1
|
Zhao JR, Zuo SQ, Xiao F, Guo FZ, Chen LY, Bi K, Cheng DY, Xu ZN. Advances in biotin biosynthesis and biotechnological production in microorganisms. World J Microbiol Biotechnol 2024; 40:163. [PMID: 38613659 DOI: 10.1007/s11274-024-03971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 04/15/2024]
Abstract
Biotin, also known as vitamin H or B7, acts as a crucial cofactor in the central metabolism processes of fatty acids, amino acids, and carbohydrates. Biotin has important applications in food additives, biomedicine, and other fields. While the ability to synthesize biotin de novo is confined to microorganisms and plants, humans and animals require substantial daily intake, primarily through dietary sources and intestinal microflora. Currently, chemical synthesis stands as the primary method for commercial biotin production, although microbial biotin production offers an environmentally sustainable alternative with promising prospects. This review presents a comprehensive overview of the pathways involved in de novo biotin synthesis in various species of microbes and insights into its regulatory and transport systems. Furthermore, diverse strategies are discussed to improve the biotin production here, including mutation breeding, rational metabolic engineering design, artificial genetic modification, and process optimization. The review also presents the potential strategies for addressing current challenges for industrial-scale bioproduction of biotin in the future. This review is very helpful for exploring efficient and sustainable strategies for large-scale biotin production.
Collapse
Affiliation(s)
- Jia-Run Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Si-Qi Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Feng Xiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Feng-Zhu Guo
- Zhejiang Sliver-Elephant Bio-engineering Co., Ltd., Tiantai, 317200, China
| | - Lu-Yi Chen
- Zhejiang Sliver-Elephant Bio-engineering Co., Ltd., Tiantai, 317200, China
| | - Ke Bi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dong-Yuan Cheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhi-Nan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
2
|
Prout L, Hailes HC, Ward JM. Natural transaminase fusions for biocatalysis. RSC Adv 2024; 14:4264-4273. [PMID: 38298934 PMCID: PMC10829540 DOI: 10.1039/d3ra07081f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Biocatalytic approaches are used widely for the synthesis of amines from abundant or low cost starting materials. This is a fast-developing field where novel enzymes and enzyme combinations emerge quickly to enable the production of new and complex compounds. Natural multifunctional enzymes represent a part of multi-step biosynthetic pathways that ensure a one-way flux of reactants. In vivo, they confer a selective advantage via increased reaction rates and chemical stability or prevention of toxicity from reactive intermediates. Here we report the identification and analysis of a natural transaminase fusion, PP_2782, from Pseudomonas putida KT2440, as well as three of its thermophilic homologs from Thermaerobacter marianensis, Thermaerobacter subterraneus, and Thermincola ferriacetica. Both the fusions and their truncated transaminase-only derivatives showed good activity with unsubstituted aliphatic and aromatic aldehydes and amines, as well as with a range of α-keto acids, and l-alanine, l-glutamate, and l-glutamine. Through structural similarity, the fused domain was recognised as the acyl-[acyl-carrier-protein] reductase that affects reductive chain release. These natural transaminase fusions could have a great potential for industrial applications.
Collapse
Affiliation(s)
- Luba Prout
- Department of Biochemical Engineering, University College London London WC1E 6BT UK
| | - Helen C Hailes
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - John M Ward
- Department of Biochemical Engineering, University College London London WC1E 6BT UK
| |
Collapse
|
3
|
Sullivan MR, McGowen K, Liu Q, Akusobi C, Young DC, Mayfield JA, Raman S, Wolf ID, Moody DB, Aldrich CC, Muir A, Rubin EJ. Biotin-dependent cell envelope remodelling is required for Mycobacterium abscessus survival in lung infection. Nat Microbiol 2023; 8:481-497. [PMID: 36658396 PMCID: PMC9992005 DOI: 10.1038/s41564-022-01307-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/14/2022] [Indexed: 01/21/2023]
Abstract
Mycobacterium abscessus is an emerging pathogen causing lung infection predominantly in patients with underlying structural abnormalities or lung disease and is resistant to most frontline antibiotics. As the pathogenic mechanisms of M. abscessus in the context of the lung are not well-understood, we developed an infection model using air-liquid interface culture and performed a transposon mutagenesis and sequencing screen to identify genes differentially required for bacterial survival in the lung. Biotin cofactor synthesis was required for M. abscessus growth due to increased intracellular biotin demand, while pharmacological inhibition of biotin synthesis prevented bacterial proliferation. Biotin was required for fatty acid remodelling, which increased cell envelope fluidity and promoted M. abscessus survival in the alkaline lung environment. Together, these results indicate that biotin-dependent fatty acid remodelling plays a critical role in pathogenic adaptation to the lung niche, suggesting that biotin synthesis and fatty acid metabolism might provide therapeutic targets for treatment of M. abscessus infection.
Collapse
Affiliation(s)
- Mark R Sullivan
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kerry McGowen
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qiang Liu
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Chidiebere Akusobi
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Young
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob A Mayfield
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sahadevan Raman
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ian D Wolf
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - D Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
4
|
Roubert C, Fontaine E, Upton AM. “Upcycling” known molecules and targets for drug-resistant TB. Front Cell Infect Microbiol 2022; 12:1029044. [PMID: 36275029 PMCID: PMC9582839 DOI: 10.3389/fcimb.2022.1029044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Despite reinvigorated efforts in Tuberculosis (TB) drug discovery over the past 20 years, relatively few new drugs and candidates have emerged with clear utility against drug resistant TB. Over the same period, significant technological advances and learnings around target value have taken place. This has offered opportunities to re-assess the potential for optimization of previously discovered chemical matter against Mycobacterium tuberculosis (M.tb) and for reconsideration of clinically validated targets encumbered by drug resistance. A re-assessment of discarded compounds and programs from the “golden age of antibiotics” has yielded new scaffolds and targets against TB and uncovered classes, for example beta-lactams, with previously unappreciated utility for TB. Leveraging validated classes and targets has also met with success: booster technologies and efforts to thwart efflux have improved the potential of ethionamide and spectinomycin classes. Multiple programs to rescue high value targets while avoiding cross-resistance are making progress. These attempts to make the most of known classes, drugs and targets complement efforts to discover new chemical matter against novel targets, enhancing the chances of success of discovering effective novel regimens against drug-resistant TB.
Collapse
|
5
|
Xu Y, Yang J, Li W, Song S, Shi Y, Wu L, Sun J, Hou M, Wang J, Jia X, Zhang H, Huang M, Lu T, Gan J, Feng Y. Three enigmatic BioH isoenzymes are programmed in the early stage of mycobacterial biotin synthesis, an attractive anti-TB drug target. PLoS Pathog 2022; 18:e1010615. [PMID: 35816546 PMCID: PMC9302846 DOI: 10.1371/journal.ppat.1010615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis (TB) is one of the leading infectious diseases of global concern, and one quarter of the world’s population are TB carriers. Biotin metabolism appears to be an attractive anti-TB drug target. However, the first-stage of mycobacterial biotin synthesis is fragmentarily understood. Here we report that three evolutionarily-distinct BioH isoenzymes (BioH1 to BioH3) are programmed in biotin synthesis of Mycobacterium smegmatis. Expression of an individual bioH isoform is sufficient to allow the growth of an Escherichia coli ΔbioH mutant on the non-permissive condition lacking biotin. The enzymatic activity in vitro combined with biotin bioassay in vivo reveals that BioH2 and BioH3 are capable of removing methyl moiety from pimeloyl-ACP methyl ester to give pimeloyl-ACP, a cognate precursor for biotin synthesis. In particular, we determine the crystal structure of dimeric BioH3 at 2.27Å, featuring a unique lid domain. Apart from its catalytic triad, we also dissect the substrate recognition of BioH3 by pimeloyl-ACP methyl ester. The removal of triple bioH isoforms (ΔbioH1/2/3) renders M. smegmatis biotin auxotrophic. Along with the newly-identified Tam/BioC, the discovery of three unusual BioH isoforms defines an atypical ‘BioC-BioH(3)’ paradigm for the first-stage of mycobacterial biotin synthesis. This study solves a long-standing puzzle in mycobacterial nutritional immunity, providing an alternative anti-TB drug target.
Collapse
Affiliation(s)
- Yongchang Xu
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jie Yang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Science, Fudan University, Shanghai, The People’s Republic of China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, The People’s Republic of China
| | - Shuaijie Song
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Yu Shi
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Lihan Wu
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jingdu Sun
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, The People’s Republic of China
| | - Mengyun Hou
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jinzi Wang
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources & Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, The People’s Republic of China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, The People’s Republic of China
| | - Huimin Zhang
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Man Huang
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Science, Fudan University, Shanghai, The People’s Republic of China
- * E-mail: (JG); (YF)
| | - Youjun Feng
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, The People’s Republic of China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, The People’s Republic of China
- * E-mail: (JG); (YF)
| |
Collapse
|
6
|
Joshi H, Kandari D, Bhatnagar R. Insights into the molecular determinants involved in Mycobacterium tuberculosis persistence and their therapeutic implications. Virulence 2021; 12:2721-2749. [PMID: 34637683 PMCID: PMC8565819 DOI: 10.1080/21505594.2021.1990660] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
The establishment of persistent infections and the reactivation of persistent bacteria to active bacilli are the two hurdles in effective tuberculosis treatment. Mycobacterium tuberculosis, an etiologic tuberculosis agent, adapts to numerous antibiotics and resists the host immune system causing a disease of public health concern. Extensive research has been employed to combat this disease due to its sheer ability to persist in the host system, undetected, waiting for the opportunity to declare itself. Persisters are a bacterial subpopulation that possesses transient tolerance to high doses of antibiotics. There are certain inherent mechanisms that facilitate the persister cell formation in Mycobacterium tuberculosis, some of those had been characterized in the past namely, stringent response, transcriptional regulators, energy production pathways, lipid metabolism, cell wall remodeling enzymes, phosphate metabolism, and proteasome protein degradation. This article reviews the recent advancements made in various in vitro persistence models that assist to unravel the mechanisms involved in the persister cell formation and to hunt for the possible preventive or treatment measures. To tackle the persister population the immunodominant proteins that express specifically at the latent phase of infection can be used for diagnosis to distinguish between the active and latent tuberculosis, as well as to select potential drug or vaccine candidates. In addition, we discuss the genes engaged in the persistence to get more insights into resuscitation and persister cell formation. The in-depth understanding of persistent cells of mycobacteria can certainly unravel novel ways to target the pathogen and tackle its persistence.
Collapse
Affiliation(s)
- Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Amity University of Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
7
|
Boyko KM, Nikolaeva AY, Bakunova AK, Stekhanova TN, Rakitina TV, Popov VO, Bezsudnova EY. Three-Dimensional Structure of Thermostable D-Amino Acid Transaminase from the Archaeon Methanocaldococcus jannaschii DSM 2661. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521050035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
XRE-Type Regulator BioX Acts as a Negative Transcriptional Factor of Biotin Metabolism in Riemerella anatipestifer. J Bacteriol 2021; 203:e0018121. [PMID: 33972354 DOI: 10.1128/jb.00181-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biotin is essential for the growth and pathogenicity of microorganisms. Damage to biotin biosynthesis results in impaired bacterial growth and decreased virulence in vivo. However, the mechanisms of biotin biosynthesis in Riemerella anatipestifer remain unclear. In this study, two R. anatipestifer genes associated with biotin biosynthesis were identified. AS87_RS05840 encoded a BirA protein lacking the N-terminal winged helix-turn-helix DNA binding domain, identifying it as a group I biotin protein ligase, and AS87_RS09325 encoded a BioX protein, which was in the helix-turn-helix xenobiotic response element family of transcription factors. Electrophoretic mobility shift assays demonstrated that BioX bound to the promoter region of bioF. In addition, the R. anatipestifer genes bioF (encoding 7-keto-8-aminopelargonic acid synthase), bioD (encoding dethiobiotin synthase), and bioA (encoding 7,8-diaminopelargonic acid synthase) were in an operon and were regulated by BioX. Quantitative reverse transcription-PCR showed that transcription of the bioFDA operon increased in the mutant Yb2ΔbioX in the presence of excessive biotin, compared with that in the wild-type strain Yb2, suggesting that BioX acted as a repressor of biotin biosynthesis. Streptavidin blot analysis showed that BirA caused biotinylation of BioX, indicating that biotinylated BioX was involved in metabolic pathways. Moreover, as determined by the median lethal dose, the virulence of Yb2ΔbioX was attenuated 500-fold compared with that of Yb2. To summarize, the genes birA and bioX were identified in R. anatipestifer, and BioX was found to act as a repressor of the bioFDA operon involved in the biotin biosynthesis pathway and identified as a bacterial virulence factor. IMPORTANCE Riemerella anatipestifer is a causative agent of diseases in ducks, geese, turkeys, and various other domestic and wild birds. Our study reveals that biotin synthesis of R. anatipestifer is regulated by the BioX through binding to the promoter region of the bioF gene to inhibit transcription of the bioFDA operon. Moreover, bioX is required for R. anatipestifer pathogenicity, suggesting that BioX is a potential target for treatment of the pathogen. R. anatipestifer BioX has thus been identified as a novel negative regulator involved in biotin metabolism and associated with bacterial virulence in this study.
Collapse
|
9
|
Bockman MR, Mishra N, Aldrich CC. The Biotin Biosynthetic Pathway in Mycobacterium tuberculosis is a Validated Target for the Development of Antibacterial Agents. Curr Med Chem 2020; 27:4194-4232. [PMID: 30663561 DOI: 10.2174/0929867326666190119161551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/14/2018] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis, responsible for Tuberculosis (TB), remains the leading cause of mortality among infectious diseases worldwide from a single infectious agent, with an estimated 1.7 million deaths in 2016. Biotin is an essential cofactor in M. tuberculosis that is required for lipid biosynthesis and gluconeogenesis. M. tuberculosis relies on de novo biotin biosynthesis to obtain this vital cofactor since it cannot scavenge sufficient biotin from a mammalian host. The biotin biosynthetic pathway in M. tuberculosis has been well studied and rigorously genetically validated providing a solid foundation for medicinal chemistry efforts. This review examines the mechanism and structure of the enzymes involved in biotin biosynthesis and ligation, summarizes the reported genetic validation studies of the pathway, and then analyzes the most promising inhibitors and natural products obtained from structure-based drug design and phenotypic screening.
Collapse
Affiliation(s)
- Matthew R Bockman
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Neeraj Mishra
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
10
|
Gao K, Oerlemans R, Groves MR. Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Biophys Rev 2020; 12:85-104. [PMID: 32006251 PMCID: PMC7040159 DOI: 10.1007/s12551-020-00619-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Differential scanning fluorimetry (DSF) is an accessible, rapid, and economical biophysical technique that has seen many applications over the years, ranging from protein folding state detection to the identification of ligands that bind to the target protein. In this review, we discuss the theory, applications, and limitations of DSF, including the latest applications of DSF by ourselves and other researchers. We show that DSF is a powerful high-throughput tool in early drug discovery efforts. We place DSF in the context of other biophysical methods frequently used in drug discovery and highlight their benefits and downsides. We illustrate the uses of DSF in protein buffer optimization for stability, refolding, and crystallization purposes and provide several examples of each. We also show the use of DSF in a more downstream application, where it is used as an in vivo validation tool of ligand-target interaction in cell assays. Although DSF is a potent tool in buffer optimization and large chemical library screens when it comes to ligand-binding validation and optimization, orthogonal techniques are recommended as DSF is prone to false positives and negatives.
Collapse
Affiliation(s)
- Kai Gao
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rick Oerlemans
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Matthew R Groves
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
11
|
Diaminopelargonic acid transaminase from Psychrobacter cryohalolentis is active towards (S)-(-)-1-phenylethylamine, aldehydes and α-diketones. Appl Microbiol Biotechnol 2018; 102:9621-9633. [DOI: 10.1007/s00253-018-9310-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/09/2018] [Accepted: 08/07/2018] [Indexed: 11/25/2022]
|
12
|
Singh S, Khare G, Bahal RK, Ghosh PC, Tyagi AK. Identification of Mycobacterium tuberculosis BioA inhibitors by using structure-based virtual screening. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1065-1079. [PMID: 29750019 PMCID: PMC5935190 DOI: 10.2147/dddt.s144240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background 7,8-Diaminopelargonic acid synthase (BioA), an enzyme of biotin biosynthesis pathway, is a well-known promising target for anti-tubercular drug development. Methods In this study, structure-based virtual screening was employed against the active site of BioA to identify new chemical entities for BioA inhibition and top ranking compounds were evaluated for their ability to inhibit BioA enzymatic activity. Results Seven compounds inhibited BioA enzymatic activity by greater than 60% at 100 μg/mL with most potent compounds being A36, A35 and A65, displaying IC50 values of 10.48 μg/mL (28.94 μM), 33.36 μg/mL (88.16 μM) and 39.17 μg/mL (114.42 μM), respectively. Compounds A65 and A35 inhibited Mycobacterium tuberculosis (M. tuberculosis) growth with MIC90 of 20 μg/mL and 80 μg/mL, respectively, whereas compound A36 exhibited relatively weak inhibition of M. tuberculosis growth (83% inhibition at 200 μg/mL). Compound A65 emerged as the most potent compound identified in our study that inhibited BioA enzymatic activity and growth of the pathogen and possessed drug-like properties. Conclusion Our study has identified a few hit molecules against M. tuberculosis BioA that can act as potential candidates for further development of potent anti-tubercular therapeutic agents.
Collapse
Affiliation(s)
- Swati Singh
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Ritika Kar Bahal
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Prahlad C Ghosh
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Anil K Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
13
|
Abstract
![]()
Current tuberculosis
(TB) drug development efforts are not sufficient
to end the global TB epidemic. Recent efforts have focused on the
development of whole-cell screening assays because biochemical, target-based
inhibitor screens during the last two decades have not delivered new
TB drugs. Mycobacterium tuberculosis (Mtb), the causative
agent of TB, encounters diverse microenvironments and can be found
in a variety of metabolic states in the human host. Due to the complexity
and heterogeneity of Mtb infection, no single model can fully recapitulate
the in vivo conditions in which Mtb is found in TB patients, and there
is no single “standard” screening condition to generate
hit compounds for TB drug development. However, current screening
assays have become more sophisticated as researchers attempt to mirror
the complexity of TB disease in the laboratory. In this review, we
describe efforts using surrogates and engineered strains of Mtb to
focus screens on specific targets. We explain model culture systems
ranging from carbon starvation to hypoxia, and combinations thereof,
designed to represent the microenvironment which Mtb encounters in
the human body. We outline ongoing efforts to model Mtb infection
in the lung granuloma. We assess these different models, their ability
to generate hit compounds, and needs for further TB drug development,
to provide direction for future TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University , Stellenbosch 7600, South Africa
| |
Collapse
|
14
|
Abstract
The granuloma is the hallmark of tuberculosis and simultaneously signifies acquisition of an infection and induction of a host immune response. But who benefits more from the development of the granuloma, the host or the pathogen? Is microbe or man dictating disease course and progression? Mycobacterial diseases affect humans and animals alike, and the concepts presented in this review reflect host-pathogen interactions that influence not only mycobacterial granulomas in humans and animals but also other infectious granulomatous diseases that are encountered in veterinary medicine. Current dogma supports that an organized granuloma is a mark of an adequate and “restrictive” host immune response. However, the formation of a granuloma also provides a niche for the maturation, growth, and persistence of numerous infectious agents, and these pathogens devote some portion of their genetic machinery to ensuring these structures’ form. An understanding of pathogens’ contributions to granuloma formation can aid the development of host-directed therapies and other antimicrobial and antiparasitic therapies that can tip this balance in favor of a restrictive host response and elimination—not just containment—of the infectious organism. This review discusses animal models that have aided our understanding of pathogens’ contribution to the host response and how mycobacterial virulence genes direct host pathology in ways that may aid disease transmission and/or persistence in the form of latent infection.
Collapse
Affiliation(s)
- Amanda J. Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Eiden CG, Aldrich CC. Synthesis of a 3-Amino-2,3-dihydropyrid-4-one and Related Heterocyclic Analogues as Mechanism-Based Inhibitors of BioA, a Pyridoxal Phosphate-Dependent Enzyme. J Org Chem 2017; 82:7806-7819. [PMID: 28682613 DOI: 10.1021/acs.joc.7b00847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Amiclenomycin (ACM) is a chemically unstable antibiotic with selective activity against Mycobacterium tuberculosis (Mtb) due to mechanism-based inhibition of BioA, a pyridoxal 5'-phosphate (PLP)-dependent aminotransferase. The first-generation ACM analogue dihydro-2-pyridone 1 maintains a similar bioactivation mechanism concluding with covalent labeling of the PLP cofactor. To improve on 1, we report the synthesis of dihydro-4-pyranone 2, dihydro-4-pyridone 3, and dihydro-4-thiopyranone 13, which were rationally designed to boost the rate of enzyme inactivation by lowering the pKa of their α-protons. We employed a unified synthetic strategy for construction of the desired heterocycles featuring α-amino ynone generation followed by 6-endo-dig cyclization. However, competitive 5-exo-dig cyclization, β-elimination of the ynone, and dimerization of the resultant α-amino carbonyls all complicated the syntheses of the dihydro-4-pyranone and dihydro-4-pyridone scaffolds. These obstacles were overcome by Teoc protection of the β-amino group in the assembly of 3 and Boc-MOM protection of the α-amino group in the synthesis of 2, enabling the efficient construction of 2 and 3 in seven steps from commercially available starting materials. Dihydro-4-pyridone 3 possessed improved enzyme inhibition as measured by its kinact value against BioA.
Collapse
Affiliation(s)
- Carter G Eiden
- Department of Medicinal Chemistry, University of Minnesota , 308 Harvard Street SE, 8-174 WDH, Minneapolis, Minnesota 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota , 308 Harvard Street SE, 8-174 WDH, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Liu F, Dawadi S, Maize KM, Dai R, Park SW, Schnappinger D, Finzel BC, Aldrich CC. Structure-Based Optimization of Pyridoxal 5'-Phosphate-Dependent Transaminase Enzyme (BioA) Inhibitors that Target Biotin Biosynthesis in Mycobacterium tuberculosis. J Med Chem 2017; 60:5507-5520. [PMID: 28594172 DOI: 10.1021/acs.jmedchem.7b00189] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pyridoxal 5'-phosphate (PLP)-dependent transaminase BioA catalyzes the second step in the biosynthesis of biotin in Mycobacterium tuberculosis (Mtb) and is an essential enzyme for bacterial survival and persistence in vivo. A promising BioA inhibitor 6 containing an N-aryl, N'-benzoylpiperazine scaffold was previously identified by target-based whole-cell screening. Here, we explore the structure-activity relationships (SAR) through the design, synthesis, and biological evaluation of a systematic series of analogues of the original hit using a structure-based drug design strategy, which was enabled by cocrystallization of several analogues with BioA. To confirm target engagement and discern analogues with off-target activity, each compound was evaluated against wild-type (WT) Mtb in biotin-free and -containing medium as well as BioA under- and overexpressing Mtb strains. Conformationally constrained derivative 36 emerged as the most potent analogue with a KD of 76 nM against BioA and a minimum inhibitory concentration of 1.7 μM (0.6 μg/mL) against Mtb in biotin-free medium.
Collapse
Affiliation(s)
- Feng Liu
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Kimberly M Maize
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Ran Dai
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College , New York, New York 10065, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College , New York, New York 10065, United States
| | - Barry C Finzel
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Billones JB, Carrillo MCO, Organo VG, Sy JBA, Clavio NAB, Macalino SJY, Emnacen IA, Lee AP, Ko PKL, Concepcion GP. In silico discovery and in vitro activity of inhibitors against Mycobacterium tuberculosis 7,8-diaminopelargonic acid synthase ( Mtb BioA). DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:563-574. [PMID: 28280303 PMCID: PMC5338852 DOI: 10.2147/dddt.s119930] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Computer-aided drug discovery and development approaches such as virtual screening, molecular docking, and in silico drug property calculations have been utilized in this effort to discover new lead compounds against tuberculosis. The enzyme 7,8-diaminopelargonic acid aminotransferase (BioA) in Mycobacterium tuberculosis (Mtb), primarily involved in the lipid biosynthesis pathway, was chosen as the drug target due to the fact that humans are not capable of synthesizing biotin endogenously. The computational screening of 4.5 million compounds from the Enamine REAL database has ultimately yielded 45 high-scoring, high-affinity compounds with desirable in silico absorption, distribution, metabolism, excretion, and toxicity properties. Seventeen of the 45 compounds were subjected to bioactivity validation using the resazurin microtiter assay. Among the 4 actives, compound 7 ((Z)-N-(2-isopropoxyphenyl)-2-oxo-2-((3-(trifluoromethyl)cyclohexyl)amino)acetimidic acid) displayed inhibitory activity up to 83% at 10 μg/mL concentration against the growth of the Mtb H37Ra strain.
Collapse
Affiliation(s)
- Junie B Billones
- OVPAA-EIDR Program, "Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines", Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines; Institute of Pharmaceutical Sciences, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Maria Constancia O Carrillo
- OVPAA-EIDR Program, "Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines", Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Voltaire G Organo
- OVPAA-EIDR Program, "Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines", Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Jamie Bernadette A Sy
- OVPAA-EIDR Program, "Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines", Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Nina Abigail B Clavio
- OVPAA-EIDR Program, "Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines", Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Stephani Joy Y Macalino
- OVPAA-EIDR Program, "Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines", Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Inno A Emnacen
- OVPAA-EIDR Program, "Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines", Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Alexandra P Lee
- OVPAA-EIDR Program, "Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines", Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Paul Kenny L Ko
- OVPAA-EIDR Program, "Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines", Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Gisela P Concepcion
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
18
|
The Role of Biotin in Bacterial Physiology and Virulence: a Novel Antibiotic Target for
Mycobacterium tuberculosis. Microbiol Spectr 2016; 4. [DOI: 10.1128/microbiolspec.vmbf-0008-2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
Biotin is an essential cofactor for enzymes present in key metabolic pathways such as fatty acid biosynthesis, replenishment of the tricarboxylic acid cycle, and amino acid metabolism. Biotin is synthesized
de novo
in microorganisms, plants, and fungi, but this metabolic activity is absent in mammals, making biotin biosynthesis an attractive target for antibiotic discovery. In particular, biotin biosynthesis plays important metabolic roles as the sole source of biotin in all stages of the
Mycobacterium tuberculosis
life cycle due to the lack of a transporter for scavenging exogenous biotin. Biotin is intimately associated with lipid synthesis where the products form key components of the mycobacterial cell membrane that are critical for bacterial survival and pathogenesis. In this review we discuss the central role of biotin in bacterial physiology and highlight studies that demonstrate the importance of its biosynthesis for virulence. The structural biology of the known biotin synthetic enzymes is described alongside studies using structure-guided design, phenotypic screening, and fragment-based approaches to drug discovery as routes to new antituberculosis agents.
Collapse
|
19
|
Dai R, Geders TW, Liu F, Park SW, Schnappinger D, Aldrich CC, Finzel BC. Fragment-based exploration of binding site flexibility in Mycobacterium tuberculosis BioA. J Med Chem 2015; 58:5208-17. [PMID: 26068403 DOI: 10.1021/acs.jmedchem.5b00092] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The PLP-dependent transaminase (BioA) of Mycobacterium tuberculosis and other pathogens that catalyzes the second step of biotin biosynthesis is a now well-validated target for antibacterial development. Fragment screening by differential scanning fluorimetry has been performed to discover new chemical scaffolds and promote optimization of existing inhibitors. Calorimetry confirms binding of six molecules with high ligand efficiency. Thermodynamic data identifies which molecules bind with the enthalpy driven stabilization preferred in compounds that represent attractive starting points for future optimization. Crystallographic characterization of complexes with these molecules reveals the dynamic nature of the BioA active site. Different side chain conformational states are stabilized in response to binding by different molecules. A detailed analysis of conformational diversity in available BioA structures is presented, resulting in the identification of two states that might be targeted with molecular scaffolds incorporating well-defined conformational attributes. This new structural data can be used as part of a scaffold hopping strategy to further optimize existing inhibitors or create new small molecules with improved therapeutic potential.
Collapse
Affiliation(s)
- Ran Dai
- †Department of Medicinal Chemistry, University of Minnesota, 8-101 Weaver-Densford, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Todd W Geders
- †Department of Medicinal Chemistry, University of Minnesota, 8-101 Weaver-Densford, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Feng Liu
- †Department of Medicinal Chemistry, University of Minnesota, 8-101 Weaver-Densford, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Sae Woong Park
- ‡Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Dirk Schnappinger
- ‡Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Courtney C Aldrich
- †Department of Medicinal Chemistry, University of Minnesota, 8-101 Weaver-Densford, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Barry C Finzel
- †Department of Medicinal Chemistry, University of Minnesota, 8-101 Weaver-Densford, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Park SW, Casalena DE, Wilson DJ, Dai R, Nag PP, Liu F, Boyce JP, Bittker JA, Schreiber SL, Finzel BC, Schnappinger D, Aldrich CC. Target-based identification of whole-cell active inhibitors of biotin biosynthesis in Mycobacterium tuberculosis. CHEMISTRY & BIOLOGY 2015; 22:76-86. [PMID: 25556942 PMCID: PMC4305006 DOI: 10.1016/j.chembiol.2014.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/29/2014] [Accepted: 11/18/2014] [Indexed: 12/31/2022]
Abstract
Biotin biosynthesis is essential for survival and persistence of Mycobacterium tuberculosis (Mtb) in vivo. The aminotransferase BioA, which catalyzes the antepenultimate step in the biotin pathway, has been established as a promising target due to its vulnerability to chemical inhibition. We performed high-throughput screening (HTS) employing a fluorescence displacement assay and identified a diverse set of potent inhibitors including many diversity-oriented synthesis (DOS) scaffolds. To efficiently select only hits targeting biotin biosynthesis, we then deployed a whole-cell counterscreen in biotin-free and biotin-containing medium against wild-type Mtb and in parallel with isogenic bioA Mtb strains that possess differential levels of BioA expression. This counterscreen proved crucial to filter out compounds whose whole-cell activity was off target as well as identify hits with weak, but measurable whole-cell activity in BioA-depleted strains. Several of the most promising hits were cocrystallized with BioA to provide a framework for future structure-based drug design efforts.
Collapse
Affiliation(s)
- Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Daniel J Wilson
- Center for Drug Design, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ran Dai
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Partha P Nag
- The Broad Institute Probe Development Center, Cambridge, MA 02142, USA
| | - Feng Liu
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jim P Boyce
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-6604, USA
| | - Joshua A Bittker
- The Broad Institute Probe Development Center, Cambridge, MA 02142, USA
| | | | - Barry C Finzel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Courtney C Aldrich
- Center for Drug Design, University of Minnesota, Minneapolis, MN 55455, USA; Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
21
|
Steffen-Munsberg F, Vickers C, Kohls H, Land H, Mallin H, Nobili A, Skalden L, van den Bergh T, Joosten HJ, Berglund P, Höhne M, Bornscheuer UT. Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnol Adv 2015; 33:566-604. [PMID: 25575689 DOI: 10.1016/j.biotechadv.2014.12.012] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/25/2023]
Abstract
In this review we analyse structure/sequence-function relationships for the superfamily of PLP-dependent enzymes with special emphasis on class III transaminases. Amine transaminases are highly important for applications in biocatalysis in the synthesis of chiral amines. In addition, other enzyme activities such as racemases or decarboxylases are also discussed. The substrate scope and the ability to accept chemically different types of substrates are shown to be reflected in conserved patterns of amino acids around the active site. These findings are condensed in a sequence-function matrix, which facilitates annotation and identification of biocatalytically relevant enzymes and protein engineering thereof.
Collapse
Affiliation(s)
- Fabian Steffen-Munsberg
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany; KTH Royal Institute of Technology, School of Biotechnology, Division of Industrial Biotechnology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Clare Vickers
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Hannes Kohls
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany; Protein Biochemistry, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Henrik Land
- KTH Royal Institute of Technology, School of Biotechnology, Division of Industrial Biotechnology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Hendrik Mallin
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Alberto Nobili
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Lilly Skalden
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Tom van den Bergh
- Bio-Prodict, Nieuwe Marktstraat 54E, 6511 AA Nijmegen, The Netherlands
| | - Henk-Jan Joosten
- Bio-Prodict, Nieuwe Marktstraat 54E, 6511 AA Nijmegen, The Netherlands
| | - Per Berglund
- KTH Royal Institute of Technology, School of Biotechnology, Division of Industrial Biotechnology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Matthias Höhne
- Protein Biochemistry, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany.
| | - Uwe T Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany.
| |
Collapse
|
22
|
Structure and function of Mycobacterium smegmatis 7-keto-8-aminopelargonic acid (KAPA) synthase. Int J Biochem Cell Biol 2014; 58:71-80. [PMID: 25462832 DOI: 10.1016/j.biocel.2014.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/24/2014] [Accepted: 11/10/2014] [Indexed: 12/30/2022]
Abstract
The biotin biosynthesis pathway is an attractive target for development of novel drugs against mycobacterial pathogens, however there are as yet no suitable inhibitors that target this pathway in mycobacteria. 7-Keto-8-aminopelargonic acid synthase (KAPA synthase, BioF) is the enzyme which catalyzes the first committed step of the biotin synthesis pathway, but both its structure and function in mycobacteria remain unresolved. Here we present the crystal structure of Mycobacterium smegmatis BioF (MsBioF). The structure reveals an incomplete dimer, and the active site organization is similar to, but distinct from Escherichia coli 8-amino-7-oxononanoate synthase (EcAONS), the E. coli homologue of BioF. To investigate the influence of structural characteristics on the function of MsBioF, we deleted bioF in M. smegmatis and confirmed that BioF is required for growth in the absence of exogenous biotin. Based on structural and mutagenesis studies, we confirmed that pyridoxal 5'-phosphate (PLP) binding site residues His129, Lys235 and His200 are essential for MsBioF activity in vivo and residue Glu171 plays an important, but not essential role in MsBioF activity. The N-terminus (residues 1-37) is also essential for MsBioF activity in vivo. The structure and function of MsBioF reported here provides further insights for developing new anti-tuberculosis inhibitors aimed at the biotin synthesis pathway.
Collapse
|
23
|
Dai R, Wilson DJ, Geders TW, Aldrich CC, Finzel BC. Inhibition of Mycobacterium tuberculosis transaminase BioA by aryl hydrazines and hydrazides. Chembiochem 2014; 15:575-86. [PMID: 24482078 PMCID: PMC4020011 DOI: 10.1002/cbic.201300748] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Indexed: 01/22/2023]
Abstract
7,8-Diaminopelargonic acid synthase (BioA) of Mycobacterium tuberculosis is a recently validated target for therapeutic intervention in the treatment of tuberculosis (TB). Using biophysical fragment screening and structural characterization of compounds, we have identified a potent aryl hydrazine inhibitor of BioA that reversibly modifies the pyridoxal-5'-phosphate (PLP) cofactor, forming a stable quinonoid. Analogous hydrazides also form covalent adducts that can be observed crystallographically but are incapable of inactivating the enzyme. In the X-ray crystal structures, small molecules induce unexpected conformational remodeling in the substrate binding site. We compared these conformational changes to those induced upon binding of the substrate (7-keto-8-aminopelargonic acid), and characterized the inhibition kinetics and the X-ray crystal structures of BioA with the hydrazine compound and analogues to unveil the mechanism of this reversible covalent modification.
Collapse
Affiliation(s)
- Ran Dai
- Department of Medicinal Chemistry University of Minnesota 308 Harvard St. SE, Minneapolis, MN 55455, United States
| | - Daniel J. Wilson
- Center for Drug Design University of Minnesota Academic Health Center, U of Minnesota, MN, 55455, United States
| | - Todd W. Geders
- Department of Medicinal Chemistry University of Minnesota 308 Harvard St. SE, Minneapolis, MN 55455, United States
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry University of Minnesota 308 Harvard St. SE, Minneapolis, MN 55455, United States
| | - Barry C. Finzel
- Department of Medicinal Chemistry University of Minnesota 308 Harvard St. SE, Minneapolis, MN 55455, United States
| |
Collapse
|
24
|
Mann S, Eveleigh L, Lequin O, Ploux O. A microplate fluorescence assay for DAPA aminotransferase by detection of the vicinal diamine 7,8-diaminopelargonic acid. Anal Biochem 2013; 432:90-6. [DOI: 10.1016/j.ab.2012.09.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 09/26/2012] [Accepted: 09/29/2012] [Indexed: 10/27/2022]
|
25
|
Shi C, Aldrich CC. Design and synthesis of potential mechanism-based inhibitors of the aminotransferase BioA involved in biotin biosynthesis. J Org Chem 2012; 77:6051-8. [PMID: 22724679 DOI: 10.1021/jo3008435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BioA, a pyridoxal 5'-phosphate (PLP) dependent aminotransferase, catalyzes the second step of biotin biosynthesis, converting 7-keto-8-aminopelargonic acid (KAPA) into 7,8-diaminopelargonic acid (DAPA). Amiclenomycin (ACM) isolated from cultures of different Streptomyces strains is a potent mechanism-based inhibitor of BioA that operates via an aromatization mechanism, irreversibly labeling the PLP cofactor. However, ACM is plagued by inherent chemical stability. Herein we describe the synthesis of four inhibitors, inspired by ACM but containing an allylic amine as the chemical warhead, designed to both improve stability and operate via a complementary Michael addition-pathway upon enzymatic oxidation of the allylic amine substrate to an enimine. Acyclic analogue M-1 contains a terminal olefin as the pro-Michael acceptor. The synthesis of M-1 features an alkyne-zipper reaction and the Overman rearrangement as key synthetic operations. The cyclic analogues M-2/3/4 contain either an endocyclic or exocyclic olefin as the pro-Michael acceptor. These were all prepared using a common strategy employing DIBAL reduction of a precursor bicyclic lactam, followed by in situ Horner-Wadsworth-Emmons (HWE) olefination as the key synthetic steps.
Collapse
Affiliation(s)
- Ce Shi
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
26
|
Geders TW, Gustafson K, Finzel BC. Use of differential scanning fluorimetry to optimize the purification and crystallization of PLP-dependent enzymes. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:596-600. [PMID: 22691796 PMCID: PMC3374521 DOI: 10.1107/s1744309112012912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/24/2012] [Indexed: 11/10/2022]
Abstract
Differential scanning fluorimetry (DSF) is a practical and accessible technique that allows the assessment of multiphasic unfolding behavior resulting from subsaturating binding of ligands. Multiphasic unfolding is indicative of a heterogenous protein solution, which frequently interferes with crystallization and complicates functional characterization of proteins of interest. Along with UV-Vis spectroscopy, DSF was used to guide purification and crystallization improvements for the pyridoxal 5'-phosphate (PLP) dependent transaminase BioA from Mycobacterium tuberculosis. The incompatibility of the primary amine-containing buffer 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris) and PLP was identified as a significant contributor to heterogeneity. It is likely that the utility of DSF for ligand-binding assessment is not limited to the cofactor PLP but will be applicable to a variety of ligand-dependent enzymes.
Collapse
Affiliation(s)
- Todd W. Geders
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kathryn Gustafson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Barry C. Finzel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
Chen LC, Yeh HY, Yeh CY, Arias CR, Soo VW. Identifying co-targets to fight drug resistance based on a random walk model. BMC SYSTEMS BIOLOGY 2012; 6:5. [PMID: 22257493 PMCID: PMC3296574 DOI: 10.1186/1752-0509-6-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/19/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Drug resistance has now posed more severe and emergent threats to human health and infectious disease treatment. However, wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Our approach apply a heuristic search algorithm in order to extract active network under drug treatment and use a random walk model to identify potential co-targets for effective antibacterial drugs. RESULTS We use interactome network of Mycobacterium tuberculosis and gene expression data which are treated with two kinds of antibiotic, Isoniazid and Ethionamide as our test data. Our analysis shows that the active drug-treated networks are associated with the trigger of fatty acid metabolism and synthesis and nicotinamide adenine dinucleotide (NADH)-related processes and those results are consistent with the recent experimental findings. Efflux pumps processes appear to be the major mechanisms of resistance but SOS response is significantly up-regulation under Isoniazid treatment. We also successfully identify the potential co-targets with literature confirmed evidences which are related to the glycine-rich membrane, adenosine triphosphate energy and cell wall processes. CONCLUSIONS With gene expression and interactome data supported, our study points out possible pathways leading to the emergence of drug resistance under drug treatment. We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systematic and global analysis of the bacterial regulation network. Our study also discovers the potential co-targets with good properties in biological and graph theory aspects to overcome the problem of drug resistance.
Collapse
Affiliation(s)
- Liang-Chun Chen
- Institute of Information Systems and Applications, National Tsing Hua University, HsinChu 300, Taiwan
| | - Hsiang-Yuan Yeh
- Department of Computer Science, National Tsing Hua University, HsinChu 300, Taiwan
| | - Cheng-Yu Yeh
- Institute of Information Systems and Applications, National Tsing Hua University, HsinChu 300, Taiwan
| | - Carlos Roberto Arias
- Institute of Information Systems and Applications, National Tsing Hua University, HsinChu 300, Taiwan
| | - Von-Wun Soo
- Department of Computer Science, National Tsing Hua University, HsinChu 300, Taiwan
- Institute of Information Systems and Applications, National Tsing Hua University, HsinChu 300, Taiwan
| |
Collapse
|
28
|
Shi C, Geders TW, Park SW, Wilson DJ, Boshoff HI, Orisadipe A, Barry CE, Schnappinger D, Finzel BC, Aldrich CC. Mechanism-based inactivation by aromatization of the transaminase BioA involved in biotin biosynthesis in Mycobaterium tuberculosis. J Am Chem Soc 2011; 133:18194-201. [PMID: 21988601 PMCID: PMC3222238 DOI: 10.1021/ja204036t] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BioA catalyzes the second step of biotin biosynthesis, and this enzyme represents a potential target to develop new antitubercular agents. Herein we report the design, synthesis, and biochemical characterization of a mechanism-based inhibitor (1) featuring a 3,6-dihydropyrid-2-one heterocycle that covalently modifies the pyridoxal 5'-phosphate (PLP) cofactor of BioA through aromatization. The structure of the PLP adduct was confirmed by MS/MS and X-ray crystallography at 1.94 Å resolution. Inactivation of BioA by 1 was time- and concentration-dependent and protected by substrate. We used a conditional knock-down mutant of M. tuberculosis to demonstrate the antitubercular activity of 1 correlated with BioA expression, and these results provide support for the designed mechanism of action.
Collapse
Affiliation(s)
- Ce Shi
- Center for Drug Design, Academic Health Center, University of Minnesota, MN, 55455, United States
| | - Todd W. Geders
- Department of Medicinal Chemistry, University of Minnesota, MN, 55455, United States
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, United States
| | - Daniel J. Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota, MN, 55455, United States
| | - Helena I. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, United States
| | - Abayomi Orisadipe
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, United States
| | - Barry C. Finzel
- Department of Medicinal Chemistry, University of Minnesota, MN, 55455, United States
| | - Courtney C. Aldrich
- Center for Drug Design, Academic Health Center, University of Minnesota, MN, 55455, United States
| |
Collapse
|
29
|
Abstract
When intracelluar pathogens enter the host macrophages where in addition to oxidative and antibiotic mechanisms of antimicrobial activity, nutrients are deprived. Human pathogen Mycobacterium tuberculosis is one of macrophage parasitisms, which can replicate and persist for decades in dormancy state in virulent environments. It is very successful in escaping the killing mechanisms of macrophage. Molybdenum (Mo) enzymes involve in the global carbon, sulfur, and nitrogen cycles by catalyzing important redox reactions. There are several Mo enzymes in mycobacteria and they exert several important physiological functions, such as dormancy regulation, the metabolism of energy sources, and nitrogen source. Pterin-based Mo cofactor (Moco) is the common cofactor of the Mo enzymes in mycobacteria but the cofactor biosynthesis is nearly an untapped area. The present article discusses the physiological function of Mo enzymes and the structural feature of the genes coding for Moco biosynthesis enzymes in mycobacteria.
Collapse
Affiliation(s)
- Tingyu Shi
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | | |
Collapse
|
30
|
Woong Park S, Klotzsche M, Wilson DJ, Boshoff HI, Eoh H, Manjunatha U, Blumenthal A, Rhee K, Barry CE, Aldrich CC, Ehrt S, Schnappinger D. Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLoS Pathog 2011; 7:e1002264. [PMID: 21980288 PMCID: PMC3182931 DOI: 10.1371/journal.ppat.1002264] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 07/28/2011] [Indexed: 12/04/2022] Open
Abstract
In the search for new drug targets, we evaluated the biotin synthetic pathway of Mycobacterium tuberculosis (Mtb) and constructed an Mtb mutant lacking the biotin biosynthetic enzyme 7,8-diaminopelargonic acid synthase, BioA. In biotin-free synthetic media, ΔbioA did not produce wild-type levels of biotinylated proteins, and therefore did not grow and lost viability. ΔbioA was also unable to establish infection in mice. Conditionally-regulated knockdown strains of Mtb similarly exhibited impaired bacterial growth and viability in vitro and in mice, irrespective of the timing of transcriptional silencing. Biochemical studies further showed that BioA activity has to be reduced by approximately 99% to prevent growth. These studies thus establish that de novo biotin synthesis is essential for Mtb to establish and maintain a chronic infection in a murine model of TB. Moreover, these studies provide an experimental strategy to systematically rank the in vivo value of potential drug targets in Mtb and other pathogens. We evaluated the biotin synthetic pathway of Mycobacterium tuberculosis (Mtb) as a new drug target by first generating an Mtb deletion mutant, ΔbioA, in which the biotin biosynthetic enzyme 7,8-diaminopelargonic acid synthase (BioA) has been inactivated. This mutant grew in the presence of biotin or des-thiobiotin, but not with an intermediate of the biotin biosynthesis pathway that requires BioA to be converted into biotin. Without exogenous biotin or des-thiobiotin, ΔbioA, was unable to produce biotinylated proteins, which are required for the biosynthesis of fatty acids, and thus died in biotin-free media. Using a regulatable promoter and different ribosome binding sequences we next constructed tightly controlled TetON mutants, in which expression of BioA could be induced with tetracyclines, but was inhibited in their absence. Characterization of these mutants during infections demonstrated that de novo biotin synthesis is not only required to establish infections but also to maintain bacterial persistence. Inhibition of BioA or other enzymes of the biotin biosynthesis pathways could thus be used to kill Mtb during both acute and chronic infections. Biochemical and immunological analyses of different Mtb mutants indicate that drugs targeting BioA would have to inactive approximately 99% of its activity to be effective.
Collapse
Affiliation(s)
- Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Marcus Klotzsche
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Daniel J. Wilson
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Helena I. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Hyungjin Eoh
- Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | | | - Antje Blumenthal
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Clifton E. Barry
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Courtney C. Aldrich
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (SE); (DS)
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (SE); (DS)
| |
Collapse
|
31
|
Lin S, Cronan JE. Closing in on complete pathways of biotin biosynthesis. MOLECULAR BIOSYSTEMS 2011; 7:1811-21. [PMID: 21437340 DOI: 10.1039/c1mb05022b] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Biotin is an enzyme cofactor indispensable to metabolic fixation of carbon dioxide in all three domains of life. Although the catalytic and physiological roles of biotin have been well characterized, the biosynthesis of biotin remains to be fully elucidated. Studies in microbes suggest a two-stage biosynthetic pathway in which a pimelate moiety is synthesized and used to begin assembly of the biotin bicyclic ring structure. The enzymes involved in the bicyclic ring assembly have been studied extensively. In contrast the synthesis of pimelate, a seven carbon α,ω-dicarboxylate, has long been an enigma. Support for two different routes of pimelate synthesis has recently been obtained in Escherichia coli and Bacillus subtilis. The E. coli BioC-BioH pathway employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes whereas the B. subtilis BioI-BioW pathway utilizes oxidative cleavage of fatty acyl chains. Both pathways produce the pimelate thioester precursor essential for the first step in assembly of the fused rings of biotin. The enzymatic mechanisms and biochemical strategies of these pimelate synthesis models will be discussed in this review.
Collapse
Affiliation(s)
- Steven Lin
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave, Urbana, Illinois 61801, USA
| | | |
Collapse
|
32
|
A continuous fluorescence displacement assay for BioA: an enzyme involved in biotin biosynthesis. Anal Biochem 2011; 416:27-38. [PMID: 21621502 DOI: 10.1016/j.ab.2011.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/30/2011] [Accepted: 05/02/2011] [Indexed: 11/23/2022]
Abstract
Cofactor biosynthetic pathways represent a rich source of potential antibiotic targets. The second step in biotin biosynthesis is performed by BioA, a pyridoxal 5'-phosphate (PLP)-dependent enzyme. This enzyme has been confirmed as a candidate target in Mycobacterium tuberculosis; however, the current bioassay used to measure BioA activity is cumbersome and low throughput. Here we describe the design, development, and optimization of a continuous coupled fluorescence displacement assay to measure BioA activity. In this coupled assay, BioD converts the product of the BioA-catalyzed reaction into dethiobiotin, which is subsequently detected by displacement of a fluorescently labeled dethiobiotin probe from streptavidin. The assay was further adapted to a high-throughput screening format and validated against the LOPAC(1280) library.
Collapse
|
33
|
Yu J, Niu C, Wang D, Li M, Teo W, Sun G, Wang J, Liu J, Gao Q. MMAR_2770, a new enzyme involved in biotin biosynthesis, is essential for the growth of Mycobacterium marinum in macrophages and zebrafish. Microbes Infect 2011; 13:33-41. [DOI: 10.1016/j.micinf.2010.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/27/2010] [Accepted: 08/31/2010] [Indexed: 11/30/2022]
|
34
|
Mann S, Ploux O. Pyridoxal-5'-phosphate-dependent enzymes involved in biotin biosynthesis: structure, reaction mechanism and inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1459-66. [PMID: 21182990 DOI: 10.1016/j.bbapap.2010.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/04/2010] [Accepted: 12/10/2010] [Indexed: 11/26/2022]
Abstract
The four last steps of biotin biosynthesis, starting from pimeloyl-CoA, are conserved among all the biotin-producing microorganisms. Two enzymes of this pathway, the 8-amino-7-oxononanoate synthase (AONS) and the 7,8-diaminopelargonic acid aminotransferase (DAPA AT) are dependent on pyridoxal-5'-phosphate (PLP). This review summarizes our current understanding of the structure, reaction mechanism and inhibition on these two interesting enzymes. Mechanistic studies as well as the determination of the crystal structure of AONS have revealed a complex mechanism involving an acylation with inversion of configuration and a decarboxylation with retention of configuration. This reaction mechanism is shared by the homologous 5-aminolevulinate synthase and serine palmitoyltransferase. While the reaction catalyzed by DAPA AT is a classical PLP-dependent transamination, the inactivation of this enzyme by amiclenomycin, a natural antibiotic that is active against Mycobacterium tuberculosis, involves the irreversible formation of an adduct between PLP and amiclenomycin. Mechanistic and structural studies allowed the complete description of this unique inactivation mechanism. Several potent inhibitors of these two PLP-dependent enzymes have been prepared and might be useful as starting points for the design of herbicides or antibiotics. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.
Collapse
Affiliation(s)
- Stéphane Mann
- Laboratoire Charles Friedel, ENSCP Chimie ParisTech, UMR CNRS 7223, 11 rue Pierre et Marie Curie, F-75231 Paris Cedex 05, France
| | | |
Collapse
|
35
|
Dey S, Lane JM, Lee RE, Rubin EJ, Sacchettini JC. Structural characterization of the Mycobacterium tuberculosis biotin biosynthesis enzymes 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase . Biochemistry 2010; 49:6746-60. [PMID: 20565114 DOI: 10.1021/bi902097j] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis (Mtb) depends on biotin synthesis for survival during infection. In the absence of biotin, disruption of the biotin biosynthesis pathway results in cell death rather than growth arrest, an unusual phenotype for an Mtb auxotroph. Humans lack the enzymes for biotin production, making the proteins of this essential Mtb pathway promising drug targets. To this end, we have determined the crystal structures of the second and third enzymes of the Mtb biotin biosynthetic pathway, 7,8-diaminopelargonic acid synthase (DAPAS) and dethiobiotin synthetase (DTBS), at respective resolutions of 2.2 and 1.85 A. Superimposition of the DAPAS structures bound either to the SAM analogue sinefungin or to 7-keto-8-aminopelargonic acid (KAPA) allowed us to map the putative binding site for the substrates and to propose a mechanism by which the enzyme accommodates their disparate structures. Comparison of the DTBS structures bound to the substrate 7,8-diaminopelargonic acid (DAPA) or to ADP and the product dethiobiotin (DTB) permitted derivation of an enzyme mechanism. There are significant differences between the Mtb enzymes and those of other organisms; the Bacillus subtilis DAPAS, presented here at a high resolution of 2.2 A, has active site variations and the Escherichia coli and Helicobacter pylori DTBS have alterations in their overall folds. We have begun to exploit the unique characteristics of the Mtb structures to design specific inhibitors against the biotin biosynthesis pathway in Mtb.
Collapse
Affiliation(s)
- Sanghamitra Dey
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
36
|
Prathipati P, Ma NL, Manjunatha UH, Bender A. Fishing the Target of Antitubercular Compounds: In Silico Target Deconvolution Model Development and Validation. J Proteome Res 2009; 8:2788-98. [DOI: 10.1021/pr8010843] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Philip Prathipati
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, 138670, Singapore, and Lead Discovery Informatics, Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Ngai Ling Ma
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, 138670, Singapore, and Lead Discovery Informatics, Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Ujjini H. Manjunatha
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, 138670, Singapore, and Lead Discovery Informatics, Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Andreas Bender
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, 138670, Singapore, and Lead Discovery Informatics, Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
37
|
Inhibition of 7,8-diaminopelargonic acid aminotransferase from Mycobacterium tuberculosis by chiral and achiral anologs of its substrate: biological implications. Biochimie 2009; 91:826-34. [PMID: 19345718 DOI: 10.1016/j.biochi.2009.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 03/25/2009] [Indexed: 11/20/2022]
Abstract
7,8-Diaminopelargonic acid aminotransferase (DAPA AT), a potential drug target in Mycobacterium tuberculosis, transforms 8-amino-7-oxononanoic acid (KAPA) into DAPA. We have designed an analytical method to measure the enantiomeric excess of KAPA, based on the derivatization of its amine function, by ortho-phtalaldehyde and N-acetyl-l-cysteine, followed by high pressure liquid chromatography separation. Using this methodology and enantiopure samples of KAPA it appeared that racemization of KAPA occurs rapidly (half-lives from 1 to 8 h) not only in 4 M HCl but more importantly in the usual pH range, from 7 to 9. Furthermore, we showed that racemic KAPA, and not enantiopure KAPA, was used in all previous studies. The only valid enantioselective synthesis of KAPA is that reported by Lucet et al. (1996) Tetrahedron: Asymmetry 7, 985-988. KAPA is produced as a pure (S)-enantiomer by KAPA synthase and by microbial production and DAPA AT only uses (S)-KAPA as substrate. However, (R)-KAPA is an inhibitor of this enzyme. It binds to the pyridoxal 5'-phosphate form (K(i1) = 5.9 +/- 0.2 microM) and to the pyridoxamine 5'-phosphate form (K(i2) = 1.7 +/- 0.2 microM) of M. tuberculosis DAPA AT. Molecular modeling showed that (R)-KAPA forms specific hydrogen bonds with T309 and the phosphate group of the cofactor of DAPA AT. Desmethyl-KAPA (8-amino-7-oxooctanoic acid), an achiral analog of KAPA, is also a potent inhibitor of M. tuberculosis DAPA AT. This molecule binds to the enzyme in a similar way than (R)-KAPA with the following constants: K(i1) = 4.2 +/- 0.2 microM, and K(i2) = 0.9 +/- 0.2 microM. These findings pave the way to the design of new antimycobacterial drugs.
Collapse
|