two salt bridges in OXA-163, and an overall decrease in the polarity of the surface of OXA-181 compared with OXA-245.
Collapse
Affiliation(s)
- Bjarte Aarmo Lund
- Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ane Molden Thomassen
- Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | | | | |
Collapse
|
4
|
Romkina AY, Kiriukhin MY. Biochemical and molecular characterization of the isocitrate dehydrogenase with dual coenzyme specificity from the obligate methylotroph Methylobacillus Flagellatus. PLoS One 2017; 12:e0176056. [PMID: 28423051 PMCID: PMC5397045 DOI: 10.1371/journal.pone.0176056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/04/2017] [Indexed: 12/16/2022] Open
Abstract
The isocitrate dehydrogenase (MfIDH) with unique double coenzyme specificity from Methylobacillus flagellatus was purified and characterized, and its gene was cloned and overexpressed in E. coli as a fused protein. This enzyme is homodimeric,—with a subunit molecular mass of 45 kDa and a specific activity of 182 U mg -1 with NAD+ and 63 U mg -1 with NADP+. The MfIDH activity was dependent on divalent cations and Mn2+ enhanced the activity the most effectively. MfIDH exhibited a cofactor-dependent pH-activity profile. The optimum pH values were 8.5 (NAD+) and 6.0 (NADP+).The Km values for NAD+ and NADP+ were 113 μM and 184 μM respectively, while the Km values for DL-isocitrate were 9.0 μM (NAD+), 8.0 μM (NADP+). The MfIDH specificity (kcat/Km) was only 5-times higher for NAD+ than for NADP+. The purified MfIDH displayed maximal activity at 60°C. Heat-inactivation studies showed that the MfIDH was remarkably thermostable, retaining full activity at 50°C and losting ca. 50% of its activity after one hour of incubation at 75°C. The enzyme was insensitive to the presence of intermediate metabolites, with the exception of 2 mM ATP, which caused 50% inhibition of NADP+-linked activity. The indispensability of the N6 amino group of NAD(P)+ in its binding to MfIDH was demonstrated. MfIDH showed high sequence similarity with bacterial NAD(P)+-dependent type I isocitrate dehydrogenases (IDHs) rather than with eukaryotic NAD+-dependent IDHs. The unique double coenzyme specificity of MfIDH potentially resulted from the Lys340, Ile341 and Ala347 residues in the coenzyme-binding site of the enzyme. The discovery of a type I IDH with double coenzyme specificity elucidates the evolution of this subfamily IDHs and may provide fundamental information for engineering enzymes with desired properties.
Collapse
|
5
|
Wang P, Lv C, Zhu G. Novel type II and monomeric NAD+ specific isocitrate dehydrogenases: phylogenetic affinity, enzymatic characterization, and evolutionary implication. Sci Rep 2015; 5:9150. [PMID: 25775177 PMCID: PMC4360740 DOI: 10.1038/srep09150] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/23/2015] [Indexed: 11/09/2022] Open
Abstract
NAD(+) use is an ancestral trait of isocitrate dehydrogenase (IDH), and the NADP(+) phenotype arose through evolution as an ancient adaptation event. However, no NAD(+)-specific IDHs have been found among type II IDHs and monomeric IDHs. In this study, novel type II homodimeric NAD-IDHs from Ostreococcus lucimarinus CCE9901 IDH (OlIDH) and Micromonas sp. RCC299 (MiIDH), and novel monomeric NAD-IDHs from Campylobacter sp. FOBRC14 IDH (CaIDH) and Campylobacter curvus (CcIDH) were reported for the first time. The homodimeric OlIDH and monomeric CaIDH were determined by size exclusion chromatography and MALDI-TOF/TOF mass spectrometry. All the four IDHs were demonstrated to be NAD(+)-specific, since OlIDH, MiIDH, CaIDH and CcIDH displayed 99-fold, 224-fold, 61-fold and 37-fold preferences for NAD(+) over NADP(+), respectively. The putative coenzyme discriminating amino acids (Asp326/Met327 in OlIDH, Leu584/Asp595 in CaIDH) were evaluated, and the coenzyme specificities of the two mutants, OlIDH R(326)H(327) and CaIDH H(584)R(595), were completely reversed from NAD(+) to NADP(+). The detailed biochemical properties, including optimal reaction pH and temperature, thermostability, and metal ion effects, of OlIDH and CaIDH were further investigated. The evolutionary connections among OlIDH, CaIDH, and all the other forms of IDHs were described and discussed thoroughly.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Changqi Lv
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| |
Collapse
|
6
|
Crystal structure studies of NADP+ dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain. Biochem Biophys Res Commun 2014; 449:107-13. [PMID: 24832735 DOI: 10.1016/j.bbrc.2014.04.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 04/30/2014] [Indexed: 02/02/2023]
Abstract
NADP(+) dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP(+) was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH's. And, small domain and clasp domain showing significant differences when compared to other IDH's of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH's. Also, helices/beta sheets are absent in the small domain, when compared to other IDH's of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit-subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.
Collapse
|
7
|
Zhao X, Wang P, Zhu G, Wang B, Zhu G. Enzymatic characterization of a type II isocitrate dehydrogenase from pathogenic Leptospira interrogans serovar Lai strain 56601. Appl Biochem Biotechnol 2013; 172:487-96. [PMID: 24092452 DOI: 10.1007/s12010-013-0521-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/15/2013] [Indexed: 01/20/2023]
Abstract
Leptospira interrogans, a Gram-negative pathogen, could cause infections in a wide variety of mammalian hosts, but due to their fastidious cultivation requirements and the lack of genetic systems, the pathogenic factor is still not clear. Isocitrate dehydrogenase (IDH) is a key enzyme in the tricarboxylation (TCA) cycle, which could have an important impact on the growth and pathogenesis of the bacteria. In the present study, we first report the cloning, heterologous expression, and detailed characterization of the IDH gene from L. interrogans serovar Lai strain 56601(LiIDH). The molecular weight of LiIDH was determined to be 87 kDa by filtration chromatography, suggesting LiIDH is a typical homodimer. The optimum activity of LiIDH was found at 60 °C, and its optimum pH was 7.0 (Mn(2+)) and 8.0 (Mg(2+)). Heat inactivation studies showed that heat treatment for 20 min at 50 °C caused a 50 % loss of enzyme activity. LiIDH was completely divalent cation dependent as other typical dimeric IDHs and Mg(2+) was its best activator. The recombinant LiIDH specificities (kcat/Km values for NADP(+) and NAD(+)) in the presence of Mg(2+) and Mn(2+) were 6,269-fold and 1,000-fold greater for NADP(+) than NAD(+), respectively. This current work is expected to shed light on the functions of metabolic enzymes in L. interrogans and provide useful information for LiIDH to be considered as a possible candidate for serological diagnostics and detection of L. interrogans infection.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Institute of Molecular Biology and Biotechnology and Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, Anhui, China
| | | | | | | | | |
Collapse
|
8
|
Structural and thermodynamic insight into phenylalanine hydroxylase from the human pathogen Legionella pneumophila. FEBS Open Bio 2013; 3:370-8. [PMID: 24251098 PMCID: PMC3821034 DOI: 10.1016/j.fob.2013.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 11/20/2022] Open
Abstract
Phenylalanine hydroxylase from Legionella pneumophila (lpPAH) has a major functional role in the synthesis of the pigment pyomelanin, which is a potential virulence factor. We present here the crystal structure of lpPAH, which is a dimeric enzyme that shows high thermostability, with a midpoint denaturation temperature of 79 °C, and low substrate affinity. The structure revealed a dimerization motif that includes ionic interactions and a hydrophobic core, composed of both β-structure and a C-terminal region, with the specific residues (P255, P256, Y257 and F258) interacting with the same residues from the adjacent subunit within the dimer. This unique dimerization interface, together with a number of aromatic clusters, appears to contribute to the high thermal stability of lpPAH. The crystal structure also explains the increased aggregation of the enzyme in the presence of salt. Moreover, the low affinity for substrate l-Phe could be explained from three consecutive glycine residues (G181, 182, 183) located at the substrate-binding site. This is the first structure of a dimeric bacterial PAH and provides a framework for interpreting the molecular and kinetic properties of lpPAH and for further investigating the regulation of the enzyme. The structure Legionella pneumophila PAH (lpPAH) has been resolved The Tm of lpPAH at 79 °C is explained by structure The unique dimer interface of lpPAH comprises aromatic and ionic interactions Tyr257 seems important for dimerization This is the first structure of a dimeric bacterial PAH
Collapse
|
9
|
Functional relevance of dynamic properties of Dimeric NADP-dependent Isocitrate Dehydrogenases. BMC Bioinformatics 2012; 13 Suppl 17:S2. [PMID: 23281650 PMCID: PMC3521221 DOI: 10.1186/1471-2105-13-s17-s2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Isocitrate Dehydrogenases (IDHs) are important enzymes present in all living cells. Three subfamilies of functionally dimeric IDHs (subfamilies I, II, III) are known. Subfamily I are well-studied bacterial IDHs, like that of Escherischia coli. Subfamily II has predominantly eukaryotic members, but it also has several bacterial members, many being pathogens or endosymbionts. subfamily III IDHs are NAD-dependent. The eukaryotic-like subfamily II IDH from pathogenic bacteria such as Mycobacterium tuberculosis IDH1 are expected to have regulation similar to that of bacteria which use the glyoxylate bypass to survive starvation. Yet they are structurally different from IDHs of subfamily I, such as the E. coli IDH. Results We have used phylogeny, structural comparisons and molecular dynamics simulations to highlight the similarity and differences between NADP-dependent dimeric IDHs with an emphasis on regulation. Our phylogenetic study indicates that an additional subfamily (IV) may also be present. Variation in sequence and structure in an aligned region may indicate functional importance concerning regulation in bacterial subfamily I IDHs. Correlation in movement of prominent loops seen from molecular dynamics may explain the adaptability and diversity of the predominantly eukaryotic subfamily II IDHs. Conclusion This study discusses possible regulatory mechanisms operating in various IDHs and implications for regulation of eukaryotic-like bacterial IDHs such as that of M. tuberculosis, which may provide avenues for intervention in disease.
Collapse
|
10
|
Expression and characterization of a novel isocitrate dehydrogenase from Streptomyces diastaticus No. 7 strain M1033. Mol Biol Rep 2012; 40:1615-23. [PMID: 23073782 DOI: 10.1007/s11033-012-2210-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 10/09/2012] [Indexed: 01/01/2023]
Abstract
Isocitrate dehydrogenase (IDH) is one of the key enzymes in tricarboxylic acid cycle, widely distributed in Archaea, Bacteria and Eukarya. Here, we report for the first time the cloning, expression and characterization of a monomeric NADP(+)-dependent IDH from Streptomyces diastaticus No. 7 strain M1033 (SdIDH). Molecular mass of SdIDH was about 80 kDa and showed high amino acid sequence identity with known monomeric IDHs. Maximal activity of SdIDH was observed at pH 8.0 (Mn(2+)) and 9.0 (Mg(2+)), and the optimal temperature was 40 °C (Mn(2+)) and 37 °C (Mg(2+)). Heat-inactivation studies showed that SdIDH remained about 50 % activity after 20 min of incubation at 47 °C. SdIDH displayed a 19,000 and 32,000-fold (k (cat)/K (m)) preference for NADP(+) over NAD(+) with Mn(2+) and Mg(2+), respectively. Our work implicate that SdIDH is a divalent metal ion-dependent monomeric IDH with remarkably high coenzyme preference for NADP(+). This work may provide fundamental information for further investigation on the catalytic mechanism of monomeric IDH and give a clue to disclose the real cause of IDH monomerization.
Collapse
|
11
|
Liszka MJ, Clark ME, Schneider E, Clark DS. Nature Versus Nurture: Developing Enzymes That Function Under Extreme Conditions. Annu Rev Chem Biomol Eng 2012; 3:77-102. [DOI: 10.1146/annurev-chembioeng-061010-114239] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Elizabeth Schneider
- Department of Chemical and Biomolecular Engineering,
- UC Berkeley and UCSF Graduate Program in Bioengineering, University of California, Berkeley, California 94720; , , ,
| | | |
Collapse
|
12
|
Leiros HKS, Fedøy AE, Leiros I, Steen IH. The complex structures of isocitrate dehydrogenase from Clostridium thermocellum and Desulfotalea psychrophila suggest a new active site locking mechanism. FEBS Open Bio 2012; 2:159-72. [PMID: 23650595 PMCID: PMC3642140 DOI: 10.1016/j.fob.2012.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/28/2012] [Accepted: 06/28/2012] [Indexed: 11/29/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) catalyzes the oxidative NAD(P)+-dependent decarboxylation of isocitrate into α-ketoglutarate and CO2 and is present in organisms spanning the biological range of temperature. We have solved two crystal structures of the thermophilic Clostridium thermocellum IDH (CtIDH), a native open apo CtIDH to 2.35 Å and a quaternary complex of CtIDH with NADP+, isocitrate and Mg2+ to 2.5 Å. To compare to these a quaternary complex structure of the psychrophilic Desulfotalea psychrophila IDH (DpIDH) was also resolved to 1.93 Å. CtIDH and DpIDH showed similar global thermal stabilities with melting temperatures of 67.9 and 66.9 °C, respectively. CtIDH represents a typical thermophilic enzyme, with a large number of ionic interactions and hydrogen bonds per residue combined with stabilization of the N and C termini. CtIDH had a higher activity temperature optimum, and showed greater affinity for the substrates with an active site that was less thermolabile compared to DpIDH. The uncompensated negative surface charge and the enlarged methionine cluster in the hinge region both of which are important for cold activity in DpIDH, were absent in CtIDH. These structural comparisons revealed that prokaryotic IDHs in subfamily II have a unique locking mechanism involving Arg310, Asp251′ and Arg255 (CtIDH). These interactions lock the large domain to the small domain and direct NADP+ into the correct orientation, which together are important for NADP+ selectivity.
Collapse
Key Words
- CtIDH, Clostridium thermocellum IDH
- DSC, differential scanning calorimetry
- DhIDH, Desulfitobacterium hafniense IDH
- Domain movement
- DpIDH, Desulfotalea psychrophila IDH
- EcIDH, Escherichia coli IDH
- HcIDH, human cytosolic IDH
- IDH, isocitrate dehydrogenase
- NADP+ selectivity
- PcIDH, porcine heart mitochondrial IDH
- Psychrophilic
- ScIDH, Saccharomyces cerevesiae mitochondrial IDH
- Temperature adaptation
- Thermophilic
- Tm, apparent melting temperature
- TmIDH, Thermotoga maritima
Collapse
Affiliation(s)
- Hanna-Kirsti S Leiros
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | |
Collapse
|
13
|
Yates SP, Edwards TE, Bryan CM, Stein AJ, Van Voorhis WC, Myler PJ, Stewart LJ, Zheng J, Jia Z. Structural basis of the substrate specificity of bifunctional isocitrate dehydrogenase kinase/phosphatase. Biochemistry 2011; 50:8103-6. [PMID: 21870819 DOI: 10.1021/bi200809p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isocitrate dehydrogenase kinase/phosphatase (AceK) regulates entry into the glyoxylate bypass by reversibly phosphorylating isocitrate dehydrogenase (ICDH). On the basis of the recently determined structure of the AceK-ICDH complex from Escherichia coli, we have classified the structures of homodimeric NADP(+)-ICDHs to rationalize and predict which organisms likely contain substrates for AceK. One example is Burkholderia pseudomallei (Bp). Here we report a crystal structure of Bp-ICDH that exhibits the necessary structural elements required for AceK recognition. Kinetic analyses provided further confirmation that Bp-ICDH is a substrate for AceK. We conclude that the highly stringent AceK binding sites on ICDH are maintained only in Gram-negative bacteria.
Collapse
Affiliation(s)
- Susan P Yates
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Heteroexpression and characterization of a monomeric isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680. Mol Biol Rep 2010; 38:3717-24. [PMID: 21104016 DOI: 10.1007/s11033-010-0486-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 11/09/2010] [Indexed: 12/21/2022]
Abstract
A monomeric NADP-dependent isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680 (SaIDH) was heteroexpressed in Escherichia coli, and the His-tagged enzyme was further purified to homogeneity. The molecular weight of SaIDH was about 80 kDa which is typical for monomeric isocitrate dehydrogenases. Structure-based sequence alignment reveals that the deduced amino acid sequence of SaIDH shows high sequence identity with known momomeric isocitrate dehydrogenase, and the coenzyme, substrate and metal ion binding sites are completely conserved. The optimal pH and temperature of SaIDH were found to be pH 9.4 and 45°C, respectively. Heat-inactivation studies showed that heating for 20 min at 50°C caused a 50% loss in enzymatic activity. In addition, SaIDH was absolutely specific for NADP+ as electron acceptor. Apparent Km values were 4.98 μM for NADP+ and 6,620 μM for NAD+, respectively, using Mn2+ as divalent cation. The enzyme performed a 33,000-fold greater specificity (kcat/Km) for NADP+ than NAD+. Moreover, SaIDH activity was entirely dependent on the presence of Mn2+ or Mg2+, but was strongly inhibited by Ca2+ and Zn2+. Taken together, our findings implicate the recombinant SaIDH is a divalent cation-dependent monomeric isocitrate dehydrogenase which presents a remarkably high cofactor preference for NADP+.
Collapse
|
15
|
Biophysical characterization and mutational analysis of the antibiotic resistance protein NimA from Deinococcus radiodurans. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:967-76. [PMID: 20096385 DOI: 10.1016/j.bbapap.2010.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 11/23/2022]
Abstract
Metronidazole (MTZ) is an antibiotic commonly used to treat anaerobic bacterial infections in humans and animals. Antibiotic resistance toward this class of 5-nitroimidazole (5-Ni) drug derivatives has been related to the Nim genes thought to encode a reductase. Here we report the biophysical characteristics of the NimA protein from Deinococcus radiodurans (DrNimA) binding to MTZ and three other 5-Ni drugs. The interaction energies of the protein and antibiotic are studied by isothermal titration calorimetry (ITC) and with free energy and linear interaction energy (LIE) calculations, where the latter method revealed that the antibiotic binding is mainly of hydrophobic character. ITC measurements further found that one DrNimA dimer has two antibiotic binding sites which were not affected by mutation of the reactive His71. The observed association constants (K(a)) were in the range of 5.1-4910(4)M(-1) and the enthalpy release upon binding to DrNimA for the four drugs studied was relatively low (approximately -1 kJ/mol) but still measurable. The drug binding is mainly entropy driven and along with the hydrophobic drug binding site found by crystallography, this possibly explains the low observed enthalpy values. The effect of the His71 mutation and the presence of MTZ were studied by differential scanning calorimetry (DSC). Native DrNimA is a yellow colored protein where the interaction from His71 to the cofactor is thought to be responsible for the coloring. Mutations of His71 to Ala, Ser, Leu or Asp all gave transparent, colorless protein solutions, and the two mutant crystal structures of DrNimA-H71A and DrNimA-H71S presented revealed no cofactor binding.
Collapse
|
16
|
Hawwa R, Aikens J, Turner RJ, Santarsiero BD, Mesecar AD. Structural basis for thermostability revealed through the identification and characterization of a highly thermostable phosphotriesterase-like lactonase from Geobacillus stearothermophilus. Arch Biochem Biophys 2009; 488:109-20. [PMID: 19615330 DOI: 10.1016/j.abb.2009.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/05/2009] [Accepted: 06/09/2009] [Indexed: 11/18/2022]
Abstract
A new enzyme homologous to phosphotriesterase was identified from the bacterium Geobacillus stearothermophilus (GsP). This enzyme belongs to the amidohydrolase family and possesses the ability to hydrolyze both lactone and organophosphate (OP) compounds, making it a phosphotriesterase-like lactonase (PLL). GsP possesses higher OP-degrading activity than recently characterized PLLs, and it is extremely thermostable. GsP is active up to 100 degrees C with an energy of activation of 8.0 kcal/mol towards ethyl paraoxon, and it can withstand an incubation temperature of 60 degrees C for two days. In an attempt to understand the thermostability of PLLs, the X-ray structure of GsP was determined and compared to those of existing PLLs. Based upon a comparative analysis, a new thermal advantage score and plot was developed and reveals that a number of different factors contribute to the thermostability of PLLs.
Collapse
Affiliation(s)
- Renda Hawwa
- Department of Medicinal Chemistry and Pharmacognosy and the Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Although the energetic balance of forces stabilizing proteins has been established qualitatively over the last decades, quantification of the energetic contribution of particular interactions still poses serious problems. The reasons are the strong cooperativity and the interdependence ofnoncovalent interactions. Salt bridges are a typical example. One expects that ionizable side chains frequently form ion pairs in innumerable crystal structures. Since electrostatic attraction between opposite charges is strong per se, salt bridges can intuitively be regarded as an important factor stabilizing the native structure. Is that really so? In this chapter we critically reassess the available methods to delineate the role ofelectrostatic interactions and salt bridges to protein stability, and discuss the progress and the obstacles in this endeavor. The basic problem is that formation of salt bridges depends on the ionization properties of the participating groups, which is significantly influenced by the protein environment. Furthermore, salt bridges experience thermal fluctuations, continuously break and re-form, and their lifespan in solution is governed by the flexibility of the protein. Finally, electrostatic interactions are long-range and might be significant in the unfolded state, thus seriously influencing the energetic profile. Elimination of salt bridges by protonation/deprotonation at extreme pH or by mutation provides only rough energetic estimates, since there is no way to account for the nonadditive response of the protein moiety. From what we know so far, the strength of electrostatic interactions is strongly context-dependent, yet it is unlikely that salt bridges are dominant factors governing protein stability. Nevertheless, proteins from thermophiles and hyperthermophiles exhibit more, and frequently networked, salt bridges than proteins from the mesophilic counterparts. Increasing the thermal (not the thermodynamic) stability of proteins by optimization of charge-charge interactions is a good example for an evolutionary solution utilizing physical factors.
Collapse
Affiliation(s)
- Ilian Jelesarov
- Biochemisches Institut der Universität Zürich, Zürich, Switzerland
| | | |
Collapse
|
18
|
Peng Y, Zhong C, Huang W, Ding J. Structural studies of Saccharomyces cerevesiae mitochondrial NADP-dependent isocitrate dehydrogenase in different enzymatic states reveal substantial conformational changes during the catalytic reaction. Protein Sci 2008; 17:1542-54. [PMID: 18552125 DOI: 10.1110/ps.035675.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Isocitrate dehydrogenases (IDHs) catalyze oxidative decarboxylation of isocitrate (ICT) into alpha-ketoglutarate (AKG). We report here the crystal structures of Saccharomyces cerevesiae mitochondrial NADP-IDH Idp1p in binary complexes with coenzyme NADP, or substrate ICT, or product AKG, and in a quaternary complex with NADPH, AKG, and Ca(2+), which represent different enzymatic states during the catalytic reaction. Analyses of these structures identify key residues involved in the binding of these ligands. Comparisons among these structures and with the previously reported structures of other NADP-IDHs reveal that eukaryotic NADP-IDHs undergo substantial conformational changes during the catalytic reaction. Binding or release of the ligands can cause significant conformational changes of the structural elements composing the active site, leading to rotation of the large domain relative to the small and clasp domains along two hinge regions (residues 118-124 and residues 284-287) while maintaining the integrity of its secondary structural elements, and thus, formation of at least three distinct overall conformations. Specifically, the enzyme adopts an open conformation when bound to NADP, a quasi-closed conformation when bound to ICT or AKG, and a fully closed conformation when bound to NADP, ICT, and Ca(2+) in the pseudo-Michaelis complex or with NADPH, AKG, and Ca(2+) in the product state. The conformational changes of eukaryotic NADP-IDHs are quite different from those of Escherichia coli NADP-IDH, for which significant conformational changes are observed only between two forms of the apo enzyme, suggesting that the catalytic mechanism of eukaryotic NADP-IDHs is more complex than that of EcIDH, and involves more fine-tuned conformational changes.
Collapse
Affiliation(s)
- Yingjie Peng
- State Key Laboratory of Molecular Biology and Research Center for Structural Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
19
|
Merz T, Wetzel SK, Firbank S, Plückthun A, Grütter MG, Mittl PR. Stabilizing Ionic Interactions in a Full-consensus Ankyrin Repeat Protein. J Mol Biol 2008; 376:232-40. [DOI: 10.1016/j.jmb.2007.11.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/28/2007] [Accepted: 11/16/2007] [Indexed: 11/26/2022]
|
20
|
Clark AT, Smith K, Muhandiram R, Edmondson SP, Shriver JW. Carboxyl pK(a) values, ion pairs, hydrogen bonding, and the pH-dependence of folding the hyperthermophile proteins Sac7d and Sso7d. J Mol Biol 2007; 372:992-1008. [PMID: 17692336 PMCID: PMC2083566 DOI: 10.1016/j.jmb.2007.06.089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/19/2007] [Accepted: 06/29/2007] [Indexed: 10/23/2022]
Abstract
Sac7d and Sso7d are homologous, hyperthermophile proteins with a high density of charged surface residues and potential ion pairs. To determine the relative importance of specific amino acid side-chains in defining the stability and function of these Archaeal chromatin proteins, pK(a) values were measured for the acidic residues in both proteins using (13)C NMR chemical shifts. The stability of Sso7d enabled titrations to pH 1 under low-salt conditions. Two aspartate residues in Sso7d (D16 and D35) and a single glutamate residue (G54) showed significantly perturbed pK(a) values in low salt, indicating that the observed pH-dependence of stability was primarily due to these three residues. The pH-dependence of backbone amide NMR resonances demonstrated that perturbation of all three pK(a) values was primarily the result of side-chain to backbone amide hydrogen bonds. Few of the significantly perturbed acidic pK(a) values in Sac7d and Sso7d could be attributed to primarily ion pair or electrostatic interactions. A smaller perturbation of E48 (E47 in Sac7d) was ascribed to an ion pair interaction that may be important in defining the DNA binding surface. The small number (three) of significantly altered pK(a) values was in good agreement with a linkage analysis of the temperature, pH, and salt-dependence of folding. The linkage of the ionization of two or more side-chains to protein folding led to apparent cooperativity in the pH-dependence of folding, although each group titrated independently with a Hill coefficient near unity. These results demonstrate that the acid pH-dependence of protein stability in these hyperthermophile proteins is due to independent titration of acidic residues with pK(a) values perturbed primarily by hydrogen bonding of the side-chain to the backbone. This work demonstrates the need for caution in using structural data alone to argue the importance of ion pairs in stabilizing hyperthermophile proteins.
Collapse
Affiliation(s)
- Andrew T Clark
- Alabama High Field NMR Laboratory, Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Kelley Smith
- Alabama High Field NMR Laboratory, Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Ranjith Muhandiram
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Stephen P Edmondson
- Alabama High Field NMR Laboratory, Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - John W Shriver
- Alabama High Field NMR Laboratory, Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
21
|
Fedøy AE, Yang N, Martinez A, Leiros HKS, Steen IH. Structural and Functional Properties of Isocitrate Dehydrogenase from the Psychrophilic Bacterium Desulfotalea psychrophila Reveal a Cold-active Enzyme with an Unusual High Thermal Stability. J Mol Biol 2007; 372:130-49. [PMID: 17632124 DOI: 10.1016/j.jmb.2007.06.040] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 06/08/2007] [Accepted: 06/13/2007] [Indexed: 11/30/2022]
Abstract
Isocitrate dehydrogenase (IDH) has been studied extensively due to its central role in the Krebs cycle, catalyzing the oxidative NAD(P)(+)-dependent decarboxylation of isocitrate to alpha-ketoglutarate and CO(2). Here, we present the first crystal structure of IDH from a psychrophilic bacterium, Desulfotalea psychrophila (DpIDH). The structural information is combined with a detailed biochemical characterization and a comparative study with IDHs from the mesophilic bacterium Desulfitobacterium hafniense (DhIDH), porcine (PcIDH), human cytosolic (HcIDH) and the hyperthermophilic Thermotoga maritima (TmIDH). DpIDH was found to have a higher melting temperature (T(m)=66.9 degrees C) than its mesophilic homologues and a suboptimal catalytic efficiency at low temperatures. The thermodynamic activation parameters indicated a disordered active site, as seen also for the drastic increase in K(m) for isocitrate at elevated temperatures. A methionine cluster situated at the dimeric interface between the two active sites and a cluster of destabilizing charged amino acids in a region close to the active site might explain the poor isocitrate affinity. On the other hand, DpIDH was optimized for interacting with NADP(+) and the crystal structure revealed unique interactions with the cofactor. The highly acidic surface, destabilizing charged residues, fewer ion pairs and reduced size of ionic networks in DpIDH suggest a flexible global structure. However, strategic placement of ionic interactions stabilizing the N and C termini, and additional ionic interactions in the clasp domain as well as two enlarged aromatic clusters might counteract the destabilizing interactions and promote the increased thermal stability. The structure analysis of DpIDH illustrates how psychrophilic enzymes can adjust their flexibility in dynamic regions during their catalytic cycle without compromising the global stability of the protein.
Collapse
Affiliation(s)
- Anita-Elin Fedøy
- Department of Biology, University of Bergen, P.O. Box 7800, Jahnebakken 5, N-5020 Bergen, Norway
| | | | | | | | | |
Collapse
|
22
|
Stokke R, Karlström M, Yang N, Leiros I, Ladenstein R, Birkeland NK, Steen IH. Thermal stability of isocitrate dehydrogenase from Archaeoglobus fulgidus studied by crystal structure analysis and engineering of chimers. Extremophiles 2007; 11:481-93. [PMID: 17401542 DOI: 10.1007/s00792-006-0060-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
Isocitrate dehydrogenase from Archaeoglobus fulgidus (AfIDH) has an apparent melting temperature (T(m)) of 98.5 degrees C. To identify the structural features involved in thermal stabilization of AfIDH, the structure was solved to 2.5 A resolution. AfIDH was strikingly similar to mesophilic IDH from Escherichia coli (EcIDH) and displayed almost the same number of ion pairs and ionic networks. However, two unique inter-domain networks were present in AfIDH; one three-membered ionic network between the large and the small domain and one four-membered ionic network between the clasp and the small domain. The latter ionic network was presumably reduced in size when the clasp domain of AfIDH was swapped with that of EcIDH and the T (m) decreased by 18 degrees C. Contrarily, EcIDH was only stabilized by 4 degrees C by the clasp domain of AfIDH, a result probably due to the introduction of a unique inter-subunit aromatic cluster in AfIDH that may strengthen the dimeric interface in this enzyme. A unique aromatic cluster was identified close to the N-terminus of AfIDH that could provide additional stabilization of this region. Common and unique heat adaptive traits of AfIDH with those recently observed for hyperthermophilic IDH from Aeropyrum pernix (ApIDH) and Thermotoga maritima (TmIDH) are discussed herein.
Collapse
Affiliation(s)
- Runar Stokke
- Department of Biology, University of Bergen, PO Box 7800, Jahnebakken 5, 5020, Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
23
|
Hyatt DC, Youn B, Zhao Y, Santhamma B, Coates RM, Croteau RB, Kang C. Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc Natl Acad Sci U S A 2007; 104:5360-5. [PMID: 17372193 PMCID: PMC1838495 DOI: 10.1073/pnas.0700915104] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The crystal structure of (4S)-limonene synthase from Mentha spic ata, a metal ion-dependent monoterpene cyclase that catalyzes the coupled isomerization and cyclization of geranyl diphosphate, is reported at 2.7-A; resolution in two forms liganded to the substrate and intermediate analogs, 2-fluorogeranyl diphosphate and 2-fluorolinalyl diphosphate, respectively. The implications of these findings are described for domain interactions in the homodimer and for changes in diphosphate-metal ion coordination and substrate binding conformation in the course of the multistep reaction.
Collapse
Affiliation(s)
- David C. Hyatt
- *Institute of Biological Chemistry, Washingston State University, Pullman, WA 99164-6340
| | - Buhyun Youn
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660; and
| | - Yuxin Zhao
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Bindu Santhamma
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Robert M. Coates
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Rodney B. Croteau
- *Institute of Biological Chemistry, Washingston State University, Pullman, WA 99164-6340
- To whom correspondence may be addressed. E-mail: or
| | - ChulHee Kang
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660; and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
24
|
Stokke R, Madern D, Fedøy AE, Karlsen S, Birkeland NK, Steen IH. Biochemical characterization of isocitrate dehydrogenase from Methylococcus capsulatus reveals a unique NAD+-dependent homotetrameric enzyme. Arch Microbiol 2006; 187:361-70. [PMID: 17160675 DOI: 10.1007/s00203-006-0200-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/31/2006] [Accepted: 11/17/2006] [Indexed: 11/30/2022]
Abstract
The gene encoding isocitrate dehydrogenase (IDH) of Methylococcus capsulatus (McIDH) was cloned and overexpressed in Escherichia coli. The purified enzyme was NAD+-dependent with a thermal optimum for activity at 55-60 degrees C and an apparent midpoint melting temperature (Tm) of 70 degrees C. Analytical ultracentrifugation (AUC) revealed a homotetrameric state, and McIDH thus represents the first homotetrameric NAD+-dependent IDH that has been characterized. Based on a structural alignment of McIDH and homotetrameric homoisocitrate dehydrogenase (HDH) from Thermus thermophilus (TtHDH), we identified the clasp-like domain of McIDH as a likely site for tetramerization. McIDH showed moreover, higher sequence identity (48%) to TtHDH than to previously characterized IDHs. Putative NAD+-IDHs with high sequence identity (48-57%) to McIDH were however identified in a variety of bacteria showing that NAD+-dependent IDHs are indeed widespread within the domain, Bacteria. Phylogenetic analysis including these new sequences revealed a close relationship with eukaryal allosterically regulated NAD+-IDH and the subfamily III of IDH was redefined to include bacterial NAD+- and NADP+-dependent IDHs. This apparent relationship suggests that the mitochondrial genes encoding NAD+-IDH are derived from the McIDH-like IDHs.
Collapse
Affiliation(s)
- Runar Stokke
- Department of Biology, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
| | | | | | | | | | | |
Collapse
|