1
|
Luo T, Patel JG, Zhang X, McBride JW. Antibody reactive immunomes of Ehrlichia chaffeensis and E. canis are diverse and defined by conformational antigenic determinants. Front Cell Infect Microbiol 2024; 13:1321291. [PMID: 38264730 PMCID: PMC10803646 DOI: 10.3389/fcimb.2023.1321291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
For decades, the defined antibody reactive proteins of Ehrlichia chaffeensis and E. canis were limited to a small group with linear antibody epitopes. Recently, our laboratory has utilized an immunomics-based approach to rapidly screen and identify undefined Ehrlichia chaffeensis and E. canis antigenic proteins and antibody epitopes. In this study, we analyzed the remaining portion (~50%) of the E. chaffeensis and E. canis proteomes (n = 444 and n = 405 proteins, respectively), that were not examined in previous studies, to define the complete immunomes of these important pathogens. Almost half of the E. chaffeensis proteins screened (196/444) reacted with antibodies in convalescent HME patient sera, while only 43 E. canis proteins reacted with CME dog sera. New major immunoreactive proteins were identified in E. chaffeensis (n = 7) and E. canis (n = 1), increasing the total number of E. chaffeensis (n = 14) and E. canis proteins (n = 18) that exhibited antibody reactivity comparable to well-defined major antigenic proteins (TRP120 and TRP19). All of the E. chaffeensis but only some E. canis major immunoreactive proteins contained major conformation-dependent antibody epitopes. The E. chaffeensis immunoreactive proteins were generally small (< 250 amino acids; ~27kDa) and the E. canis proteins were slightly larger (> 320 amino acids; ~35 kDa). The majority of these new Ehrlichia major immunoreactive proteins were predicted to be type I secreted effectors, some of which contained transmembrane domains. Characterization of the immunomes of E. chaffeensis and E. canis and understanding the host specific Ehrlichia immune responses will facilitate identification of protective antigens and define the biophysical epitope characteristics vital to effective vaccine development for the ehrlichioses.
Collapse
Affiliation(s)
- Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jignesh G. Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaofeng Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
2
|
Bui DC, Luo T, McBride JW. Type 1 secretion system and effectors in Rickettsiales. Front Cell Infect Microbiol 2023; 13:1175688. [PMID: 37256108 PMCID: PMC10225607 DOI: 10.3389/fcimb.2023.1175688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Obligate intracellular bacteria in the order Rickettsiales are transmitted by arthropod vectors and cause life-threatening infections in humans and animals. While both type 1 and type 4 secretion systems (T1SS and T4SS) have been identified in this group, the most extensive studies of Rickettsiales T1SS and associated effectors have been performed in Ehrlichia. These studies have uncovered important roles for the T1SS effectors in pathobiology and immunity. To evade innate immune responses and promote intracellular survival, Ehrlichia and other related obligate pathogens secrete multiple T1SS effectors which interact with a diverse network of host targets associated with essential cellular processes. T1SS effectors have multiple functional activities during infection including acting as nucleomodulins and ligand mimetics that activate evolutionarily conserved cellular signaling pathways. In Ehrlichia, an array of newly defined major immunoreactive proteins have been identified that are predicted as T1SS substrates and have conformation-dependent antibody epitopes. These findings highlight the underappreciated and largely uncharacterized roles of T1SS effector proteins in pathobiology and immunity. This review summarizes current knowledge regarding roles of T1SS effectors in Rickettsiales members during infection and explores newly identified immunoreactive proteins as potential T1SS substrates and targets of a protective host immune response.
Collapse
Affiliation(s)
- Duc-Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
3
|
Deich C, Cash B, Sato W, Sharon J, Aufdembrink L, Gaut NJ, Heili J, Stokes K, Engelhart AE, Adamala KP. T7Max transcription system. J Biol Eng 2023; 17:4. [PMID: 36691081 PMCID: PMC9872363 DOI: 10.1186/s13036-023-00323-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Efficient cell-free protein expression from linear DNA templates has remained a challenge primarily due to template degradation. In addition, the yields of transcription in cell-free systems lag behind transcriptional efficiency of live cells. Most commonly used in vitro translation systems utilize T7 RNA polymerase, which is also the enzyme included in many commercial kits. RESULTS Here we present characterization of a variant of T7 RNA polymerase promoter that acts to significantly increase the yields of gene expression within in vitro systems. We have demonstrated that T7Max increases the yield of translation in many types of commonly used in vitro protein expression systems. We also demonstrated increased protein expression yields from linear templates, allowing the use of T7Max driven expression from linear templates. CONCLUSIONS The modified promoter, termed T7Max, recruits standard T7 RNA polymerase, so no protein engineering is needed to take advantage of this method. This technique could be used with any T7 RNA polymerase- based in vitro protein expression system.
Collapse
Affiliation(s)
- Christopher Deich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Brock Cash
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Wakana Sato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Judee Sharon
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Lauren Aufdembrink
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Nathaniel J Gaut
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Heili
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Kaitlin Stokes
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Aaron E Engelhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Fedorov AN. Biosynthetic Protein Folding and Molecular Chaperons. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S128-S19. [PMID: 35501992 DOI: 10.1134/s0006297922140115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The problem of linear polypeptide chain folding into a unique tertiary structure is one of the fundamental scientific challenges. The process of folding cannot be fully understood without its biological context, especially for big multidomain and multisubunit proteins. The principal features of biosynthetic folding are co-translational folding of growing nascent polypeptide chains and involvement of molecular chaperones in the process. The review summarizes available data on the early events of nascent chain folding, as well as on later advanced steps, including formation of elements of native structure. The relationship between the non-uniformity of translation rate and folding of the growing polypeptide is discussed. The results of studies on the effect of biosynthetic folding features on the parameters of folding as a physical process, its kinetics and mechanisms, are presented. Current understanding and hypotheses on the relationship of biosynthetic folding with the fundamental physical parameters and current views on polypeptide folding in the context of energy landscapes are discussed.
Collapse
Affiliation(s)
- Alexey N Fedorov
- Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
5
|
|
6
|
Kim S, Yi H, Kim YT, Lee HS. Engineering Translation Components for Genetic Code Expansion. J Mol Biol 2021; 434:167302. [PMID: 34673113 DOI: 10.1016/j.jmb.2021.167302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
The expansion of the genetic code consisting of four bases and 20 amino acids into diverse building blocks has been an exciting topic in synthetic biology. Many biochemical components are involved in gene expression; therefore, adding a new component to the genetic code requires engineering many other components that interact with it. Genetic code expansion has advanced significantly for the last two decades with the engineering of several components involved in protein synthesis. These components include tRNA/aminoacyl-tRNA synthetase, new codons, ribosomes, and elongation factor Tu. In addition, biosynthesis and enhanced uptake of non-canonical amino acids have been attempted and have made meaningful progress. This review discusses the efforts to engineer these translation components, to improve the genetic code expansion technology.
Collapse
Affiliation(s)
- Sooin Kim
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea
| | - Hanbin Yi
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea
| | - Yurie T Kim
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea.
| |
Collapse
|
7
|
Immunoreactive Protein Repertoires of Ehrlichia chaffeensis and E. canis Reveal the Dominance of Hypothetical Proteins and Conformation-dependent Antibody Epitopes. Infect Immun 2021; 89:e0022421. [PMID: 34370510 DOI: 10.1128/iai.00224-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunomes of Ehrlichia chaffeensis (E. ch.) and E. canis (E. ca.) have recently be revised to include immunodominant hypothetical proteins with conformational antibody epitopes. In this study, we examined 216 E. ch. and 190 E. ca. highly antigenic proteins according to ANTIGENpro and also performed a genome-wide hypothetical protein analysis (E. ch. n=104; E. ca. n=124) for immunoreactivity. Using cell-free protein expression and immunoanalysis, 118 E. ch. and 39 E. ca. proteins reacted with sera from naturally E. ch.-infected patients or E. ca.-infected dogs. Moreover, 22 E. ch. and 18 E. ca. proteins consistently and strongly reacted with a panel of patient or canine sera. A subset of E. ch. (n=18) and E. ca. (n=9) proteins were identified as immunodominant. Consistent with our previous study, most proteins were classified as hypothetical and the antibody epitopes exhibited complete or partial conformation-dependence. The majority (28/40; 70%) of E. ch. and E. ca. proteins contained transmembrane domains and 19 (48%) were predicted to be secreted effectors. The antigenic repertoires of E. ch. and E. ca. were mostly diverse and suggest that the immunomes of these closely related ehrlichiae are dominated by species-specific conformational antibody epitopes. This study reveals a significant group of previously undefined E. ch. and E. ca. antigens and reaffirms the importance of conformation-dependent epitopes as targets of anti-Ehrlichia immune responses. These findings substantially expand our understanding of host-Ehrlichia immune responses, advance efforts to define the molecular features of protective proteins and improve prospects for effective vaccines for the ehrlichioses.
Collapse
|
8
|
Ehrlichia chaffeensis and E. canis hypothetical protein immunoanalysis reveals small secreted immunodominant proteins and conformation-dependent antibody epitopes. NPJ Vaccines 2020; 5:85. [PMID: 32963815 PMCID: PMC7486380 DOI: 10.1038/s41541-020-00231-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
Immunomolecular characterization of Ehrlichia chaffeensis (E. ch.) and E. canis (E. ca.) has defined protein orthologs, including tandem repeat proteins (TRPs) that have immunodominant linear antibody epitopes. In this study, we combined bioinformatic analysis and cell-free protein expression to identify undiscovered immunoreactive E. ch. and E. ca. hypothetical proteins. Antigenicity of the E. ch. and E. ca. ORFeomes (n = 1105 and n = 925, respectively) was analyzed by the sequence-based prediction model ANTIGENpro, and we identified ~250 ORFs in each respective ORFeome as highly antigenic. The hypothetical proteins (E. ch. n = 93 and E. ca. n = 98) present in the top 250 antigenic ORFs were further investigated in this study. By ELISA, 46 E. ch. and 30 E. ca. IVTT-expressed hypothetical proteins reacted with antibodies in sera from naturally E. ch.-infected patients or E. ca.-infected dogs. Moreover, 15 E. ch. and 16 E. ca. proteins consistently reacted with a panel of sera from patients or dogs, including many that revealed the immunoreactivity of “gold standard” TRPs. Antibody epitopes in most (>70%) of these proteins exhibited partial or complete conformation-dependence. The majority (23/31; 74%) of the major immunoreactive proteins identified were small (≤250 aa), and 20/31 (65%) were predicted to be secreted effectors. Unlike the strong linear antibody epitopes previously identified in TRP and OMP orthologs, there were contrasting differences in the E. ch. and E. ca. antigenic repertoires, epitopes and ortholog immunoreactivity. This study reveals numerous previously undefined immunodominant and subdominant antigens, and illustrates the breadth, complexity, and diversity of immunoreactive proteins/epitopes in Ehrlichia.
Collapse
|
9
|
François JM, Jantti J, Daboussi F. Editorial: 4th Applied Synthetic Biology in Europe. Front Bioeng Biotechnol 2020; 8:431. [PMID: 32435639 PMCID: PMC7219059 DOI: 10.3389/fbioe.2020.00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jean Marie François
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.,Toulouse White Biotechnology Center, UMS-INSA-INRA-CNRS, Ramonville St Agnes, France
| | - Jussi Jantti
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Fayza Daboussi
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.,Toulouse White Biotechnology Center, UMS-INSA-INRA-CNRS, Ramonville St Agnes, France
| |
Collapse
|
10
|
Ayoubi-Joshaghani MH, Dianat-Moghadam H, Seidi K, Jahanban-Esfahalan A, Zare P, Jahanban-Esfahlan R. Cell-free protein synthesis: The transition from batch reactions to minimal cells and microfluidic devices. Biotechnol Bioeng 2020; 117:1204-1229. [PMID: 31840797 DOI: 10.1002/bit.27248] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/23/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Thanks to the synthetic biology, the laborious and restrictive procedure for producing a target protein in living microorganisms by biotechnological approaches can now experience a robust, pliant yet efficient alternative. The new system combined with lab-on-chip microfluidic devices and nanotechnology offers a tremendous potential envisioning novel cell-free formats such as DNA brushes, hydrogels, vesicular particles, droplets, as well as solid surfaces. Acting as robust microreactors/microcompartments/minimal cells, the new platforms can be tuned to perform various tasks in a parallel and integrated manner encompassing gene expression, protein synthesis, purification, detection, and finally enabling cell-cell signaling to bring a collective cell behavior, such as directing differentiation process, characteristics of higher order entities, and beyond. In this review, we issue an update on recent cell-free protein synthesis (CFPS) formats. Furthermore, the latest advances and applications of CFPS for synthetic biology and biotechnology are highlighted. In the end, contemporary challenges and future opportunities of CFPS systems are discussed.
Collapse
Affiliation(s)
| | | | - Khaled Seidi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Bates A, Power CA. David vs. Goliath: The Structure, Function, and Clinical Prospects of Antibody Fragments. Antibodies (Basel) 2019; 8:E28. [PMID: 31544834 PMCID: PMC6640713 DOI: 10.3390/antib8020028] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Since the licensing of the first monoclonal antibody therapy in 1986, monoclonal antibodies have become the largest class of biopharmaceuticals with over 80 antibodies currently approved for a variety of disease indications. The development of smaller, antigen binding antibody fragments, derived from conventional antibodies or produced recombinantly, has been growing at a fast pace. Antibody fragments can be used on their own or linked to other molecules to generate numerous possibilities for bispecific, multi-specific, multimeric, or multifunctional molecules, and to achieve a variety of biological effects. They offer several advantages over full-length monoclonal antibodies, particularly a lower cost of goods, and because of their small size they can penetrate tissues, access challenging epitopes, and have potentially reduced immunogenicity. In this review, we will discuss the structure, production, and mechanism of action of EMA/FDA-approved fragments and of those in clinical and pre-clinical development. We will also discuss current topics of interest surrounding the potential use of antibody fragments for intracellular targeting and blood-brain barrier (BBB) penetration.
Collapse
Affiliation(s)
- Adam Bates
- Biopharm Molecular Discovery, GlaxoSmithKline, Hertfordshire SG1 2NY, UK.
| | - Christine A Power
- Biopharm Molecular Discovery, GlaxoSmithKline, Hertfordshire SG1 2NY, UK.
| |
Collapse
|
12
|
Moriizumi Y, Tabata KV, Miyoshi D, Noji H. Osmolyte-Enhanced Protein Synthesis Activity of a Reconstituted Translation System. ACS Synth Biol 2019; 8:557-567. [PMID: 30763512 DOI: 10.1021/acssynbio.8b00513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular crowding is receiving great attention in cell-free synthetic biology because molecular crowding is a critical feature of natural cell discrimination from artificial cells. Further, it has significant and generic influences on biomolecular functions. Although there are reports on how the macromolecular crowder reagents affect cell-free systems such as transcription and translation, the second class of molecular crowder reagents with low molecular weight, osmolyte, was much less studied in cell-free systems. In the present study, we focused on trimethylamine- N-oxide (TMAO) and betaine, methylamine osmolytes, and investigated the effectiveness of these osmolytes on gene expression activity of reconstituted cell-free protein synthesis. The gene expression activity of the fluorescent proteins Venus and tdTomato and the enzymes β-galactosidase and dihydrofolate reductase were tested. At 37 °C, 0.4 M TMAO showed the highest enhancement of translational activity by a factor of 1.6-3.8, regardless of protein type. In contrast, betaine showed only a moderate effect that was limited to fluorescent proteins. Excess amounts of osmolytes suppressed gene expression activity. An mRNA-start assay and SDS-PAGE quantitative analysis provided firm evidence that TMAO enhances the translation process, instead of transcription, folding, or the maturation of fluorescent proteins. Interestingly, at 26 °C, TMAO and betaine showed the highest enhancement of protein synthesis activity at lower concentrations than at 37 °C. These findings provide implications on how osmolytes assist translation in natural cells. Further, they provide guidelines for modulation of protein synthesis activity in artificial cells through osmolyte addition.
Collapse
Affiliation(s)
- Yoshiki Moriizumi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuhito V. Tabata
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daisuke Miyoshi
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) and Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
13
|
Wang S, Majumder S, Emery NJ, Liu AP. Simultaneous monitoring of transcription and translation in mammalian cell-free expression in bulk and in cell-sized droplets. Synth Biol (Oxf) 2018; 3:ysy005. [PMID: 30003145 PMCID: PMC6034425 DOI: 10.1093/synbio/ysy005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/24/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
Transcription and translation are two critical processes during eukaryotic gene expression that regulate cellular activities. The development of mammalian cell-free expression (CFE) systems provides a platform for studying these two critical processes in vitro for bottom-up synthetic biology applications such as construction of an artificial cell. Moreover, real-time monitoring of the dynamics of synthesized mRNA and protein is key to characterize and optimize gene circuits before implementing in living cells or in artificial cells. However, there are few tools for measurement of mRNA and protein dynamics in mammalian CFE systems. Here, we developed a locked nucleic acid (LNA) probe for monitoring transcription in a HeLa-based CFE system in real-time. By using this LNA probe in conjunction with a fluorescent reporter protein, we were able to simultaneously monitor mRNA and protein dynamics in bulk reactions and cell-sized single-emulsion droplets. We found rapid production of mRNA transcripts that decreased over time as protein production ensued in bulk reactions. Our results also showed that transcription in cell-sized droplets has different dynamics compared to the transcription in bulk reactions. The use of this LNA probe in conjunction with fluorescent proteins in HeLa-based mammalian CFE system provides a versatile in vitro platform for studying mRNA dynamics for bottom-up synthetic biology applications.
Collapse
Affiliation(s)
- Shue Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sagardip Majumder
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Emery
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.,Biophysics Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Narumi R, Masuda K, Tomonaga T, Adachi J, Ueda HR, Shimizu Y. Cell-free synthesis of stable isotope-labeled internal standards for targeted quantitative proteomics. Synth Syst Biotechnol 2018; 3:97-104. [PMID: 29900422 PMCID: PMC5995455 DOI: 10.1016/j.synbio.2018.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 01/04/2023] Open
Abstract
High-sensitivity mass spectrometry approaches using selected reaction monitoring (SRM) or multiple reaction monitoring (MRM) methods are powerful tools for targeted quantitative proteomics-based investigation of dynamics in specific biological systems. Both high-sensitivity detection of low-abundance proteins and their quantification using this technique employ stable isotope-labeled peptide internal standards. Currently, there are various ways for preparing standards, including chemical peptide synthesis, cellular protein expression, and cell-free protein or peptide synthesis. Cell-free protein synthesis (CFPS) or in vitro translation (IVT) systems in particular provide high-throughput and low-cost preparation methods, and various cell types and reconstituted forms are now commercially available. Herein, we review the use of such systems for precise and reliable protein quantification.
Collapse
Affiliation(s)
- Ryohei Narumi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Satio-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Keiko Masuda
- Laboratory for Single Cell Mass Spectrometry, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Satio-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Satio-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | - Yoshihiro Shimizu
- Laboratory for Single Cell Mass Spectrometry, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
- Laboratory for Cell-Free Protein Synthesis, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
- Corresponding author. Laboratory for Cell-Free Protein Synthesis, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan.
| |
Collapse
|
15
|
Pathak N, Hamada H, Ikeno S. Construction and characterization of mutated LEA peptides in Escherichia coli
to develop an efficient protein expression system. J Mol Recognit 2017; 31. [DOI: 10.1002/jmr.2658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Nishit Pathak
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering; Kyushu Institute of Technology; Kitakyushu Japan
| | - Hiro Hamada
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering; Kyushu Institute of Technology; Kitakyushu Japan
| | - Shinya Ikeno
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering; Kyushu Institute of Technology; Kitakyushu Japan
- Research Center for Bio-Microsensing Technology (RCBT); Kyushu Institute of Technology; Kitakyushu Japan
| |
Collapse
|
16
|
Adamala KP, Martin-Alarcon DA, Guthrie-Honea KR, Boyden ES. Engineering genetic circuit interactions within and between synthetic minimal cells. Nat Chem 2017; 9:431-439. [PMID: 28430194 PMCID: PMC5407321 DOI: 10.1038/nchem.2644] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
Genetic circuits and reaction cascades are of great importance for synthetic biology, biochemistry and bioengineering. An open question is how to maximize the modularity of their design to enable the integration of different reaction networks and to optimize their scalability and flexibility. One option is encapsulation within liposomes, which enables chemical reactions to proceed in well-isolated environments. Here we adapt liposome encapsulation to enable the modular, controlled compartmentalization of genetic circuits and cascades. We demonstrate that it is possible to engineer genetic circuit-containing synthetic minimal cells (synells) to contain multiple-part genetic cascades, and that these cascades can be controlled by external signals as well as inter-liposomal communication without crosstalk. We also show that liposomes that contain different cascades can be fused in a controlled way so that the products of incompatible reactions can be brought together. Synells thus enable a more modular creation of synthetic biology cascades, an essential step towards their ultimate programmability.
Collapse
Affiliation(s)
| | - Daniel A. Martin-Alarcon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Edward S. Boyden
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Affiliation(s)
- Adam W. Feinberg
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213;
| |
Collapse
|
18
|
High-Throughput Screening in Protein Engineering: Recent Advances and Future Perspectives. Int J Mol Sci 2015; 16:24918-45. [PMID: 26492240 PMCID: PMC4632782 DOI: 10.3390/ijms161024918] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 11/17/2022] Open
Abstract
Over the last three decades, protein engineering has established itself as an important tool for the development of enzymes and (therapeutic) proteins with improved characteristics. New mutagenesis techniques and computational design tools have greatly aided in the advancement of protein engineering. Yet, one of the pivotal components to further advance protein engineering strategies is the high-throughput screening of variants. Compartmentalization is one of the key features allowing miniaturization and acceleration of screening. This review focuses on novel screening technologies applied in protein engineering, highlighting flow cytometry- and microfluidics-based platforms.
Collapse
|
19
|
Quertinmont LT, Orru R, Lutz S. RApid Parallel Protein EvaluatoR (RAPPER), from gene to enzyme function in one day. Chem Commun (Camb) 2015; 51:122-4. [PMID: 25384037 DOI: 10.1039/c4cc08240k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell-free transcription-translation systems offer an effective and versatile platform to explore the impact of genetic variations on protein function. We have developed a protocol for preparing linear, mutagenic DNA templates for direct use in the PURE system, enabling the fast and semi-quantitative evaluation of amino acid variations on catalytic activity and stereo-selectivity in native and engineered variants of Old Yellow Enzyme.
Collapse
Affiliation(s)
- L T Quertinmont
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
20
|
Uyeda A, Watanabe T, Kato Y, Watanabe H, Yomo T, Hohsaka T, Matsuura T. Liposome-Based in Vitro Evolution of Aminoacyl-tRNA Synthetase for Enhanced Pyrrolysine Derivative Incorporation. Chembiochem 2015; 16:1797-802. [DOI: 10.1002/cbic.201500174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 11/09/2022]
|
21
|
Romanov V, Davidoff SN, Miles AR, Grainger DW, Gale BK, Brooks BD. A critical comparison of protein microarray fabrication technologies. Analyst 2015; 139:1303-26. [PMID: 24479125 DOI: 10.1039/c3an01577g] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Of the diverse analytical tools used in proteomics, protein microarrays possess the greatest potential for providing fundamental information on protein, ligand, analyte, receptor, and antibody affinity-based interactions, binding partners and high-throughput analysis. Microarrays have been used to develop tools for drug screening, disease diagnosis, biochemical pathway mapping, protein-protein interaction analysis, vaccine development, enzyme-substrate profiling, and immuno-profiling. While the promise of the technology is intriguing, it is yet to be realized. Many challenges remain to be addressed to allow these methods to meet technical and research expectations, provide reliable assay answers, and to reliably diversify their capabilities. Critical issues include: (1) inconsistent printed microspot morphologies and uniformities, (2) low signal-to-noise ratios due to factors such as complex surface capture protocols, contamination, and static or no-flow mass transport conditions, (3) inconsistent quantification of captured signal due to spot uniformity issues, (4) non-optimal protocol conditions such as pH, temperature, drying that promote variability in assay kinetics, and lastly (5) poor protein (e.g., antibody) printing, storage, or shelf-life compatibility with common microarray assay fabrication methods, directly related to microarray protocols. Conventional printing approaches, including contact (e.g., quill and solid pin), non-contact (e.g., piezo and inkjet), microfluidics-based, microstamping, lithography, and cell-free protein expression microarrays, have all been used with varying degrees of success with figures of merit often defined arbitrarily without comparisons to standards, or analytical or fiduciary controls. Many microarray performance reports use bench top analyte preparations lacking real-world relevance, akin to "fishing in a barrel", for proof of concept and determinations of figures of merit. This review critiques current protein-based microarray preparation techniques commonly used for analytical and function-based proteomics and their effects on array-based assay performance.
Collapse
Affiliation(s)
- Valentin Romanov
- Wasatch Microfluidics, LLC, 825 N. 300 W., Suite C325, Salt Lake City, UT, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Quast RB, Kortt O, Henkel J, Dondapati SK, Wüstenhagen DA, Stech M, Kubick S. Automated production of functional membrane proteins using eukaryotic cell-free translation systems. J Biotechnol 2015; 203:45-53. [PMID: 25828454 DOI: 10.1016/j.jbiotec.2015.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 12/14/2022]
Abstract
Due to their high abundance and pharmacological relevance there is a growing demand for the efficient production of functional membrane proteins. In this context, cell-free protein synthesis represents a valuable alternative that allows for the high-throughput synthesis of functional membrane proteins. Here, we demonstrate the potential of our cell-free protein synthesis system, based on lysates from cultured Spodoptera frugiperda 21 cells, to produce pro- and eukaryotic membrane proteins with individual topological characteristics in an automated fashion. Analytical techniques, including confocal laser scanning microscopy, fluorescence detection of eYFP fusion proteins in a microplate reader and in-gel fluorescence of statistically incorporated fluorescent amino acid derivatives were employed. The reproducibility of our automated synthesis approach is underlined by coefficients of variation below 7.2%. Moreover, the functionality of the cell-free synthesized potassium channel KcsA was analyzed electrophysiologically. Finally, we expanded our cell-free membrane protein synthesis system by an orthogonal tRNA/synthetase pair for the site-directed incorporation of p-Azido-l-phenylalanine based on stop codon suppression. Incorporation was optimized by performance of a two-dimensional screening with different Mg(2+) and lysate concentrations. Subsequently, the selective modification of membrane proteins with incorporated p-Azido-l-phenylalanine was exemplified by Staudinger ligation with a phosphine-based fluorescence dye.
Collapse
Affiliation(s)
- Robert B Quast
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Oliver Kortt
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Jörg Henkel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Srujan K Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany.
| |
Collapse
|
23
|
|
24
|
TANAKA Y, SHIMIZU Y. Integration of a Reconstituted Cell-free Protein-synthesis System on a Glass Microchip. ANAL SCI 2015; 31:67-71. [DOI: 10.2116/analsci.31.67] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yo TANAKA
- Laboratory for Integrated Biodevice, Quantitative Biology Center (QBiC), RIKEN
| | - Yoshihiro SHIMIZU
- Laboratory for Cell-Free Protein Synthesis, Quantitative Biology Center (QBiC), RIKEN
| |
Collapse
|
25
|
Kazuta Y, Matsuura T, Ichihashi N, Yomo T. Synthesis of milligram quantities of proteins using a reconstituted in vitro protein synthesis system. J Biosci Bioeng 2014; 118:554-7. [DOI: 10.1016/j.jbiosc.2014.04.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/08/2014] [Accepted: 04/23/2014] [Indexed: 11/26/2022]
|
26
|
Farajnia S, Ahmadzadeh V, Tanomand A, Veisi K, Khosroshahi SA, Rahbarnia L. Development trends for generation of single-chain antibody fragments. Immunopharmacol Immunotoxicol 2014; 36:297-308. [DOI: 10.3109/08923973.2014.945126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Stech M, Hust M, Schulze C, Dübel S, Kubick S. Cell-free eukaryotic systems for the production, engineering, and modification of scFv antibody fragments. Eng Life Sci 2014; 14:387-398. [PMID: 25821419 PMCID: PMC4374706 DOI: 10.1002/elsc.201400036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 01/27/2023] Open
Abstract
Open cell-free translation systems based on Escherichia coli cell lysates have successfully been used to produce antibodies and antibody fragments. In this study, we demonstrate the cell-free expression of functional single-chain antibody variable fragments (scFvs) in a eukaryotic and endotoxin-free in vitro translation system based on Spodoptera frugiperda (Sf21) insect cell extracts. Three scFv candidates with different specificities were chosen as models. The first scFv candidate SH527-IIA4 specifically discriminates between its phosphorylated (SMAD2-P) and nonphosphorylated antigens (SMAD2) (where SMAD is mothers against decapentaplegic homolog 2), whereas the second scFv candidate SH527-IIC10 recognizes both, SMAD2-P and SMAD2. The third scFv candidate SH855-C11 binds specifically to a linear epitope of the CXC chemokine receptor type 5. The translocation of antibody fragments into the lumen of endogenous microsomal vesicles, which are contained in the lysate, was facilitated by fusion of scFv genes to the insect cell specific signal sequence of honeybee melittin. We compared the binding capabilities of scFv fragments with and without melittin signal peptide and detected that translocated scFv fragments were highly functional, whereas scFvs synthesized in the cytosol of the cell extract showed strongly decreased binding capabilities. Additionally, we describe a cell-free protein synthesis method for the incorporation of noncanonical amino acids into scFv molecules in eukaryotic cell lysates. We demonstrate the successful cotranslational labeling of de novo synthesized scFv molecules with fluorescent amino acids, using residue-specific as well as site-specific labeling.
Collapse
Affiliation(s)
- Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm Potsdam, Germany
| | - Michael Hust
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig Braunschweig, Germany
| | - Corina Schulze
- Department of Life Sciences and Technology, Beuth Hochschule für Technik Berlin, University of Applied Sciences Berlin, Germany
| | - Stefan Dübel
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig Braunschweig, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm Potsdam, Germany
| |
Collapse
|
28
|
Ogawa A, Tabuchi J, Doi Y. Identification of short untranslated regions that sufficiently enhance translation in high-quality wheat germ extract. Bioorg Med Chem Lett 2014; 24:3724-7. [PMID: 25037913 DOI: 10.1016/j.bmcl.2014.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
Abstract
High-quality wheat germ extract (hqWGE) is very useful for the high-yield production of various types of protein. The most important key to high productivity is the design of mRNA templates. Although the design has been refined for straightforward and efficient translation in hqWGE, there is still room for improvement in untranslated regions (UTRs), especially the 3' UTR length, because a long, cumbersome 3' UTR is commonly used for translation enhancement. Here we examined some short viral 3' cap-independent translation enhancers (3' CITEs) to identify effective ones for efficient translation in hqWGE. We then combined the most effective 3' CITE and a 5' enhancer to further increase the translation efficiency. mRNA with the optimal short 3' and 5' UTRs, both of whose length was less than 150 nt, exhibited a productivity of 1.4 mg/mL in prolonged large-scale protein synthesis in hqWGE, which was comparable to that of control mRNA with a commonly-used long 3' UTR (∼1200 nt).
Collapse
Affiliation(s)
- Atsushi Ogawa
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | - Junichiro Tabuchi
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yasunori Doi
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
29
|
Liguori L, Marques B, Villegas-Méndez A, Rothe R, Lenormand JL. Production of membrane proteins using cell–free expression systems. Expert Rev Proteomics 2014; 4:79-90. [PMID: 17288517 DOI: 10.1586/14789450.4.1.79] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Different overexpression systems are widely used in the laboratory to produce proteins in a reasonable amount for functional and structural studies. However, to optimize these systems without modifying the cellular functions of the living organism remains a challenging task. Cell-free expression systems have become a convenient method for the high-throughput expression of recombinant proteins, and great effort has been focused on generating high yields of proteins. Furthermore, these systems represent an attractive alternative for producing difficult-to-express proteins, such as membrane proteins. In this review, we highlight the recent improvements of these cell-free expression systems and their direct applications in the fields of membrane proteins production, protein therapy and modern proteomics.
Collapse
Affiliation(s)
- Lavinia Liguori
- University Joseph Fourier, HumProTher Laboratory, GREPI, CHU-Grenoble, 38043 Grenoble, France.
| | | | | | | | | |
Collapse
|
30
|
Syafrizayanti, Betzen C, Hoheisel JD, Kastelic D. Methods for analyzing and quantifying protein–protein interaction. Expert Rev Proteomics 2014; 11:107-20. [DOI: 10.1586/14789450.2014.875857] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Cloning-independent expression and screening of enzymes using cell-free protein synthesis systems. Methods Mol Biol 2014; 1118:97-108. [PMID: 24395411 DOI: 10.1007/978-1-62703-782-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We present a strategy for expression and screening of microbial enzymes without involving cloning procedures. Libraries of putative ω-transaminases (ω-TA) and mutated Candida antarctica lipase B (CalB) are PCR-amplified from bacterial colonies and directly expressed in an Escherichia coli-based cell-free protein synthesis system. The open nature of cell-free protein synthesis system also allows streamlined analysis of the enzymatic activity of the expressed enzymes, which greatly shortens the time required for enzyme screening. We expect that the proposed strategy will provide a universal platform for bridging the information gap between nucleotide sequence and protein function, in order to accelerate the discovery of novel enzymes. The proposed strategy can also serve as a viable option for the rapid and precise tuning of enzyme molecules, not only for analytical purposes, but also for industrial applications. This is accomplished via large-scale production using microbial cells transformed with variant genes selected from the cell-free expression screening.
Collapse
|
32
|
Abstract
In the field of molecular biology or biochemistry, preparation and use of purified proteins involved in a certain biological system is crucial for understanding their mechanisms and functions in cells or organisms. The recent progress in a cell-free translation system allows us to prepare proteins in a test tube directly from cDNAs that encode the amino acid sequences. The use of the reconstituted cell-free translation system termed PURE (Protein synthesis Using Recombinant Elements) for these purposes is effective in several applications. Here we describe methods of recombinant protein expression using the PURE system for molecular biological or biochemical studies.
Collapse
Affiliation(s)
- Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, Quantitative Biology Center, RIKEN, Chuo-ku, Kobe, Hyogo, Japan
| | | | | | | |
Collapse
|
33
|
Site-specific incorporation of unnatural amino acids into proteins by cell-free protein synthesis. Methods Mol Biol 2014; 1118:189-203. [PMID: 24395417 DOI: 10.1007/978-1-62703-782-2_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cell-free protein synthesis (CFPS) offers a fast and inexpensive means to incorporate unnatural amino acids (UAAs) site specifically into proteins. This enables engineering of proteins and allows production of protein-based probes for analysis of their interactions with other molecules. Using dialysis Escherichia coli CFPS system in combination with aminoacyl-tRNA synthetase and suppressor tRNA evolved from Methanocaldococcus jannaschii high expression yield of proteins with site specifically incorporated UAAs can be achieved. Typically the target protein can be prepared at concentrations of about 1 mg/mL, which is generally sufficient for subsequent applications.
Collapse
|
34
|
Catherine C, Lee KH, Oh SJ, Kim DM. Cell-free platforms for flexible expression and screening of enzymes. Biotechnol Adv 2013; 31:797-803. [DOI: 10.1016/j.biotechadv.2013.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/06/2013] [Accepted: 04/26/2013] [Indexed: 12/20/2022]
|
35
|
Ruiz RC, Kiatwuthinon P, Kahn JS, Roh YH, Luo D. Cell-Free Protein Expression from DNA-Based Hydrogel (P-Gel) Droplets for Scale-Up Production. Ind Biotechnol (New Rochelle N Y) 2012. [DOI: 10.1089/ind.2012.0024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Roanna C.H. Ruiz
- Department of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Pichamon Kiatwuthinon
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY
| | - Jason S. Kahn
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY
| | - Young Hoon Roh
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
36
|
Kwon YC, Oh IS, Lee N, Lee KH, Yoon YJ, Lee EY, Kim BG, Kim DM. Integrating cell-free biosyntheses of heme prosthetic group and apoenzyme for the synthesis of functional P450 monooxygenase. Biotechnol Bioeng 2012; 110:1193-200. [DOI: 10.1002/bit.24785] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/30/2012] [Accepted: 11/05/2012] [Indexed: 11/07/2022]
|
37
|
Valencia CA, Zou J, Liu R. In vitro selection of proteins with desired characteristics using mRNA-display. Methods 2012. [PMID: 23201412 DOI: 10.1016/j.ymeth.2012.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
mRNA-display is an amplification-based, iterative rounds of in vitro protein selection technique that circumvents a number of difficulties associated with yeast two-hybrid and phage display. Because of the covalent linkage between the genotype and the phenotype, mRNA-display provides a powerful means for reading and amplifying a peptide or protein sequence after it has been selected from a library with very high diversity. The purpose of this article is to provide a summary of the field and practical framework of mRNA-display-based selections. We summarize the advantages and limitations of selections using mRNA-display as well as the recent applications, namely, the identification of novel affinity reagents, target-binding partners, and enzyme substrates from synthetic peptide or natural proteome libraries. Practically, we provide a detailed procedure for performing mRNA-display-based selections with the aim of identifying protease substrates and binding partners of a target protein. Furthermore, we describe how to confirm the function of the selected protein sequences by biochemical assays and bioinformatic tools.
Collapse
Affiliation(s)
- C Alexander Valencia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
38
|
Constructive Approaches for the Origin of Life. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-2941-4_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Weinstock MT, Francis JN, Redman JS, Kay MS. Protease-resistant peptide design-empowering nature's fragile warriors against HIV. Biopolymers 2012; 98:431-42. [PMID: 23203688 PMCID: PMC3548907 DOI: 10.1002/bip.22073] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/05/2012] [Accepted: 04/04/2012] [Indexed: 01/29/2023]
Abstract
Peptides have great potential as therapeutic agents, but their use is often limited by susceptibility to proteolysis and their resulting in vivo fragility. In this review, we focus on peptidomimetic approaches to produce protease-resistant peptides with the potential for greatly improved clinical utility. We focus on the use of mirror-image (D-peptide) and ß-peptides as two leading approaches with distinct design principles and challenges. Application to the important and difficult problem of inhibiting HIV entry illustrates the current state-of-the-art in peptidomimetic technologies. We also summarize future directions for this field and highlight remaining obstacles to widespread use of protease-resistant peptides.
Collapse
Affiliation(s)
- Matthew T Weinstock
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| | | | | | | |
Collapse
|
40
|
Hensley MP, Tierney DL, Crowder MW. Zn(II) binding to Escherichia coli 70S ribosomes. Biochemistry 2011; 50:9937-9. [PMID: 22026583 DOI: 10.1021/bi200619w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli 70S ribosomes tightly bind 8 equiv of Zn(II), and EXAFS spectra indicate that Zn(II) may be protein-bound. Ribosomes were incubated with EDTA and Zn(II), and after dialysis, the resulting ribosomes bound 5 and 11 equiv of Zn(II), respectively. EXAFS studies show that the additional Zn(II) in the zinc-supplemented ribosomes binds in part to the phosphate backbone of the ribosome. Lastly, in vitro translation studies demonstrate that EDTA-treated ribosomes do not synthesize an active Zn(II)-bound metalloenzyme, while the as-isolated ribosomes do. These studies demonstrate that the majority of intracellular Zn(II) resides in the ribosome.
Collapse
Affiliation(s)
- M Patrick Hensley
- Department of Chemistry and Biochemistry, 160 Hughes Hall, Miami University, Oxford, Ohio 45056, USA
| | | | | |
Collapse
|
41
|
Siuti P, Retterer ST, Doktycz MJ. Continuous protein production in nanoporous, picolitre volume containers. LAB ON A CHIP 2011; 11:3523-9. [PMID: 21879140 DOI: 10.1039/c1lc20462a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The synthetic manufacture of functional proteins enables a bottom-up understanding of the workings of biological systems and opens new opportunities for the treatment of disease. Cell-free protein synthesis is a practical approach for enabling such manufacturing, however, it is typically carried out in fairly large volumes, when compared to a natural cell, leading to increases in cost and loss of efficiency. Here we demonstrate continuous cell free protein synthesis in arrays of cellular scale containers that continuously exchange energy and materials with their environment. A multiscale fabrication process allows the monolithic integration of nanoporous silicon containers within an addressable microfluidic network. Synthesis of enhanced green fluorescent protein (eGFP) in the containers continues beyond 24 h and yields more than twice the amount of protein, on a per volume basis, than conventional scale batch reactions. By mimicking the physical volume and controlled flux of a natural cell, the resulting "cell mimic" devices can enable fundamental studies of biological systems as well as serve applications related to the functional screening of proteins and the on-demand production of biologics.
Collapse
Affiliation(s)
- Piro Siuti
- Genome, Science and Technology Program, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | |
Collapse
|
42
|
Sasaki Y, Asayama W, Niwa T, Sawada SI, Ueda T, Taguchi H, Akiyoshi K. Amphiphilic Polysaccharide Nanogels as Artificial Chaperones in Cell-Free Protein Synthesis. Macromol Biosci 2011; 11:814-20. [DOI: 10.1002/mabi.201000457] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/15/2011] [Indexed: 11/09/2022]
|
43
|
Stigers DJ, Watts ZI, Hennessy JE, Kim HK, Martini R, Taylor MC, Ozawa K, Keillor JW, Dixon NE, Easton CJ. Incorporation of chlorinated analogues of aliphatic amino acids during cell-free protein synthesis. Chem Commun (Camb) 2011; 47:1839-41. [DOI: 10.1039/c0cc02879g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Usami A, Ishiyama S, Enomoto C, Okazaki H, Higuchi K, Ikeda M, Yamamoto T, Sugai M, Ishikawa Y, Hosaka Y, Koyama T, Tobita Y, Ebihara S, Mochizuki T, Asano Y, Nagaya H. Comparison of recombinant protein expression in a baculovirus system in insect cells (Sf9) and silkworm. J Biochem 2010; 149:219-27. [PMID: 21113054 DOI: 10.1093/jb/mvq138] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Using a hybrid baculovirus system, we compared the expression of 45 recombinant proteins from six categories using two models: silkworm (larvae and pupae) and an Sf9 cell line. A total of 45 proteins were successfully expressed; preparation of hybrid baculovirus was unsuccessful for one protein, and two proteins were not expressed. A similar pattern of expression was seen in both silkworm and Sf9 cells, with double and multiple bands found in immunoblotting of the precipitate of both hosts. Degraded proteins were seen only in the silkworm system (particularly in the larvae). Production was more efficient in silkworms; a single silkworm produced about 70 times more protein than 10(6) Sf9 cells in 2 ml of culture medium.
Collapse
Affiliation(s)
- Akihiro Usami
- Katakura Industries Co. Ltd, Research Institute of Biological Science, Sayama, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sasaki Y, Nomura Y, Sawada SI, Akiyoshi K. Polysaccharide nanogel–cyclodextrin system as an artificial chaperone for in vitro protein synthesis of green fluorescent protein. Polym J 2010. [DOI: 10.1038/pj.2010.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Moritani Y, Nomura SIM, Morita I, Akiyoshi K. Direct integration of cell-free-synthesized connexin-43 into liposomes and hemichannel formation. FEBS J 2010; 277:3343-52. [PMID: 20608976 DOI: 10.1111/j.1742-4658.2010.07736.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Proteoliposomes were directly prepared by synthesizing membrane proteins with the use of minimal protein synthesis factors isolated from Escherichia coli (the PURE system) in the presence of liposomes. Connexin-43 (Cx43), which is a water-insoluble integral membrane protein that forms a hexameric complex in membranes, was cotranslationally integrated with an essentially uniform orientation in liposomes. The addition of liposomes following protein expression (post-translational presence of liposomes) did not lead to the integration of Cx43 into the liposome membranes. The amount of integrated Cx43 increased as the liposome concentration increased. The presence of liposomes did not influence the total amount of synthesized Cx43. The Cx43 integrated into the liposome membranes formed open membrane pores. These results indicate that the liposomes act in a chaperone-like manner by preventing Cx43 from aggregating in solution, because of integration into the bilayer, and also by functionalization of the integrated Cx43 in the membrane. This is the first report that cell-free-synthesized water-insoluble membrane protein is directly integrated with a uniform orientation as a functional oligomer into liposome membranes. This simple proteoliposome preparation procedure should be a valuable approach for structural and functional studies of membrane proteins.
Collapse
Affiliation(s)
- Yuki Moritani
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | |
Collapse
|
47
|
Cloning-independent expression and analysis of omega-transaminases by use of a cell-free protein synthesis system. Appl Environ Microbiol 2010; 76:6295-8. [PMID: 20656866 DOI: 10.1128/aem.00029-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herewith we report the expression and screening of microbial enzymes without involving cloning procedures. Computationally predicted putative omega-transaminase (omega-TA) genes were PCR amplified from the bacterial colonies and expressed in a cell-free protein synthesis system for subsequent analysis of their enzymatic activity and substrate specificity. Through the cell-free expression analysis of the putative omega-TA genes, a number of enzyme-substrate pairs were identified in a matter of hours. We expect that the proposed strategy will provide a universal platform for bridging the information gap between nucleotide sequence and protein function to accelerate the discovery of novel enzymes.
Collapse
|
48
|
Kuruma Y, Suzuki T, Ueda T. Production of multi-subunit complexes on liposome through an E. coli cell-free expression system. Methods Mol Biol 2010; 607:161-71. [PMID: 20204856 DOI: 10.1007/978-1-60327-331-2_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Recently cell-free translation systems became a laboratory research tool to obtain an objective protein. However, a general method for in vitro protein synthesis and multi-subunit complex formation on lipid membrane has not been established. Here, we describe the procedure for the production of subcomplexes of F(o)F(1)-ATP synthase using a reconstructed cell-free translation system. As for the membrane part F(o) (a(1)b(2)c((10-15))), cosynthesis of c-subunit and UncI proteins, which are integral membrane proteins, and further c (11)-ring formation in lipid bilayer are performed by use of a liposomes-containing cell-free system. Moreover, as for the cytoplasm part F(1) (alpha(3)beta(3)gammadeltaepsilon), subcomplex formations are successfully achieved by mixing the translation products.
Collapse
Affiliation(s)
- Yutetsu Kuruma
- The Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | | |
Collapse
|
49
|
Asahara H, Chong S. In vitro genetic reconstruction of bacterial transcription initiation by coupled synthesis and detection of RNA polymerase holoenzyme. Nucleic Acids Res 2010; 38:e141. [PMID: 20457746 PMCID: PMC2910072 DOI: 10.1093/nar/gkq377] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In vitro reconstitution of a biological complex or process normally involves assembly of multiple individually purified protein components. Here we present a strategy that couples expression and assembly of multiple gene products with functional detection in an in vitro reconstituted protein synthesis system. The strategy potentially allows experimental reconstruction of a multi-component biological complex or process using only DNA templates instead of purified proteins. We applied this strategy to bacterial transcription initiation by co-expressing genes encoding Escherichia coli RNA polymerase subunits and sigma factors in the reconstituted protein synthesis system and by coupling the synthesis and assembly of a functional RNA polymerase holoenzyme with the expression of a reporter gene. Using such a system, we demonstrated sigma-factor-dependent, promoter-specific transcription initiation. Since protein synthesis, complex formation and enzyme catalysis occur in the same in vitro reaction mixture, this reconstruction process resembles natural biosynthetic pathways and avoids time-consuming expression and purification of individual proteins. The strategy can significantly reduce the time normally required by conventional reconstitution methods, allow rapid generation and detection of genetic mutations, and provide an open and designable platform for in vitro study and intervention of complex biological processes.
Collapse
Affiliation(s)
- Haruichi Asahara
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | | |
Collapse
|
50
|
Abstract
The Escherichia coli-based reconstituted cell-free protein synthesis system, which we named the PURE (Protein synthesis Using Recombinant Elements) system, provides several advantages compared with the conventional cell-extract-based system. Stability of RNA or protein is highly improved because of the lack of harmful degradation enzymes. The system can be easily engineered according to purposes or the proteins to be synthesized, by manipulating the components in the system. In this chapter, we describe the construction and exploitation of the PURE system. Methods for preparing and assembling the components composing the PURE system for the protein synthesis reaction are shown.
Collapse
|