1
|
Acun AD, Kantar D. Modulation of oxidative stress and apoptosis by alteration of bioactive lipids in the pancreas, and effect of zinc chelation in a rat model of Alzheimer's disease. J Trace Elem Med Biol 2024; 85:127480. [PMID: 38875759 DOI: 10.1016/j.jtemb.2024.127480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Increasing epidemiological evidence highlights the association between systemic insulin resistance and Alzheimer's disease (AD). It is known that peripheral insulin resistance in the early stages of AD precedes and is a precursor to amyloid-β (Aβ) deposition. Although it is known that improving the CNS insulin sensitivity of AD patients is an important therapeutic goal and that the majority of insulin in the brain comes from the periphery, there has been little attention to the changes that occur in the pancreatic tissue of AD patients. Therefore, it is crucial to elucidate the mechanisms affecting insulin resistance in pancreatic tissue in AD. It is known that zinc (Zn2+) chelation is effective in reducing peripheral insulin resistance, cell apoptosis, cell death, and oxidative stress. OBJECTIVE It was aimed to determine the changes in bioactive lipids, amylin (AIPP), oxidative stress and apoptosis in pancreatic cells in the early stages of Alzheimer's disease. The main aim is to reveal the therapeutic effect of the Cyclo-Z agent on these changes seen in the pancreas due to AD disease. METHODS AD and ADC rats were intracerebroventricular (i.c.v.) Aβ1-42 oligomers. Cyclo-Z gavage was applied to ADC and SHC rats for 21 days. First of all, the effects of AIPP, bioactive ceramides, apoptosis and oxidative stress on the pancreatic tissue of AD group rats were evaluated. Then, the effect of Cyclo-Z treatment on these was examined. ELISA kit was used in biochemical analyses. RESULTS AIPP and ceramide (CER) levels and CER/ sphingosine-1 phosphate (S1P) ratio were increased in the pancreatic tissue of AD rats. It also increased the level of CER kinase (CERK), which is known to increase the concentration of CER 1-phosphate (C1P), which is known to be toxic to cells in the presence of excessive CER concentration. Due to the increase in CER level, it was observed that apoptosis and oxidative stress increased in the pancreatic cells of AD group rats. CONCLUSION Cyclo-Z, which has Zn2+ chelating properties, reduced AD model rats' AIPP level and oxidative stress and could prevent pancreatic apoptosis. Similar therapeutic effects were not observed in the pancreatic tissue of Cyclo-Z administered to the SH group. For this reason, it is thought that Cyclo-Z agent may have a therapeutic effect on the peripheral hyperinsulinemia observed in the early stages of AD disease and the resulting low amount of insulin transported to the brain, by protecting pancreatic cells from apoptosis and oxidative stress by regulating their bioactive metabolites.
Collapse
Affiliation(s)
- Alev Duygu Acun
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, Antalya 07070, Turkey.
| | - Deniz Kantar
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, Antalya 07070, Turkey
| |
Collapse
|
2
|
Dai Z, Ben-Younis A, Vlachaki A, Raleigh D, Thalassinos K. Understanding the structural dynamics of human islet amyloid polypeptide: Advancements in and applications of ion-mobility mass spectrometry. Biophys Chem 2024; 312:107285. [PMID: 38941872 PMCID: PMC11260546 DOI: 10.1016/j.bpc.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Human islet amyloid polypeptide (hIAPP) forms amyloid deposits that contribute to β-cell death in pancreatic islets and are considered a hallmark of Type II diabetes Mellitus (T2DM). Evidence suggests that the early oligomers of hIAPP formed during the aggregation process are the primary pathological agent in islet amyloid induced β-cell death. The self-assembly mechanism of hIAPP, however, remains elusive, largely due to limitations in conventional biophysical techniques for probing the distribution or capturing detailed structures of the early, structurally dynamic oligomers. The advent of Ion-mobility Mass Spectrometry (IM-MS) has enabled the characterisation of hIAPP early oligomers in the gas phase, paving the way towards a deeper understanding of the oligomerisation mechanism and the correlation of structural information with the cytotoxicity of the oligomers. The sensitivity and the rapid structural characterisation provided by IM-MS also show promise in screening hIAPP inhibitors, categorising their modes of inhibition through "spectral fingerprints". This review delves into the application of IM-MS to the dissection of the complex steps of hIAPP oligomerisation, examining the inhibitory influence of metal ions, and exploring the characterisation of hetero-oligomerisation with different hIAPP variants. We highlight the potential of IM-MS as a tool for the high-throughput screening of hIAPP inhibitors, and for providing insights into their modes of action. Finally, we discuss advances afforded by recent advancements in tandem IM-MS and the combination of gas phase spectroscopy with IM-MS, which promise to deliver a more sensitive and higher-resolution structural portrait of hIAPP oligomers. Such information may help facilitate a new era of targeted therapeutic strategies for islet amyloidosis in T2DM.
Collapse
Affiliation(s)
- Zijie Dai
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Aisha Ben-Younis
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Anna Vlachaki
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Daniel Raleigh
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK; Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States.
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK.
| |
Collapse
|
3
|
Bennici G, Almahasheer H, Alghrably M, Valensin D, Kola A, Kokotidou C, Lachowicz J, Jaremko M. Mitigating diabetes associated with reactive oxygen species (ROS) and protein aggregation through pharmacological interventions. RSC Adv 2024; 14:17448-17460. [PMID: 38813124 PMCID: PMC11135279 DOI: 10.1039/d4ra02349h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Diabetes mellitus, a complex metabolic disorder, presents a growing global health challenge. In 2021, there were 529 million diabetics worldwide. At the super-regional level, Oceania, the Middle East, and North Africa had the highest age-standardized rates. The majority of cases of diabetes in 2021 (>90.0%) were type 2 diabetes, which is largely indicative of the prevalence of diabetes in general, particularly in older adults (K. L. Ong, et al., Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021, Lancet, 2023, 402(10397), 203-234). Nowadays, slowing the progression of diabetic complications is the only effective way to manage diabetes with the available therapeutic options. However, novel biomarkers and treatments are urgently needed to control cytokine secretion, advanced glycation end products (AGEs) production, vascular inflammatory effects, and cellular death. Emerging research has highlighted the intricate interplay between reactive oxygen species (ROS) and protein aggregation in the pathogenesis of diabetes. In this scenario, the main aim of this paper is to provide a comprehensive review of the current understanding of the molecular mechanisms underlying ROS-induced cellular damage and protein aggregation, specifically focusing on their contribution to diabetes development. The role of ROS as key mediators of oxidative stress in diabetes is discussed, emphasizing their impact on cellular components and signaling. Additionally, the involvement of protein aggregation in impairing cellular function and insulin signaling is explored. The synergistic effects of ROS and protein aggregation in promoting β-cell dysfunction and insulin resistance are examined, shedding light on potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Giulia Bennici
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Hanan Almahasheer
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU) Dammam 31441-1982 Saudi Arabia
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena Via Aldo Moro 2 53100 Siena Italy
| | - Arian Kola
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena Via Aldo Moro 2 53100 Siena Italy
| | - Chrysoula Kokotidou
- Department of Materials Science and Technology, University of Crete 70013 Heraklion Crete Greece
- Institute of Electronic Structure and Laser (IESL) FORTH 70013 Heraklion Crete Greece
| | - Joanna Lachowicz
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University Mikulicza-Radeckiego 7 Wroclaw PL 50-368 Poland
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
4
|
Kommera SP, Kumar A, Chitkara D, Mittal A. Pramlintide an Adjunct to Insulin Therapy: Challenges and Recent Progress in Delivery. J Pharmacol Exp Ther 2024; 388:81-90. [PMID: 37863489 DOI: 10.1124/jpet.123.001679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
Dysregulation of various glucoregulatory hormones lead to failure of insulin monotherapy in patients with diabetes mellitus due to various reasons, including severe hypoglycemia, glycemic hypervariability, and an increased risk of microvascular complications. However, pramlintide as an adjunct to insulin therapy enhances glucagon suppression and thereby offers improved glycemic control. Clinical studies have shown that pramlintide improves glycemic control, reduces postprandial glucose excursions, and promotes weight loss in patients with type 1 and type 2 diabetes. Although clinical benefits of pramlintide are well reported, there still exists a high patient resistance for the therapy, as separate injections for pramlintide and insulin must be administered. Although marketed insulin formulations generally demonstrate a peak action in 60-90 minutes, pramlintide elicits its peak concentration at around 20-30 minutes after administration. Thus, owing to the significant differences in pharmacokinetics of exogenously administered pramlintide and insulin, the therapy fails to elicit its action otherwise produced by the endogenous hormones. Hence, strategies such as delaying the release of pramlintide by using inorganic polymers like silica, synthetic polymers like polycaprolactone, and lipids have been employed. Also, approaches like noncovalent conjugation, polyelectrolyte complexation, and use of amphiphilic excipients for codelivery of insulin and pramlintide have been explored to address the issues with pramlintide delivery and improve patient adherence to the therapy. This approach may usher in a new era of diabetes management, offering patients multiple options to tailor their treatment and improve their quality of life. SIGNIFICANCE STATEMENT: To our knowledge, this is the first report that summarizes various challenges in insulin and pramlintide codelivery and strategies to overcome them. The paper also provides deeper insights into various novel formulation strategies for pramlintide that could further broaden the reader's understanding of peptide codelivery.
Collapse
Affiliation(s)
- Sai Pradyuth Kommera
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, India
| | - Ankur Kumar
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, India
| |
Collapse
|
5
|
Mohamed-Mohamed H, García-Morales V, Sánchez Lara EM, González-Acedo A, Pardo-Moreno T, Tovar-Gálvez MI, Melguizo-Rodríguez L, Ramos-Rodríguez JJ. Physiological Mechanisms Inherent to Diabetes Involved in the Development of Dementia: Alzheimer's Disease. Neurol Int 2023; 15:1253-1272. [PMID: 37873836 PMCID: PMC10594452 DOI: 10.3390/neurolint15040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a metabolic disease reaching pandemic levels worldwide. In parallel, Alzheimer's disease (AD) and vascular dementia (VaD) are the two leading causes of dementia in an increasingly long-living Western society. Numerous epidemiological studies support the role of T2D as a risk factor for the development of dementia. However, few basic science studies have focused on the possible mechanisms involved in this relationship. On the other hand, this review of the literature also aims to explore the relationship between T2D, AD and VaD. The data found show that there are several alterations in the central nervous system that may be promoting the development of T2D. In addition, there are some mechanisms by which T2D may contribute to the development of neurodegenerative diseases such as AD or VaD.
Collapse
Affiliation(s)
- Himan Mohamed-Mohamed
- Department of Physiology, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - Victoria García-Morales
- Physiology Area, Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cádiz, Pl. Falla, 9, 11003 Cádiz, Spain
| | - Encarnación María Sánchez Lara
- Department of Personalidad, Evaluación y Tratamiento Psicológico, Faculty of Health Sciences (Ceuta), University of Granada, 51001 Ceuta, Spain;
| | - Anabel González-Acedo
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
| | - Teresa Pardo-Moreno
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - María Isabel Tovar-Gálvez
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - Lucía Melguizo-Rodríguez
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
| | - Juan José Ramos-Rodríguez
- Department of Physiology, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| |
Collapse
|
6
|
Clemen R, Fuentes-Lemus E, Bekeschus S, Davies MJ. Oxidant-modified amylin fibrils and aggregates alter the inflammatory profile of multiple myeloid cell types, but are non-toxic to islet β cells. Redox Biol 2023; 65:102835. [PMID: 37544243 PMCID: PMC10432244 DOI: 10.1016/j.redox.2023.102835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023] Open
Abstract
Diabetes mellitus currently affects ∼10% of the population worldwide, with Type 2 predominating, and this incidence is increasing steadily. Both Type 1 and 2 are complex diseases, involving β-cell death and chronic inflammation, but the pathways involved are unresolved. Chronic inflammation is characterized by increased oxidant formation, with this inducing protein modification, altered function and immunogenicity. Amylin, a peptide hormone co-secreted with insulin by β-cells, has attracted considerable interest for its amyloidogenic properties, however, the effects that oxidants have on amylin aggregation and function are poorly understood. Amylin was exposed in vitro to hypochlorous acid, hydrogen peroxide and peroxynitrous acid/peroxynitrite to investigate the formation of post-translational oxidative modifications (oxPTMs, via mass spectrometry) and fibril formation (via transmission electron microscopy). Amylin free acid (AFA) was also examined to investigate the role of the C-terminal amide in amylin. Oxidant exposure led to changes in aggregate morphology and abundance of oxPTMs in a concentration-dependent manner. The toxicity and immunogenic potential of oxidant-modified amylin or AFA on pancreatic islet cells (INS-1E), human monocyte cell line (THP-1) and monocyte-derived dendritic cells (moDCs) were examined using metabolic activity and cytokine assays, and flow cytometry. No significant changes in vitality or viability were detected, but exposure to oxidant-modified amylin or AFA resulted in altered immunogenicity when compared to the native proteins. THP-1 and moDCs show altered expression of activation markers and changes in cytokine secretion. Furthermore, oxidant-treated amylin and AFA promoted maturation of THP-1 and pre-mature moDCs, as determined by changes in size, and maturation markers.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
7
|
Mathrani A, Yip W, Sequeira-Bisson IR, Barnett D, Stevenson O, Taylor MW, Poppitt SD. Effect of a 12-Week Polyphenol Rutin Intervention on Markers of Pancreatic β-Cell Function and Gut Microbiota in Adults with Overweight without Diabetes. Nutrients 2023; 15:3360. [PMID: 37571297 PMCID: PMC10420824 DOI: 10.3390/nu15153360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Supplementation with prebiotic polyphenol rutin is a potential dietary therapy for type 2 diabetes prevention in adults with obesity, based on previous glycaemic improvement in transgenic mouse models. Gut microbiota are hypothesised to underpin these effects. We investigated the effect of rutin supplementation on pancreatic β-cell function measured as C-peptide/glucose ratio, and 16S rRNA gene-based gut microbiota profiles, in a cohort of individuals with overweight plus normoglycaemia or prediabetes. Eighty-seven participants were enrolled, aged 18-65 years with BMI of 23-35 kg/m2. This was a 12-week double-blind randomised controlled trial (RCT), with 3 treatments comprising (i) placebo control, (ii) 500 mg/day encapsulated rutin, and (iii) 500 mg/day rutin-supplemented yoghurt. A 2-h oral glucose tolerance test (OGTT) was performed at baseline and at the end of the trial, with faecal samples also collected. Compliance with treatment was high (~90%), but rutin in both capsule and dietary format did not alter pancreatic β-cell response to OGTT over 12 weeks. Gut bacterial community composition also did not significantly change, with Firmicutes dominating irrespective of treatment. Fasting plasma glucose negatively correlated with the abundance of the butyrate producer Roseburia inulinivorans, known for its anti-inflammatory capacity. This is the first RCT to investigate postprandial pancreatic β-cell function in response to rutin supplementation.
Collapse
Affiliation(s)
- Akarsh Mathrani
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Wilson Yip
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand
| | - Ivana R. Sequeira-Bisson
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand
| | - Daniel Barnett
- Department of Statistics, University of Auckland, Auckland 1010, New Zealand; (D.B.); (O.S.)
| | - Oliver Stevenson
- Department of Statistics, University of Auckland, Auckland 1010, New Zealand; (D.B.); (O.S.)
| | - Michael W. Taylor
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Sally D. Poppitt
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
8
|
Hess KA, Spear NJ, Vogelsang SA, Macdonald JE, Buchanan LE. Determining the impact of gold nanoparticles on amyloid aggregation with 2D IR spectroscopy. J Chem Phys 2023; 158:091101. [PMID: 36889961 PMCID: PMC9981241 DOI: 10.1063/5.0136376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/08/2023] [Indexed: 03/05/2023] Open
Abstract
As nanomaterials become more prevalent in both industry and medicine, it is crucial to fully understand their health risks. One area of concern is the interaction of nanoparticles with proteins, including their ability to modulate the uncontrolled aggregation of amyloid proteins associated with diseases, such as Alzheimer's disease and type II diabetes, and potentially extend the lifetime of cytotoxic soluble oligomers. This work demonstrates that two-dimensional infrared spectroscopy and 13C18O isotope labeling can be used to follow the aggregation of human islet amyloid polypeptide (hIAPP) in the presence of gold nanoparticles (AuNPs) with single-residue structural resolution. 60 nm AuNPs were found to inhibit hIAPP, tripling the aggregation time. Furthermore, calculating the actual transition dipole strength of the backbone amide I' mode reveals that hIAPP forms a more ordered aggregate structure in the presence of AuNPs. Ultimately, such studies can provide insight into how mechanisms of amyloid aggregation are altered in the presence of nanoparticles, furthering our understanding of protein-nanoparticle interactions.
Collapse
Affiliation(s)
- Kayla A. Hess
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Nathan J. Spear
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Sophia A. Vogelsang
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Janet E. Macdonald
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Lauren E. Buchanan
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| |
Collapse
|
9
|
Marrano N, Biondi G, Borrelli A, Rella M, Zambetta T, Di Gioia L, Caporusso M, Logroscino G, Perrini S, Giorgino F, Natalicchio A. Type 2 Diabetes and Alzheimer's Disease: The Emerging Role of Cellular Lipotoxicity. Biomolecules 2023; 13:183. [PMID: 36671568 PMCID: PMC9855893 DOI: 10.3390/biom13010183] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Type 2 diabetes (T2D) and Alzheimer's diseases (AD) represent major health issues that have reached alarming levels in the last decades. Although growing evidence demonstrates that AD is a significant comorbidity of T2D, and there is a ~1.4-2-fold increase in the risk of developing AD among T2D patients, the involvement of possible common triggers in the pathogenesis of these two diseases remains largely unknown. Of note, recent mechanistic insights suggest that lipotoxicity could represent the missing ring in the pathogenetic mechanisms linking T2D to AD. Indeed, obesity, which represents the main cause of lipotoxicity, has been recognized as a major risk factor for both pathological conditions. Lipotoxicity can lead to inflammation, insulin resistance, oxidative stress, ceramide and amyloid accumulation, endoplasmic reticulum stress, ferroptosis, and autophagy, which are shared biological events in the pathogenesis of T2D and AD. In the current review, we try to provide a critical and comprehensive view of the common molecular pathways activated by lipotoxicity in T2D and AD, attempting to summarize how these mechanisms can drive future research and open the way to new therapeutic perspectives.
Collapse
Affiliation(s)
- Nicola Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppina Biondi
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Borrelli
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Martina Rella
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Tommaso Zambetta
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Ludovico Di Gioia
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Mariangela Caporusso
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giancarlo Logroscino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione Cardinale G. Panico, 73039 Lecce, Italy
| | - Sebastio Perrini
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
10
|
Mahboob A, Senevirathne DKL, Paul P, Nabi F, Khan RH, Chaari A. An investigation into the potential action of polyphenols against human Islet Amyloid Polypeptide aggregation in type 2 diabetes. Int J Biol Macromol 2023; 225:318-350. [PMID: 36400215 DOI: 10.1016/j.ijbiomac.2022.11.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes (T2D), a chronic metabolic disease characterized by hyperglycemia, results in significant disease burden and financial costs globally. Whilst the majority of T2D cases seem to have a genetic basis, non-genetic modifiable and non-modifiable risk factors for T2D include obesity, diet, physical activity and lifestyle, smoking, age, ethnicity, and mental stress. In healthy individuals, insulin secretion from pancreatic islet β-cells is responsible for keeping blood glucose levels within normal ranges. T2D patients suffer from multifactorial onset of β-cell dysfunction and/or loss of β-cell mass owing to reactive oxygen species (ROS) production, mitochondrial dysfunction, autophagy, and endoplasmic reticulum (ER) stress. Most predominantly however, and the focus of this review, it is the aggregation and misfolding of human Islet Amyloid Polypeptide (hIAPP, also known as amylin), which is detrimental to β-cell function and health. Whilst hIAPP is found in healthy individuals, its misfolded version is cytotoxic and able to induce β-cell dysfunction and/or death through various mechanisms including membrane changes in β-cell causing influx of calcium ions, arresting complete granule membrane recovery and ER stress. There are several existing therapeutics for T2D. However, there is a need for alternative or adjunct therapies for T2D with milder adverse effects and greater availability. Foremost among the potential natural therapeutics are polyphenols. Extensive data from studies evaluating the potential of polyphenols to inhibit hIAPP aggregation and disassemble aggregated hIAPP are promising. Moreover, in-vivo, and in-silico studies also highlight the potential effects of polyphenols against hIAPP aggregation and mitigation of larger pathological effects of T2D. Whilst there have been some promising clinical studies on the therapeutic potential of polyphenols, extensive further clinical studies and in-vitro studies evaluating the mechanisms of action and ideal doses for many of these compounds are required. The need for these studies is made more important by the postulated link between Alzheimer's disease (AD) and T2D pathophysiology given the similar aggregation process of their respective amyloid proteins, which evokes thoughts of cross-reactive polyphenols which can be effective for both AD and T2D patients.
Collapse
Affiliation(s)
- Anns Mahboob
- Premedical Division Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | | | - Pradipta Paul
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Ali Chaari
- Premedical Division Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
11
|
Shardlow E, Brown L, Exley C. The influence of aluminium and copper upon the early aggregatory behaviour and size of Islet amyloid polypeptide under simulated physiological conditions. J Trace Elem Med Biol 2022; 73:127027. [PMID: 35868166 DOI: 10.1016/j.jtemb.2022.127027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM Islet amyloid polypeptide/amylin deposition in the form of amyloid plaques is a common pathological feature observed in the pancreatic tissue of those with Type II Diabetes Mellitus. Its propensity to form amyloid fibrils and the resultant toxicity of this peptide in vivo is influenced by both the concentration and species of metal present in situ. Herein, we examine the influence of Al (III) and Cu (II), applied at equimolar and supra-stoichiometric concentrations on the initial aggregatory behaviour of amylin under near physiological conditions. METHODS Dynamic light scattering measurements, which monitored the aggregation status and size of the peptide in real time, were performed during the early lag-phase of fibrillogenesis (T ≤ 30 min) in the absence or presence of metal ions. RESULTS Islet amyloid polypeptide (10 µM) rapidly aggregated when introduced into a physiological medium favouring the formation of large, agglomerated structures (> 1000 nm) after 30 min incubation. Neither the addition of equimolar or excess metals significantly influenced the size of the peptide when intensity distributions were consulted; however, number distributions indicated that both Al (III) and Cu (II) may have had, an albeit temporary, stabilising influence upon the conformations present within solution. CONCLUSION These results infer that small oligomeric species are likely transient entities that are rapidly incorporated into large agglomerates during the very initial stages of fibrillogenesis. While both Al (III) and Cu (II) both inhibited agglomeration to some degree, their stabilising affect upon peptide aggregation was limited over the juncture of the experiments performed herein; hence, it is difficult to say whether these metal ions play a role in enhancing the toxicity of these peptides through influencing their aggregation in the short-term.
Collapse
Affiliation(s)
- Emma Shardlow
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG, UK.
| | - Lewis Brown
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG, UK
| |
Collapse
|
12
|
The Association of Lipids with Amyloid Fibrils. J Biol Chem 2022; 298:102108. [PMID: 35688209 PMCID: PMC9293637 DOI: 10.1016/j.jbc.2022.102108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 01/02/2023] Open
Abstract
Amyloid formation continues to be a widely studied area because of its association with numerous diseases, such as Alzheimer’s and Parkinson’s diseases. Despite a large body of work on protein aggregation and fibril formation, there are still significant gaps in our understanding of the factors that differentiate toxic amyloid formation in vivo from alternative misfolding pathways. In addition to proteins, amyloid fibrils are often associated in their cellular context with several types of molecule, including carbohydrates, polyanions, and lipids. This review focuses in particular on evidence for the presence of lipids in amyloid fibrils and the routes by which those lipids may become incorporated. Chemical analyses of fibril composition, combined with studies to probe the lipid distribution around fibrils, provide evidence that in some cases, lipids have a strong association with fibrils. In addition, amyloid fibrils formed in the presence of lipids have distinct morphologies and material properties. It is argued that lipids are an integral part of many amyloid deposits in vivo, where their presence has the potential to influence the nucleation, morphology, and mechanical properties of fibrils. The role of lipids in these structures is therefore worthy of further study.
Collapse
|
13
|
Tempra C, Scollo F, Pannuzzo M, Lolicato F, La Rosa C. A unifying framework for amyloid-mediated membrane damage: The lipid-chaperone hypothesis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140767. [PMID: 35144022 DOI: 10.1016/j.bbapap.2022.140767] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Over the past thirty years, researchers have highlighted the role played by a class of proteins or polypeptides that forms pathogenic amyloid aggregates in vivo, including i) the amyloid Aβ peptide, which is known to form senile plaques in Alzheimer's disease; ii) α-synuclein, responsible for Lewy body formation in Parkinson's disease and iii) IAPP, which is the protein component of type 2 diabetes-associated islet amyloids. These proteins, known as intrinsically disordered proteins (IDPs), are present as highly dynamic conformational ensembles. IDPs can partially (mis) fold into (dys) functional conformations and accumulate as amyloid aggregates upon interaction with other cytosolic partners such as proteins or lipid membranes. In addition, an increasing number of reports link the toxicity of amyloid proteins to their harmful effects on membrane integrity. Still, the molecular mechanism underlying the amyloidogenic proteins transfer from the aqueous environment to the hydrocarbon core of the membrane is poorly understood. This review starts with a historical overview of the toxicity models of amyloidogenic proteins to contextualize the more recent lipid-chaperone hypothesis. Then, we report the early molecular-level events in the aggregation and ion-channel pore formation of Aβ, IAPP, and α-synuclein interacting with model membranes, emphasizing the complexity of these processes due to their different spatial-temporal resolutions. Next, we underline the need for a combined experimental and computational approach, focusing on the strengths and weaknesses of the most commonly used techniques. Finally, the last two chapters highlight the crucial role of lipid-protein complexes as molecular switches among ion-channel-like formation, detergent-like, and fibril formation mechanisms and their implication in fighting amyloidogenic diseases.
Collapse
Affiliation(s)
- Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - Federica Scollo
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Pannuzzo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany; Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy.
| |
Collapse
|
14
|
Ren L, Hu L, Zhang Y, Liu J, Xu W, Wu W, Xu J, Chen X, Yao K, Yu Y. Cataract-Causing S93R Mutant Destabilized Structural Conformation of βB1 Crystallin Linking With Aggregates Formation and Cellular Viability. Front Mol Biosci 2022; 9:844719. [PMID: 35359596 PMCID: PMC8964140 DOI: 10.3389/fmolb.2022.844719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Cataract, opacity of the eye lens, is the leading cause of visual impairment worldwide. The crucial pathogenic factors that cause cataract are misfolding and aggregation of crystallin protein. βB1-crystallin, which is the most abundant water-soluble protein in mammalian lens, is essential for lens transparency. A previous study identified the missense mutation βB1-S93R being responsible for congenital cataract. However, the exact pathogenic mechanism causing cataract remains unclear. The S93 residue, which is located at the first Greek-key motif of βB1-crystallin, is highly conserved, and its substitution to Arginine severely impaired hydrogen bonds and structural conformation, which were evaluated via Molecular Dynamic Simulation. The βB1-S93R was also found to be prone to aggregation in both human cell lines and Escherichia coli. Then, we isolated the βB1-S93R variant from inclusion bodies by protein renaturation. The βB1-S93R mutation exposed more hydrophobic residues, and the looser structural mutation was prone to aggregation. Furthermore, the S93R mutation reduced the structural stability of βB1-crystallin when incubated at physiological temperature and made it more sensitive to environmental stress, such as UV irradiation or oxidative stress. We also constructed a βB1-S93R cellular model and discovered that βB1-S93R was more sensitive to environmental stress, causing not only aggregate formation but also cellular apoptosis and impaired cellular viability. All of the results indicated that lower solubility and structural stability, sensitivity to environmental stress, vulnerability to aggregation, and impaired cellular viability of βB1-S93R might be involved in cataract development.
Collapse
Affiliation(s)
- Ling Ren
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lidan Hu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Liu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Eye Center of Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanyue Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Wu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjie Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yibo Yu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Kell DB, Laubscher GJ, Pretorius E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications. Biochem J 2022; 479:537-559. [PMID: 35195253 PMCID: PMC8883497 DOI: 10.1042/bcj20220016] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
Post-acute sequelae of COVID (PASC), usually referred to as 'Long COVID' (a phenotype of COVID-19), is a relatively frequent consequence of SARS-CoV-2 infection, in which symptoms such as breathlessness, fatigue, 'brain fog', tissue damage, inflammation, and coagulopathies (dysfunctions of the blood coagulation system) persist long after the initial infection. It bears similarities to other post-viral syndromes, and to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Many regulatory health bodies still do not recognize this syndrome as a separate disease entity, and refer to it under the broad terminology of 'COVID', although its demographics are quite different from those of acute COVID-19. A few years ago, we discovered that fibrinogen in blood can clot into an anomalous 'amyloid' form of fibrin that (like other β-rich amyloids and prions) is relatively resistant to proteolysis (fibrinolysis). The result, as is strongly manifested in platelet-poor plasma (PPP) of individuals with Long COVID, is extensive fibrin amyloid microclots that can persist, can entrap other proteins, and that may lead to the production of various autoantibodies. These microclots are more-or-less easily measured in PPP with the stain thioflavin T and a simple fluorescence microscope. Although the symptoms of Long COVID are multifarious, we here argue that the ability of these fibrin amyloid microclots (fibrinaloids) to block up capillaries, and thus to limit the passage of red blood cells and hence O2 exchange, can actually underpin the majority of these symptoms. Consistent with this, in a preliminary report, it has been shown that suitable and closely monitored 'triple' anticoagulant therapy that leads to the removal of the microclots also removes the other symptoms. Fibrin amyloid microclots represent a novel and potentially important target for both the understanding and treatment of Long COVID and related disorders.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, South Africa
| | | | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, South Africa
| |
Collapse
|
16
|
Molecular Mechanisms of Amylin Turnover, Misfolding and Toxicity in the Pancreas. Molecules 2022; 27:molecules27031021. [PMID: 35164285 PMCID: PMC8838401 DOI: 10.3390/molecules27031021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 12/13/2022] Open
Abstract
Amyloidosis is a common pathological event in which proteins self-assemble into misfolded soluble and insoluble molecular forms, oligomers and fibrils that are often toxic to cells. Notably, aggregation-prone human islet amyloid polypeptide (hIAPP), or amylin, is a pancreatic hormone linked to islet β-cells demise in diabetics. The unifying mechanism by which amyloid proteins, including hIAPP, aggregate and kill cells is still matter of debate. The pathology of type-2 diabetes mellitus (T2DM) is characterized by extracellular and intracellular accumulation of toxic hIAPP species, soluble oligomers and insoluble fibrils in pancreatic human islets, eventually leading to loss of β-cell mass. This review focuses on molecular, biochemical and cell-biology studies exploring molecular mechanisms of hIAPP synthesis, trafficking and degradation in the pancreas. In addition to hIAPP turnover, the dynamics and the mechanisms of IAPP–membrane interactions; hIAPP aggregation and toxicity in vitro and in situ; and the regulatory role of diabetic factors, such as lipids and cholesterol, in these processes are also discussed.
Collapse
|
17
|
Tang Y, Zhang D, Liu Y, Zhang Y, Zhou Y, Chang Y, Zheng B, Xu A, Zheng J. A new strategy to reconcile amyloid cross-seeding and amyloid prevention in a binary system of α-synuclein fragmental peptide and hIAPP. Protein Sci 2022; 31:485-497. [PMID: 34850985 PMCID: PMC8820123 DOI: 10.1002/pro.4247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Amyloid cross-seeding and amyloid inhibition are two different research subjects being studied separately for different pathological purposes, in which amyloid cross-seeding targets to study the co-aggregation of different amyloid proteins and potential molecular links between different neurodegenerative diseases, while amyloid inhibition aims to design different molecules for preventing amyloid aggregation. While both amyloid cross-seeding and amyloid inhibition are critical for better understanding the pathological causes of different neurodegenerative diseases including Parkinson disease (PD) and Type 2 diabetes (T2D), less efforts have been made to reconcile the two phenomena. Herein, we proposed a new preventive strategy to demonstrate (a) the cross-seeding of octapeptide TKEQVTNV from α-synuclein (associated with PD) with hIAPP (associated with T2D) and (b) the cross-seeding-promoted hIAPP fibrillization and cross-seeding-reduced hIAPP toxicity. Collective results confirmed that TKEQVTNV can indeed cross-seed with hIAPP monomers and oligomers, not protofibrils, to form β-structure-rich fibrils and to accelerate hIAPP fibrillization. Moreover, such cross-seeding-induced promotion effect by TKEQVTNV also rescued the pancreatic cells from hIAPP-induced cytotoxicity by increasing cell viability and reducing cell apoptosis simultaneously. This work provides a new angle to discover amyloid fragments and use them as amyloid modulators (inhibitors or promotors) to interfere with amyloid aggregation of other amyloid proteins, as well as sequence/structure basis to explore the amyloid cross-seeding between different amyloid proteins that may help explain a potential molecular talk between different neurodegenerative diseases.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOhioUSA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOhioUSA
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOhioUSA
| | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOhioUSA
| | - Yifan Zhou
- Department of Polymer ScienceThe University of AkronAkronOhioUSA
| | - Yung Chang
- R&D Center for Membrane Technology, Department of Chemical EngineeringChung Yuan Christian UniversityTaoyuanTaiwan
| | | | | | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOhioUSA
| |
Collapse
|
18
|
Sepehri A, Nepal B, Lazaridis T. Distinct Modes of Action of IAPP Oligomers on Membranes. J Chem Inf Model 2021; 61:4645-4655. [PMID: 34499498 DOI: 10.1021/acs.jcim.1c00767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Islet amyloid polypeptide (IAPP, also known as amylin) is a peptide hormone that is co-secreted with insulin by pancreatic β-cells and forms amyloid aggregates in type II diabetes. Various lines of evidence indicate that oligomers of this peptide may induce toxicity by disrupting or forming pores in cell membranes, but the structure of these pores is unknown. Here, we create models of pores for both helical and β-structured peptides using implicit membrane modeling and test their stability using multimicrosecond all-atom simulations. We find that the helical peptides behave similarly to antimicrobial peptides; they remain stably inserted in a highly tilted or partially unfolded configuration creating a narrow water channel. Parallel helix orientation creates a somewhat larger pore. An octameric β barrel of parallel β-hairpins is highly stable in the membrane, whereas the corresponding barrel made of antiparallel hairpins is not. We propose that certain experiments probe the helical pore state while others probe the β-structured pore state; this provides a possible explanation for lack of correlation that is sometimes observed between in vivo toxicity and in vitro liposome permeabilization experiments.
Collapse
Affiliation(s)
- Aliasghar Sepehri
- Department of Chemistry, City College of New York, New York, New York 10031, United States
| | - Binod Nepal
- Department of Chemistry, City College of New York, New York, New York 10031, United States
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, New York, New York 10031, United States.,Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, New York, New York 10016, United States
| |
Collapse
|
19
|
Xin Y, Wang S, Liu H, Ke H, Tian S, Cao Y, Huang Y, Shang Y, Jia H, Su L, Yang X, Meng F, Luo L. Hierarchical Vitalization of Oligotyrosine in Mitigating Islet Amyloid Polypeptide Amyloidogenesis through Multivalent Macromolecules with Conformation-Restrained Nanobody Ligands. ACS NANO 2021; 15:13319-13328. [PMID: 34293858 DOI: 10.1021/acsnano.1c03083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of inhibitors that can effectively mitigate the amyloidogenesis of human islet amyloid polypeptide (hIAPP), which is linked to type II diabetes, remains a great challenge. Oligotyrosines are intriguing candidates in that they can block the hIAPP aggregation through multiplex phenol-hIAPP interactions. However, oligotyrosines containing too many tyrosine units (larger than three) may fail to inhibit amyloidogenesis due to their increased hydrophobicity and strong self-aggregation propensity. In this work, we developed a strategy to hierarchically vitalize oligotyrosines in mitigating hIAPP amyloidogenesis. Tetratyrosine YYYY (4Y) was grafted into the third complementary-determining region (CDR3) of a parent nanobody to construct a sequence-programmed nanobody N4Y, in which the conformation of the grafted 4Y fragment was constrained for a significantly enhanced binding affinity with hIAPP. We next conjugated N4Y to a polymer to approach a secondary vitalization of 4Y through a multivalent effect. The in vitro and in vivo experiments validated that the resulting PDN4Y could completely inhibit the hIAPP amyloidogenesis at low stoichiometric concentrations and effectively suppress the generation of toxic reactive oxygen species and alleviate amyloidogenesis-mediated damage to INS-1 cells and zebrafish (Danio rerio) embryos. The hierarchical vitalization of 4Y via a synergistic conformation restraint and multivalent effect represents a strategic prototype of boosting the efficacy of peptide-based amyloidogenesis inhibitors, especially those with a high hydrophobicity and strong aggregation tendency, which holds great promise for future translational studies.
Collapse
Affiliation(s)
- Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huichuan Ke
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujuan Cao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuanda Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunhu Shang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Su
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
20
|
Babych M, Nguyen PT, Côté-Cyr M, Kihal N, Quittot N, Golizeh M, Sleno L, Bourgault S. Site-Specific Alkylation of the Islet Amyloid Polypeptide Accelerates Self-Assembly and Potentiates Perturbation of Lipid Membranes. Biochemistry 2021; 60:2285-2299. [PMID: 34264642 DOI: 10.1021/acs.biochem.1c00308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accumulation of insoluble amyloids in the pancreatic islets is a pathological hallmark of type II diabetes and correlates closely with the loss of β-cell mass. The predominant component of these amyloid deposits is the islet amyloid polypeptide (IAPP). The factors contributing to the conversion of IAPP from a monomeric bioactive peptide hormone into insoluble amyloid fibrils remain partially elusive. In this study, we investigated the effect of the oxidative non-enzymatic post-translational modification induced by the reactive metabolite 4-hydroxynonenal (HNE) on IAPP aggregation and cytotoxicity. Incubation of IAPP with exogenous HNE accelerated its self-assembly into β-sheet fibrils and led to the formation of a Michael adduct on the His-18 side chain. To model this covalent modification, the imidazole N(π) position of histidine was alkylated using a close analogue of HNE, the octyl chain. IAPP lipidated at His-18 showed a hastened random coil-to-β-sheet conformational conversion into fibrillar assemblies with a distinct morphology, a low level of binding to thioflavin T, and a high surface hydrophobicity. Introducing an octyl chain on His-18 enhanced the ability of the peptide to perturb synthetic lipid vesicles, to permeabilize the plasma membrane, and to induce the death of pancreatic β-cells. Alkylated IAPP triggered the self-assembly of unmodified IAPP by prompting primary nucleation and increased its capacity to perturb the plasma membrane, indicating that only a small proportion of the modified peptide is necessary to shift the balance toward the formation of proteotoxic species. This study underlines the importance of studying IAPP post-translational modifications induced by oxidative metabolites in the context of pancreatic amyloids.
Collapse
Affiliation(s)
- Margaryta Babych
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, http://proteo.ca/en/
| | - Phuong Trang Nguyen
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, http://proteo.ca/en/
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, http://proteo.ca/en/
| | - Nadjib Kihal
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, http://proteo.ca/en/
| | - Noé Quittot
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, http://proteo.ca/en/
| | - Makan Golizeh
- Department of Mathematical and Physical Sciences, Concordia University of Edmonton, Edmonton, AB T5B 4E4, Canada
| | - Lekha Sleno
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, http://proteo.ca/en/
| |
Collapse
|
21
|
Radbakhsh S, Barreto GE, Bland AR, Sahebkar A. Curcumin: A small molecule with big functionality against amyloid aggregation in neurodegenerative diseases and type 2 diabetes. Biofactors 2021; 47:570-586. [PMID: 33893674 DOI: 10.1002/biof.1735] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
Amyloidosis is a concept that implicates disorders and complications that are due to abnormal protein accumulation in different cells and tissues. Protein aggregation-associated diseases are classified according to the type of aggregates and deposition sites, such as neurodegenerative disorders and type 2 diabetes mellitus. Polyphenolic phytochemicals such as curcumin and its derivatives have anti-amyloid effects both in vitro and in animal models; however, the underlying mechanisms are not understood. In this review, we summarized possible mechanisms by which curcumin could interfere with self-assembly processes and reduce amyloid aggregation in amyloidosis. Furthermore, we discuss clinical trials in which curcumin is used as a therapeutic agent for the treatment of diseases linking to protein aggregates.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Abigail R Bland
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Eldrid C, Ben-Younis A, Ujma J, Britt H, Cragnolini T, Kalfas S, Cooper-Shepherd D, Tomczyk N, Giles K, Morris M, Akter R, Raleigh D, Thalassinos K. Cyclic Ion Mobility-Collision Activation Experiments Elucidate Protein Behavior in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1545-1552. [PMID: 34006100 PMCID: PMC8172447 DOI: 10.1021/jasms.1c00018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ion mobility coupled to mass spectrometry (IM-MS) is widely used to study protein dynamics and structure in the gas phase. Increasing the energy with which the protein ions are introduced to the IM cell can induce them to unfold, providing information on the comparative energetics of unfolding between different proteoforms. Recently, a high-resolution cyclic IM-mass spectrometer (cIM-MS) was introduced, allowing multiple, consecutive tandem IM experiments (IMn) to be carried out. We describe a tandem IM technique for defining detailed protein unfolding pathways and the dynamics of disordered proteins. The method involves multiple rounds of IM separation and collision activation (CA): IM-CA-IM and CA-IM-CA-IM. Here, we explore its application to studies of a model protein, cytochrome C, and dimeric human islet amyloid polypeptide (hIAPP), a cytotoxic and amyloidogenic peptide involved in type II diabetes. In agreement with prior work using single stage IM-MS, several unfolding events are observed for cytochrome C. IMn-MS experiments also show evidence of interconversion between compact and extended structures. IMn-MS data for hIAPP shows interconversion prior to dissociation, suggesting that the certain conformations have low energy barriers between them and transition between compact and extended forms.
Collapse
Affiliation(s)
- Charles Eldrid
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
| | - Aisha Ben-Younis
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
| | - Jakub Ujma
- Waters
Corporation, Wilmslow SK9 4AX, U.K.
| | - Hannah Britt
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
| | - Tristan Cragnolini
- Institute
of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, U.K.
| | - Symeon Kalfas
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
| | | | | | | | | | - Rehana Akter
- Department
of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Daniel Raleigh
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
- Department
of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Konstantinos Thalassinos
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
- Institute
of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, U.K.
| |
Collapse
|
23
|
Reza MI, Syed AA, Kumariya S, Singh P, Husain A, Gayen JR. Pancreastatin induces islet amyloid peptide aggregation in the pancreas, liver, and skeletal muscle: An implication for type 2 diabetes. Int J Biol Macromol 2021; 182:760-771. [PMID: 33862075 DOI: 10.1016/j.ijbiomac.2021.04.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/23/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022]
Abstract
Recent findings suggest that the accumulation of misfolded aggregates of islet amyloid peptide (IAPP) plays an essential role in pancreatic damage and type 2 diabetes (T2D). Pancreastatin (PST), a chromogranin derived peptide, instigates insulin resistance (IR) and promotes T2D. Here, we aimed to investigate whether PST induces IAPP aggregation in the pancreas, liver, and skeletal muscles. Foremost, we unraveled kinetics of fibril formation by ThT kinetic assay, ANS binding, turbidity, and far UV-CD. Subsequently, we checked the microarchitecture of fibril by TEM. Moreover, the PST action on IAPP expression was examined by immunocytochemistry, immunohistochemistry, western blotting, and real-time PCR. The outcome of spectral analysis and TEM demonstrated the fibril formation in the alone IAPP group but not in the alone PST; however, PST with IAPP produced stronger fibril. Moreover, PST was found to stimulate IAPP aggregation and expression more prominently in PANC1 and HepG2 cells, and pancreas and liver tissues than in L6 and skeletal muscle. Subsequently, pancreastatin inhibitor manifested a decline in the extent of the IAPP fibril formation and its expression. To conclude, PST upon combination induces the aggregation of IAPP in the pancreas, liver, and skeletal muscle, which may have the potential to generate IR and cause T2D.
Collapse
Affiliation(s)
- Mohammad Irshad Reza
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Anees A Syed
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sanjana Kumariya
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Pragati Singh
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Athar Husain
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India; Pharmacology Division, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
24
|
Argudo PG, Giner-Casares JJ. Folding and self-assembly of short intrinsically disordered peptides and protein regions. NANOSCALE ADVANCES 2021; 3:1789-1812. [PMID: 36133101 PMCID: PMC9417027 DOI: 10.1039/d0na00941e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/17/2021] [Indexed: 05/15/2023]
Abstract
Proteins and peptide fragments are highly relevant building blocks in self-assembly for nanostructures with plenty of applications. Intrinsically disordered proteins (IDPs) and protein regions (IDRs) are defined by the absence of a well-defined secondary structure, yet IDPs/IDRs show a significant biological activity. Experimental techniques and computational modelling procedures for the characterization of IDPs/IDRs are discussed. Directed self-assembly of IDPs/IDRs allows reaching a large variety of nanostructures. Hybrid materials based on the derivatives of IDPs/IDRs show a promising performance as alternative biocides and nanodrugs. Cell mimicking, in vivo compartmentalization, and bone regeneration are demonstrated for IDPs/IDRs in biotechnological applications. The exciting possibilities of IDPs/IDRs in nanotechnology with relevant biological applications are shown.
Collapse
Affiliation(s)
- Pablo G Argudo
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO 16 Avenue Pey-Berland 33600 Pessac France
| | - Juan J Giner-Casares
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO) Campus de Rabanales, Ed. Marie Curie E-14071 Córdoba Spain
| |
Collapse
|
25
|
Lundqvist M, Rodriguez Camargo DC, Bernfur K, Chia S, Linse S. Expression, purification and characterisation of large quantities of recombinant human IAPP for mechanistic studies. Biophys Chem 2021; 269:106511. [PMID: 33360112 DOI: 10.1016/j.bpc.2020.106511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023]
Abstract
Malfunction and amyloid formation of the Islet Amyloid Polypeptide (IAPP) are factors contributing to Type 2 diabetes. Unravelling the mechanism of IAPP aggregate formation may forward our understanding of this process and its effect on pancreatic β-islet cell. Such mechanistic studies require access to sequence homogeneous and highly pure IAPP. Here we present a new facile protocol for the production of pure recombinant human IAPP at relatively high yield. The protocol uses a His-tagged version of the Npro mutant EDDIE, which drives expression to inclusion bodies, from which the peptide is purified using sonication, refolding and auto-cleavage, removal of EDDIE using Ni-NTA chromatography and reverse-phase HPLC. The purified material is used at multiple concentrations in aggregation kinetics measurements monitored by thioflavin-T fluorescence. Global analysis of the data implies a double nucleation aggregation mechanism including both primary and secondary nucleation.
Collapse
Affiliation(s)
- Martin Lundqvist
- Department of Biophysical, Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Diana C Rodriguez Camargo
- Department of Biophysical, Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; Wren Therapeutics Limited, UK
| | - Katja Bernfur
- Department of Biophysical, Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | - Sara Linse
- Department of Biophysical, Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; Wren Therapeutics Limited, UK.
| |
Collapse
|
26
|
Croden J, Silva JR, Huang W, Gupta N, Fu W, Matovinovic K, Black M, Li X, Chen K, Wu Y, Jhamandas J, Rayat GR. Cyanidin-3-O-Glucoside improves the viability of human islet cells treated with amylin or Aβ1-42 in vitro. PLoS One 2021; 16:e0258208. [PMID: 34614009 PMCID: PMC8494376 DOI: 10.1371/journal.pone.0258208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023] Open
Abstract
Islet transplantation is being considered as an alternative treatment for type 1 diabetes. Despite recent progress, transplant recipients continue to experience progressive loss of insulin independence. Cyanidin-3-O-Glucoside (C3G) has shown to be protective against damage that may lead to post-transplant islet loss. In this study, human islets cultured with or without C3G were treated with human amylin, Aβ1-42, H2O2, or rapamycin to mimic stresses encountered in the post-transplant environment. Samples of these islets were collected and assayed to determine C3G's effect on cell viability and function, reactive oxygen species (ROS), oxidative stress, amyloid formation, and the presence of inflammatory as well as autophagic markers. C3G treatment of human islets exposed to either amylin or Aβ1-42 increased cell viability (p<0.01) and inhibited amyloid formation (p<0.01). A reduction in ROS and an increase in HO-1 gene expression as well as in vitro islet function were also observed in C3G-treated islets exposed to amylin or Aβ1-42, although not significantly. Additionally, treatment with C3G resulted in a significant reduction in the protein expression of inflammatory markers IL-1β and NLRP3 (p<0.01) as well as an increase in LC3 autophagic marker (p<0.05) in human islets treated with amylin, Aβ1-42, rapamycin, or H2O2. Thus, C3G appears to have a multi-faceted protective effect on human islets in vitro, possibly through its anti-oxidant property and alteration of inflammatory as well as autophagic pathways.
Collapse
Affiliation(s)
- Jennifer Croden
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Josue Rodrigues Silva
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wenlong Huang
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Nancy Gupta
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wen Fu
- Department of Medicine (Neurology) and the Neuroscience Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kaja Matovinovic
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mazzen Black
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xian Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jack Jhamandas
- Department of Medicine (Neurology) and the Neuroscience Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gina R. Rayat
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
27
|
Kaur A, Goyal B. Deciphering the Inhibitory Mechanism of hIAPP‐Derived Fragment Peptide Against hIAPP Aggregation in Type 2 Diabetes**. ChemistrySelect 2020. [DOI: 10.1002/slct.202003565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Apneet Kaur
- School of Chemistry & Biochemistry Thapar Institute of Engineering & Technology Patiala- 147004 Punjab India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry Thapar Institute of Engineering & Technology Patiala- 147004 Punjab India
| |
Collapse
|
28
|
Singh A, Khatun S, Nath Gupta A. Simultaneous Detection of Tyrosine and Structure‐Specific Intrinsic Fluorescence in the Fibrillation of Alzheimer's Associated Peptides. Chemphyschem 2020; 21:2585-2598. [DOI: 10.1002/cphc.202000587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/17/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Anurag Singh
- Biophysics and Soft Matter Laboratory Department of Physics Indian Institute of Technology Kharagpur 721302 India
| | - Suparna Khatun
- Biophysics and Soft Matter Laboratory Department of Physics Indian Institute of Technology Kharagpur 721302 India
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory Department of Physics Indian Institute of Technology Kharagpur 721302 India
| |
Collapse
|
29
|
Saini RK, Goyal D, Goyal B. Targeting Human Islet Amyloid Polypeptide Aggregation and Toxicity in Type 2 Diabetes: An Overview of Peptide-Based Inhibitors. Chem Res Toxicol 2020; 33:2719-2738. [PMID: 33124419 DOI: 10.1021/acs.chemrestox.0c00416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disease characterized by insulin resistance and a progressive loss of pancreatic islet β-cell mass, which leads to insufficient secretion of insulin and hyperglycemia. Emerging evidence suggests that toxic oligomers and fibrils of human islet amyloid polypeptide (hIAPP) contribute to the death of β-cells and lead to T2D pathogenesis. These observations have opened new avenues for the development of islet amyloid therapies for the treatment of T2D. The peptide-based inhibitors are of great value as therapeutic agents against hIAPP aggregation in T2D owing to their biocompatibility, feasibility of synthesis and modification, high specificity, low toxicity, proteolytic stability (modified peptides), and weak immunogenicity as well as the large size of involved interfaces during self-aggregation of hIAPP. An understanding of what has been done and achieved will provide key insights into T2D pathology and assist in the discovery of more potent drug candidates for the treatment of T2D. In this article, we review various peptide-based inhibitors of hIAPP aggregation, including those derived from the hIAPP sequence and those not based on the sequence, consisting of both natural as well as unnatural amino acids and their derivatives. The present review will be beneficial in advancing the field of peptide medicine for the treatment of T2D.
Collapse
Affiliation(s)
- Rajneet Kaur Saini
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab India
| |
Collapse
|
30
|
Kalita B, Bano S, Vavachan VM, Taunk K, Seshadri V, Rapole S. Application of mass spectrometry based proteomics to understand diabetes: A special focus on interactomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140469. [DOI: 10.1016/j.bbapap.2020.140469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/07/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
|
31
|
Zhang X, Li D, Zhu X, Wang Y, Zhu P. Structural characterization and cryo-electron tomography analysis of human islet amyloid polypeptide suggest a synchronous process of the hIAPP 1-37 amyloid fibrillation. Biochem Biophys Res Commun 2020; 533:125-131. [PMID: 32943189 DOI: 10.1016/j.bbrc.2020.08.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
Revealing the aggregation and fibrillation process of variant amyloid proteins is critical for understanding the molecular mechanism of related amyloidosis diseases. Here we characterized the fibrillation morphology and kinetics of type 2 diabetes (T2D) related human islet amyloid polypeptide (hIAPP1-37) fibril formation process using negative staining transmission electron microscopy (NS-TEM), cryo-electron microscopy (cryo-EM) analysis, and 3D cryo-electron tomography (cryo-ET) reconstruction, together with circular dichroism (CD) and Thioflavin-T (ThT) assays. Our results showed that various amyloid fibrils can be observed at different time points of hIAPP1-37 fibrillization process, while the winding of protofibrils presents in different growth stages, which suggests a synchronous process of hIAPP1-37 amyloid fibrillization. This work provides insights into the understanding of hIAPP1-37 amyloid aggregation process and the pathogenesis of Type 2 diabetes disease.
Collapse
Affiliation(s)
- Xueli Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongyu Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xushan Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youwang Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
32
|
Wu MH, Chan AC, Tu LH. Role of lysine residue of islet amyloid polypeptide in fibril formation, membrane binding, and inhibitor binding. Biochimie 2020; 177:153-163. [PMID: 32860895 DOI: 10.1016/j.biochi.2020.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/31/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022]
Abstract
The aggregation of islet amyloid polypeptide (IAPP) is implicated in the pathogenesis of type 2 diabetes (T2D). In T2D, this peptide aggregates to form amyloid fibrils; the mechanism responsible for islet amyloid formation is unclear. However, it is known that the aggregation propensity of IAPP is highly related to its primary sequence. Several residues have been suggested to be critical in modulating IAPP amyloid formation, but role of the sole lysine residue at position 1 (Lys-1) in IAPP has not been discussed. In our previous study, we found that glycated IAPP can form amyloid faster than normal IAPP and induce normal IAPP to expedite the aggregation process. To gain more insight into the contribution of Lys-1 in the kinetics of fibril formation, we synthesized another two IAPP variants, K1E-IAPP and K1Nle-IAPP, in which the Lys residue was mutated to glutamate and norleucine, respectively. Interestingly, we observed that the negative or neutral charged side chain at this position was preferred for amyloid formation. The findings suggested this residue may take part in the inter- or intra-molecular interaction during IAPP aggregation, even though it was proposed not to be in part of fibril core structure. Our data also revealed that the inhibitory mechanism of some inhibitors for IAPP aggregation require reaction with Lys-1. Modifications of Lys-1, such as protein glycation, may affect the effectiveness of the inhibitory action of some potential drugs in the treatment of amyloidosis.
Collapse
Affiliation(s)
- Meng-Hsin Wu
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Ai-Ci Chan
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
33
|
Bharadwaj P, Solomon T, Sahoo BR, Ignasiak K, Gaskin S, Rowles J, Verdile G, Howard MJ, Bond CS, Ramamoorthy A, Martins RN, Newsholme P. Amylin and beta amyloid proteins interact to form amorphous heterocomplexes with enhanced toxicity in neuronal cells. Sci Rep 2020; 10:10356. [PMID: 32587390 PMCID: PMC7316712 DOI: 10.1038/s41598-020-66602-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/10/2020] [Indexed: 01/09/2023] Open
Abstract
Human pancreatic islet amyloid polypeptide (hIAPP) and beta amyloid (Aβ) can accumulate in Type 2 diabetes (T2D) and Alzheimer's disease (AD) brains and evidence suggests that interaction between the two amyloidogenic proteins can lead to the formation of heterocomplex aggregates. However, the structure and consequences of the formation of these complexes remains to be determined. The main objective of this study was to characterise the different types and morphology of Aβ-hIAPP heterocomplexes and determine if formation of such complexes exacerbate neurotoxicity. We demonstrate that hIAPP promotes Aβ oligomerization and formation of small oligomer and large aggregate heterocomplexes. Co-oligomerized Aβ42-hIAPP mixtures displayed distinct amorphous structures and a 3-fold increase in neuronal cell death as compared to Aβ and hIAPP alone. However, in contrast to hIAPP, non-amyloidogenic rat amylin (rIAPP) reduced oligomer Aβ-mediated neuronal cell death. rIAPP exhibited reductions in Aβ induced neuronal cell death that was independent of its ability to interact with Aβ and form heterocomplexes; suggesting mediation by other pathways. Our findings reveal distinct effects of IAPP peptides in modulating Aβ aggregation and toxicity and provide new insight into the potential pathogenic effects of Aβ-IAPP hetero-oligomerization and development of IAPP based therapies for AD and T2D.
Collapse
Affiliation(s)
- Prashant Bharadwaj
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA, 6107, Australia.
- Centre of Excellence for Alzheimer's disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
| | - Tanya Solomon
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA, 6107, Australia
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Katarzyna Ignasiak
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Scott Gaskin
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA, 6107, Australia
| | - Joanne Rowles
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA, 6107, Australia
| | - Giuseppe Verdile
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA, 6107, Australia
- Centre of Excellence for Alzheimer's disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mark J Howard
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA, 6009, Australia
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
- School of Biomedical Science, Macquarie University, Sydney, NSW, Australia
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA, 6107, Australia
| |
Collapse
|
34
|
Khatun S, Singh A, Maji S, Maiti TK, Pawar N, Gupta AN. Fractal self-assembly and aggregation of human amylin. SOFT MATTER 2020; 16:3143-3153. [PMID: 32159545 DOI: 10.1039/c9sm02463h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Human amylin is an intrinsically disordered protein believed to have a central role in Type-II diabetes mellitus (T2DM). The formation of intermediate oligomers is a seminal event in the eventual self-assembled fibril structures of amylin. However, the recent experimental investigations have shown the presence of different self-assembled (oligomers, protofilaments, and fibrils) and aggregated structures (amorphous aggregates) of amylin formed during its aggregation. Here, we show that amylin under diffusion-limited conditions leads to fractal self-assembly. The pH and solvent sensitive fractal self-assemblies of amylin were observed using an optical microscope. Confocal microscopy and scanning electron microscopy (SEM) with energy dispersion X-ray analysis (EDAX) were used to confirm the fractal self-assembly of amylin in water and PBS buffer, respectively. The fractal characteristics of the self-assemblies and the aggregates formed during the aggregation of amylin under different pH conditions were investigated using laser light scattering. The hydropathy and the docking study indicated the interactions between the anisotropically distributed hydrophobic residues and polar/ionic residues on the solvent-accessible surface of the protein as the crucial interaction hot-spots for driving the self-assembly and aggregation of human amylin. The simultaneous presence of various self-assemblies of human amylin was observed through different microscopy techniques. The present study may help in designing different fractal-like nanomaterials with potential applications in drug delivery, sensing, and tissue engineering.
Collapse
Affiliation(s)
- Suparna Khatun
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur-721302, India.
| | | | | | | | | | | |
Collapse
|
35
|
Oligomannuronate prevents mitochondrial dysfunction induced by IAPP in RINm5F islet cells by inhibition of JNK activation and cell apoptosis. Chin Med 2020; 15:27. [PMID: 32226477 PMCID: PMC7092590 DOI: 10.1186/s13020-020-00310-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/13/2020] [Indexed: 01/09/2023] Open
Abstract
Background Oligomannuronates (OM) are natural products from alginate that is frequently used as food supplement. The aim of this study was to investigate the in vitro protective effects of OM on RINm5F cells against human Islet amyloid polypeptide (IAPP) induced mitochondrial dysfunction, as well as the underlying mechanisms. Methods In the present study, we obtained several kinds of OM with different molecular masses, and then we used RINm5F cells as a model to elucidate the involvement of JNK signal pathway in hIAPP-induced mitochondrial dysfunction in pancreatic beta cells, and the protective effects of OM are associated with its ability to attenuate the mitochondrial dysfunction. Results Our results demonstrated that human IAPP induced mitochondrial dysfunction, as evidence by loss of ΔΨm and ATP content, and decrease in oxygen consumption and complex activities, was accompanied by JNK activation, changes in the expressions of Bcl-2 and Bax proteins, release of cytochrome c (Cyto-c) and apoptosis inducing factor (AIF) from mitochondria into cytosol. Interestingly, the human IAPP induced damage in RINm5F cells were effectively restored by co-treatment of OM. Moreover, JNK activation was required for the OM mediated changes in RINm5F cells. Conclusions OM prevented mitochondrial dysfunction induced by human IAPP in RINm5F islet cells through JNK dependent signaling pathways.
Collapse
|
36
|
Pariary R, Ghosh B, Bednarikova Z, Varnava KG, Ratha BN, Raha S, Bhattacharyya D, Gazova Z, Sarojini V, Mandal AK, Bhunia A. Targeted inhibition of amyloidogenesis using a non-toxic, serum stable strategically designed cyclic peptide with therapeutic implications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140378. [PMID: 32032759 DOI: 10.1016/j.bbapap.2020.140378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 10/25/2022]
Abstract
Amyloidogenic disorders are currently rising as a global health issue, prompting more and more studies dedicated to the development of effective targeted therapeutics. The innate affinity of these amyloidogenic proteins towards the biomembranes adds further complexities to the systems. Our previous studies have shown that biologically active peptides can effectively target amyloidogenesis serving as an efficient therapeutic alternative in several amyloidogenic disorders. The structural uniqueness of the PWWP motif in the de novo designed heptapeptide, KR7 (KPWWPRR-NH2) was demonstrated to target insulin fiber elongation specifically. By working on insulin, an important model system in amyloidogenic studies, we gained several mechanistic insights into the inhibitory actions at the protein-peptide interface. Here, we report a second-generation non-toxic and serum stable cyclic peptide, based primarily on the PWWP motif that resulted in complete inhibition of insulin fibrillation both in the presence and absence of the model membranes. Using both low- and high-resolution spectroscopic techniques, we could delineate the specific mechanism of inhibition, at atomistic resolution. Our studies put forward an effective therapeutic intervention that redirects the default aggregation kinetics towards off-pathway fibrillation. Based on the promising results, this novel cyclic peptide can be considered an excellent lead to design pharmaceutical molecules against amyloidogenesis.
Collapse
Affiliation(s)
- Ranit Pariary
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India
| | - Baijayanti Ghosh
- Department of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Kyriakos Gabriel Varnava
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Bhisma N Ratha
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India
| | - Sreyan Raha
- Department of Physics, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | - Dipita Bhattacharyya
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Atin K Mandal
- Department of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India.
| |
Collapse
|
37
|
Chen S, Liu Y, Zhou Y, He L, Ouyang J. Mechanism study on the abnormal accumulation and deposition of islet amyloid polypeptide by cold-spray ionization mass spectrometry. Analyst 2020; 145:7289-7296. [DOI: 10.1039/d0an01034k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Native cold-spray ionization mass spectrometry (CSI-MS) technology is employed to characterize the IAPP oligomers and to study the mechanism between IAPP and small-molecule inhibitors.
Collapse
Affiliation(s)
- Su Chen
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Yang Liu
- National Institutes for Food and Drug Control
- Beijing
- China
| | - Yanan Zhou
- National Institutes for Food and Drug Control
- Beijing
- China
| | - Lan He
- National Institutes for Food and Drug Control
- Beijing
- China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| |
Collapse
|
38
|
Xie J, Guo J, Kanwal Z, Wu M, Lv X, Ibrahim NA, Li P, Buabeid MA, Arafa ESA, Sun Q. Calcitonin and Bone Physiology: In Vitro, In Vivo, and Clinical Investigations. Int J Endocrinol 2020; 2020:3236828. [PMID: 32963524 PMCID: PMC7501564 DOI: 10.1155/2020/3236828] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Calcitonin was discovered as a peptide hormone that was known to reduce the calcium levels in the systemic circulation. This hypocalcemic effect is produced due to multiple reasons such as inhibition of bone resorption or suppression of calcium release from the bone. Thus, calcitonin was said as a primary regulator of the bone resorption process. This is the reason why calcitonin has been used widely in clinics for the treatment of bone disorders such as osteoporosis, hypercalcemia, and Paget's disease. However, presently calcitonin usage is declined due to the development of efficacious formulations of new drugs. Calcitonin gene-related peptides and several other peptides such as intermedin, amylin, and adrenomedullin (ADM) are categorized in calcitonin family. These peptides are known for the structural similarity with calcitonin. Aside from having a similar structure, these peptides have few overlapping biological activities and signal transduction action through related receptors. However, several other activities are also present that are peptide specific. In vitro and in vivo studies documented the posttreatment effects of calcitonin peptides, i.e., positive effect on bone osteoblasts and their formation and negative effect on osteoclasts and their resorption. The recent research studies carried out on genetically modified mice showed the inhibition of osteoclast activity by amylin, while astonishingly calcitonin plays its role by suppressing osteoblast and bone turnover. This article describes the review of the bone, the activity of the calcitonin family of peptides, and the link between them.
Collapse
Affiliation(s)
- Jingbo Xie
- Department of Orthopedics, Fengcheng People's Hospital, Fengcheng, Jiangxi 331100, China
| | - Jian Guo
- Department of the Second Orthopedics, Hongdu Hospital of Traditional Chinese Medicine Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang Hongdu Traditional Chinese Medicine Hospital, Nanchang, Jiangxi 330008, China
| | | | - Mingzheng Wu
- Department of Orthopaedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiangyang Lv
- Department of Orthopaedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | | | - Ping Li
- Department of Orthopaedics, Ya'an People's Hospital, Ya'an, Sichuan 625000, China
| | | | | | - Qingshan Sun
- Department of Orthopedics, The Third Hospital of Shandong Province, Jinan, Shandong 250031, China
| |
Collapse
|
39
|
Poulson BG, Szczepski K, Lachowicz JI, Jaremko L, Emwas AH, Jaremko M. Aggregation of biologically important peptides and proteins: inhibition or acceleration depending on protein and metal ion concentrations. RSC Adv 2019; 10:215-227. [PMID: 35492549 PMCID: PMC9047971 DOI: 10.1039/c9ra09350h] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/14/2019] [Indexed: 01/03/2023] Open
Abstract
The process of aggregation of proteins and peptides is dependent on the concentration of proteins, and the rate of aggregation can be altered by the presence of metal ions, but this dependence is not always a straightforward relationship. In general, aggregation does not occur under normal physiological conditions, yet it can be induced in the presence of certain metal ions. However, the extent of the influence of metal ion interactions on protein aggregation has not yet been fully comprehended. A consensus has thus been difficult to reach because the acceleration/inhibition of the aggregation of proteins in the presence of metal ions depends on several factors such as pH and the concentration of the aggregated proteins involved as well as metal concentration level of metal ions. Metal ions, like Cu2+, Zn2+, Pb2+ etc. may either accelerate or inhibit aggregation simply because the experimental conditions affect the behavior of biomolecules. It is clear that understanding the relationship between metal ion concentration and protein aggregation will prove useful for future scientific applications. This review focuses on the dependence of the aggregation of selected important biomolecules (peptides and proteins) on metal ion concentrations. We review proteins that are prone to aggregation, the result of which can cause serious neurodegenerative disorders. Furthering our understanding of the relationship between metal ion concentration and protein aggregation will prove useful for future scientific applications, such as finding therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Kacper Szczepski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria 09042 Monserrato Italy
| | - Lukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
40
|
Siddiqi MK, Malik S, Majid N, Alam P, Khan RH. Cytotoxic species in amyloid-associated diseases: Oligomers or mature fibrils. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:333-369. [PMID: 31928731 DOI: 10.1016/bs.apcsb.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid diseases especially, Alzheimer's disease (AD), is characterized by an imbalance between the production and clearance of amyloid-β (Aβ) species. Amyloidogenic proteins or peptides can transform structurally from monomers into β-stranded fibrils via multiple oligomeric states. Among various amyloid species, structured oligomers are proposed to be more toxic than fibrils; however, the identification of amyloid oligomers has been challenging due to their heterogeneous and metastable nature. Multiple techniques have recently helped in better understanding of oligomer's assembly details and structural properties. Moreover, some progress on elucidating the mechanisms of oligomer-triggered toxicity has been made. Based on the collection of current findings, there is growing consensus that control of toxic amyloid oligomers could be a valid approach to regulate amyloid-associated toxicity, which could advance development of new diagnostics and therapeutics for amyloid-related diseases. In this review, we have described the recent scenario of amyloid diseases with a great deal of information about the recent understanding of oligomers' assembly, structural properties, and toxicity. Also comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates.
Collapse
Affiliation(s)
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
41
|
Kaminari A, Tsilibary EC, Tzinia A. A New Perspective in Utilizing MMP-9 as a Therapeutic Target for Alzheimer's Disease and Type 2 Diabetes Mellitus. J Alzheimers Dis 2019; 64:1-16. [PMID: 29865065 DOI: 10.3233/jad-180035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Matrix metalloprotease 9 (MMP-9) is a 92 kDa type IV collagenase and a member of the family of endopeptidases. MMP-9 is involved in the degradation of extracellular matrix components, tissue remodeling, cellular receptor stripping, and processing of various signaling molecules. In the CNS, the effects of MMP-9 are quite complex, since it exerts beneficial effects including neurogenesis, angiogenesis, myelogenesis, axonal growth, and inhibition of apoptosis, or destructive effects including apoptosis, blood-brain barrier disorder, and demyelination. Likewise, in the periphery, physiological events, as the involvement of MMP-9 in angiogenesis, for instance in wound healing, can be turned into pathological, such as in tumor metastasis, depending on the state of the organism. Alzheimer's disease is a neurodegenerative disorder, characterized by amyloid accumulation and deposition in the brain. Amyloidogenesis, however, also occurs in diseases of the periphery, such as type II diabetes mellitus, where an analogous type of amyloid, is deposited in the pancreas. Interestingly, both diseases exhibit similar pathology and disease progression, with insulin resistance being a major common denominator. Hence, combinatorial strategies searching new or existing molecules to apply for therapeutic use for both diseases are gaining momentum. MMP-9 is extensively studied due to its association with a variety of physiological and pathological processes. Consequently, meticulous design could render MMP-9 into a potential therapeutic target for Alzheimer's disease and type 2 diabetes mellitus; two seemingly unrelated diseases.
Collapse
Affiliation(s)
- Archontia Kaminari
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Effie C Tsilibary
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Athina Tzinia
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| |
Collapse
|
42
|
Xu J, Zhang B, Gong G, Huang X, Du W. Inhibitory effects of oxidovanadium complexes on the aggregation of human islet amyloid polypeptide and its fragments. J Inorg Biochem 2019; 197:110721. [PMID: 31146152 DOI: 10.1016/j.jinorgbio.2019.110721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) is synthesized by pancreatic β-cells and co-secreted with insulin. Misfolding and amyloidosis of hIAPP induce β-cell dysfunction in type II diabetes mellitus. Numerous small organic molecules and metal complexes act as inhibitors against amyloid-related diseases, justifying the need to explore the inhibitory mechanism of these compounds. In this work, three oxidovanadium complexes, namely, (NH4)[VO(O2)2(bipy)]·4H2O (1) (bipy = 2,2' bipyridine), bis(ethyl-maltolato, O,O)oxido-vanadium(IV) (2), and (bipyH2)H2[O{VO(O2)(bipy)}2]·5H2O (3), were synthesized and used to inhibit the aggregation of hIAPP and its fragments, namely, hIAPP19-37 and hIAPP20-29. Results revealed that shortening the peptide sequence decreased the aggregation capability of hIAPP fragments, and the oxidovanadium complexes inhibited the fibrillization of hIAPP better than its fragments. Interestingly, the binding of oxidovanadium complexes to hIAPP and its fragments presented a distinct thermodynamic behavior. Oxidovanadium complexes featured the disaggregation capability against hIAPP, better than against its fragments. These complexes also decreased the cytotoxicity caused by hIAPP and its fragments by reducing the production of oligomers. 3 may be a good hIAPP inhibitor based on its inhibition, disaggregation capability, and regulatory effect on peptide-induced cytotoxicity. Oxidovanadium complexes exhibit potential as metallodrugs against amyloidosis-related diseases.
Collapse
Affiliation(s)
- Jufei Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Baohong Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Gehui Gong
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiangyi Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
43
|
Crucial players in Alzheimer's disease and diabetes mellitus: Friends or foes? Mech Ageing Dev 2019; 181:7-21. [PMID: 31085195 DOI: 10.1016/j.mad.2019.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 03/02/2019] [Accepted: 03/26/2019] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) and diabetes mellitus, especially type 2 (T2DM), are very common and widespread diseases in contemporary societies, and their incidence is steadily on the increase. T2DM is a multiple metabolic disorder, with several mechanisms including hyperglycaemia, insulin resistance, insulin receptor and insulin growth factor disturbances, glucose toxicity, formation of advanced glycation end products (AGEs) and the activity of their receptors. AD is the most common form of dementia, characterized by the accumulation of extracellular beta amyloid peptide aggregates and intracellular hyper-phosphorylated tau proteins, which are thought to drive and/or accelerate inflammatory and oxidative stress processes leading to neurodegeneration. The aim of this paper is to provide a comprehensive review of the evidence linking T2DM to the onset and development of AD and highlight the unknown or poorly studied "nooks and crannies" of this interesting relationship, hence providing an opportunity to stimulate new ideas for the analysis of comorbidities between AD and DM. Despite, indication of possible biomarkers of early diagnosis of T2DM and AD, this review is also an attempt to answer the question as to whether the crucial factors in the development of both conditions support the link between DM and AD.
Collapse
|
44
|
Khatun S, Singh A, Pawar N, Gupta AN. Aggregation of amylin: Spectroscopic investigation. Int J Biol Macromol 2019; 133:1242-1248. [PMID: 31028814 DOI: 10.1016/j.ijbiomac.2019.04.167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022]
Abstract
Apart from its relevance to pathology, protein misfolding disease like Type-II Diabetes Mellitus, caused by amyloids of amylin protein has attracted more attention due to structural changes occurring during the aggregation process. We report extensive spectroscopy data of amylin during fibril formation through Raman, FTIR, CD, UV-vis absorption and photoluminescence (PL) spectroscopy. UV-vis and PL spectrum showed the sigmoidal growth of fibril with a lag time of ~2 days, which is consistent with earlier reported work using dynamic light scattering (DLS). Raman spectra revealed the formation of parallel and anti-parallel β-sheet from 0% to 20% with ageing (1st day to 21st day) at pH 6.5 ± 0.1. The results are corroborated by CD and FTIR data. These show the change in β-sheet by 23% at pH 6.5 ± 0.1, 26% at pH = 1.0 ± 0.1 and 30% at pH = 12 ± 0.1. It is also shown that the formation and conversion of other secondary structures into β-sheet is very sensitive towards the pH and ageing. The study may be used for the development of therapeutic strategies that could inhibit or even reverse the process of aggregation.
Collapse
Affiliation(s)
- Suparna Khatun
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Anurag Singh
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Nisha Pawar
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India.
| |
Collapse
|
45
|
Ratha BN, Kar RK, Kalita S, Kalita S, Raha S, Singha A, Garai K, Mandal B, Bhunia A. Sequence specificity of amylin-insulin interaction: a fragment-based insulin fibrillation inhibition study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:405-415. [DOI: 10.1016/j.bbapap.2019.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/03/2019] [Accepted: 01/13/2019] [Indexed: 01/10/2023]
|
46
|
Naot D, Musson DS, Cornish J. The Activity of Peptides of the Calcitonin Family in Bone. Physiol Rev 2019; 99:781-805. [PMID: 30540227 DOI: 10.1152/physrev.00066.2017] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calcitonin was discovered over 50 yr ago as a new hormone that rapidly lowers circulating calcium levels. This effect is caused by the inhibition of calcium efflux from bone, as calcitonin is a potent inhibitor of bone resorption. Calcitonin has been in clinical use for conditions of accelerated bone turnover, including Paget's disease and osteoporosis; although in recent years, with the development of drugs that are more potent inhibitors of bone resorption, its use has declined. A number of peptides that are structurally similar to calcitonin form the calcitonin family, which currently includes calcitonin gene-related peptides (αCGRP and βCGRP), amylin, adrenomedullin, and intermedin. Apart from being structurally similar, the peptides signal through related receptors and have some overlapping biological activities, although other activities are peptide specific. In bone, in vitro studies and administration of the peptides to animals generally found inhibitory effects on osteoclasts and bone resorption and positive effects on osteoblasts and bone formation. Surprisingly, studies in genetically modified mice have demonstrated that the physiological role of calcitonin appears to be the inhibition of osteoblast activity and bone turnover, whereas amylin inhibits osteoclast activity. The review article focuses on the activities of peptides of the calcitonin family in bone and the challenges in understanding the relationship between the pharmacological effects and the physiological roles of these peptides.
Collapse
Affiliation(s)
- Dorit Naot
- Department of Medicine, University of Auckland , Auckland , New Zealand
| | - David S Musson
- Department of Medicine, University of Auckland , Auckland , New Zealand
| | - Jillian Cornish
- Department of Medicine, University of Auckland , Auckland , New Zealand
| |
Collapse
|
47
|
Alghrably M, Czaban I, Jaremko Ł, Jaremko M. Interaction of amylin species with transition metals and membranes. J Inorg Biochem 2019; 191:69-76. [DOI: 10.1016/j.jinorgbio.2018.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/30/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023]
|
48
|
Influence of methionine–ruthenium complex on the fibril formation of human islet amyloid polypeptide. J Biol Inorg Chem 2019; 24:179-189. [DOI: 10.1007/s00775-019-01637-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
|
49
|
X-Ray Absorption Spectroscopy Measurements of Cu-ProIAPP Complexes at Physiological Concentrations. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The amyloidogenic islet amyloid polypeptide (IAPP) and the associated pro-peptide ProIAPP1–48 are involved in cell death in type 2 diabetes mellitus. It has been observed that interactions of this peptide with metal ions have an impact on the cytotoxicity of the peptides as well as on their deposition in the form of amyloid fibrils. In particular, Cu(II) seems to inhibit amyloid fibril formation, thus suggesting that Cu homeostasis imbalance may be involved in the pathogenesis of type 2 diabetes mellitus. We performed X-ray Absorption Spectroscopy (XAS) measurements of Cu(II)-ProIAPP complexes under near-physiological (10 μM), equimolar concentrations of Cu(II) and peptide. Such low concentrations were made accessible to XAS measurements owing to the use of the High Energy Resolved Fluorescence Detection XAS facility recently installed at the ESRF beamline BM16 (FAME-UHD). Our preliminary data show that XAS measurements at micromolar concentrations are feasible and confirm that ProIAPP1–48-Cu(II) binding at near-physiological conditions can be detected.
Collapse
|
50
|
Shardlow E, Rao C, Sattarov R, Wu L, Fraser PE, Exley C. Aggregation of the diabetes-related peptide ProIAPP 1-48 measured by dynamic light scattering. J Trace Elem Med Biol 2019; 51:1-8. [PMID: 30466917 DOI: 10.1016/j.jtemb.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/16/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023]
Abstract
Islet amyloid polypeptide (IAPP1-37) or amylin is implicated in the aetiology of diabetes. It is found as amyloid along with its precursor ProIAPP1-48 in the islets of Langerhans in the pancreas. Metals have been implicated in amyloidogenesis of both IAPP and ProIAPP. Herein we have used dynamic light scattering (DLS) to investigate how Al(III) and Cu(II) influence aggregation of ProIAPP1-48 under near-physiological conditions and in a biologically-relevant timeframe. ProIAPP1-48 formed primarily sub-micron particles within 5 min (e.g. 470 nm at 15μM peptide) that grew to micron-sized particles (1310 nm) within a 30 min timeframe. Equimolar Al(III) had little influence upon particle size at either 5 (656 nm) or 30 min (1250 nm) while Cu(II) tended to increase particle size over the same time period (731-1300 nm). It is suggested that any effects of Al(III) and Cu(II) reflected their well known tendencies to support β-sheet or amorphous aggregates of ProIAPP1-48 respectively.
Collapse
Affiliation(s)
- Emma Shardlow
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire, ST5 5BG, UK
| | - Cassandra Rao
- The Huxley Building, Life Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Roman Sattarov
- The Huxley Building, Life Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Ling Wu
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire, ST5 5BG, UK.
| |
Collapse
|