1
|
De la Fuente IM, Cortes JM, Malaina I, Pérez-Yarza G, Martinez L, López JI, Fedetz M, Carrasco-Pujante J. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:167-191. [PMID: 39805422 DOI: 10.1016/j.pbiomolbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment. Next, we approach the biochemical self-organization, which is central to understand the emergency of metabolic rhythms, circadian oscillations, and spatial traveling waves. Such a complex behavior is also fundamental to understand the temporal compartmentalization of the cellular metabolism and the dynamic regulation of many physiological activities. Numerous examples of biochemical self-organization are considered here, which show that practically all the main physiological processes in the cell exhibit this type of dynamic molecular organization. Finally, we focus on the biochemical self-assembly which, at a primary level of organization, is a basic but important mechanism for the order in the cell allowing biomolecules in a disorganized state to form complex aggregates necessary for a plethora of essential structures and physiological functions. In total, more than 500 references have been compiled in this review. Due to these main sources of order, systemic functional structures emerge in the cell, driving the metabolic functionality towards the biological complexity.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain; Biobizkaia Health Research Institute, Barakaldo, 48903, Spain; IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Luis Martinez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
2
|
Stern M, Istrate N, Mazzucato L. A reservoir of timescales emerges in recurrent circuits with heterogeneous neural assemblies. eLife 2023; 12:e86552. [PMID: 38084779 PMCID: PMC10810607 DOI: 10.7554/elife.86552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024] Open
Abstract
The temporal activity of many physical and biological systems, from complex networks to neural circuits, exhibits fluctuations simultaneously varying over a large range of timescales. Long-tailed distributions of intrinsic timescales have been observed across neurons simultaneously recorded within the same cortical circuit. The mechanisms leading to this striking temporal heterogeneity are yet unknown. Here, we show that neural circuits, endowed with heterogeneous neural assemblies of different sizes, naturally generate multiple timescales of activity spanning several orders of magnitude. We develop an analytical theory using rate networks, supported by simulations of spiking networks with cell-type specific connectivity, to explain how neural timescales depend on assembly size and show that our model can naturally explain the long-tailed timescale distribution observed in the awake primate cortex. When driving recurrent networks of heterogeneous neural assemblies by a time-dependent broadband input, we found that large and small assemblies preferentially entrain slow and fast spectral components of the input, respectively. Our results suggest that heterogeneous assemblies can provide a biologically plausible mechanism for neural circuits to demix complex temporal input signals by transforming temporal into spatial neural codes via frequency-selective neural assemblies.
Collapse
Affiliation(s)
- Merav Stern
- Institute of Neuroscience, University of OregonEugeneUnited States
- Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicolae Istrate
- Institute of Neuroscience, University of OregonEugeneUnited States
- Departments of Physics, University of OregonEugeneUnited States
| | - Luca Mazzucato
- Institute of Neuroscience, University of OregonEugeneUnited States
- Departments of Physics, University of OregonEugeneUnited States
- Mathematics and Biology, University of OregonEugeneUnited States
| |
Collapse
|
3
|
Kembro JM, Flesia AG, Nieto PS, Caliva JM, Lloyd D, Cortassa S, Aon MA. A dynamically coherent pattern of rhythms that matches between distant species across the evolutionary scale. Sci Rep 2023; 13:5326. [PMID: 37005423 PMCID: PMC10067965 DOI: 10.1038/s41598-023-32286-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
We address the temporal organization of circadian and ultradian rhythms, crucial for understanding biological timekeeping in behavior, physiology, metabolism, and alignment with geophysical time. Using a newly developed five-steps wavelet-based approach to analyze high-resolution time series of metabolism in yeast cultures and spontaneous movement, metabolism, and feeding behavior in mice, rats, and quails, we describe a dynamically coherent pattern of rhythms spanning over a broad range of temporal scales (hours to minutes). The dynamic pattern found shares key features among the four, evolutionary distant, species analyzed. Specifically, a branching appearance given by splitting periods from 24 h into 12 h, 8 h and below in mammalian and avian species, or from 14 h down to 0.07 h in yeast. Scale-free fluctuations with long-range correlations prevail below ~ 4 h. Synthetic time series modeling support a scenario of coexisting behavioral rhythms, with circadian and ultradian rhythms at the center of the emergent pattern observed.
Collapse
Affiliation(s)
- J M Kembro
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Universidad Nacional de Córdoba, Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina
| | - A G Flesia
- Facultad de Matemática, Astronomía, Física y Computación, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigación y Estudios de La Matemática (CIEM, CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - P S Nieto
- Facultad de Matemática, Astronomía, Física y Computación, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Física Enrique Gaviola (IFEG, CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - J M Caliva
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - D Lloyd
- Schools of Bioscience and Engineering, Cardiff University, Cardiff, Wales, UK
| | - S Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, USA
| | - M A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, USA.
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
4
|
Mazzucato L. Neural mechanisms underlying the temporal organization of naturalistic animal behavior. eLife 2022; 11:e76577. [PMID: 35792884 PMCID: PMC9259028 DOI: 10.7554/elife.76577] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
Naturalistic animal behavior exhibits a strikingly complex organization in the temporal domain, with variability arising from at least three sources: hierarchical, contextual, and stochastic. What neural mechanisms and computational principles underlie such intricate temporal features? In this review, we provide a critical assessment of the existing behavioral and neurophysiological evidence for these sources of temporal variability in naturalistic behavior. Recent research converges on an emergent mechanistic theory of temporal variability based on attractor neural networks and metastable dynamics, arising via coordinated interactions between mesoscopic neural circuits. We highlight the crucial role played by structural heterogeneities as well as noise from mesoscopic feedback loops in regulating flexible behavior. We assess the shortcomings and missing links in the current theoretical and experimental literature and propose new directions of investigation to fill these gaps.
Collapse
Affiliation(s)
- Luca Mazzucato
- Institute of Neuroscience, Departments of Biology, Mathematics and Physics, University of OregonEugeneUnited States
| |
Collapse
|
5
|
Ciesielski A, Grzywacz R. Dynamic bifurcations in continuous process of bioethanol production under aerobic conditions using Saccharomyces cerevisiae. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Gilbert K, Hammond KD, Brodsky VY, Lloyd D. An appreciation of the prescience of Don Gilbert (1930-2011): master of the theory and experimental unravelling of biochemical and cellular oscillatory dynamics. Cell Biol Int 2020; 44:1283-1298. [PMID: 32162760 DOI: 10.1002/cbin.11341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/08/2020] [Indexed: 11/08/2022]
Abstract
We review Don Gilbert's pioneering seminal contributions that both detailed the mathematical principles and the experimental demonstration of several of the key dynamic characteristics of life. Long before it became evident to the wider biochemical community, Gilbert proposed that cellular growth and replication necessitate autodynamic occurrence of cycles of oscillations that initiate, coordinate and terminate the processes of growth, during which all components are duplicated and become spatially re-organised in the progeny. Initiation and suppression of replication exhibit switch-like characteristics, that is, bifurcations in the values of parameters that separate static and autodynamic behaviour. His limit cycle solutions present models developed in a series of papers reported between 1974 and 1984, and these showed that most or even all of the major facets of the cell division cycle could be accommodated. That the cell division cycle may be timed by a multiple of shorter period (ultradian) rhythms, gave further credence to the central importance of oscillatory phenomena and homeodynamics as evident on multiple time scales (seconds to hours). Further application of the concepts inherent in limit cycle operation as hypothesised by Gilbert more than 50 years ago are now validated as being applicable to oscillatory transcript, metabolite and enzyme levels, cellular differentiation, senescence, cancerous states and cell death. Now, we reiterate especially for students and young colleagues, that these early achievements were even more exceptional, as his own lifetime's work on modelling was continued with experimental work in parallel with his predictions of the major current enterprises of biological research.
Collapse
Affiliation(s)
- Kay Gilbert
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Park Place, Cardiff, CF10 3AT, Wales, UK
| | | | - Vsevolod Y Brodsky
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 117808, Russia
| | - David Lloyd
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Park Place, Cardiff, CF10 3AT, Wales, UK
| |
Collapse
|
7
|
Arata Y, Takagi H. Quantitative Studies for Cell-Division Cycle Control. Front Physiol 2019; 10:1022. [PMID: 31496950 PMCID: PMC6713215 DOI: 10.3389/fphys.2019.01022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
The cell-division cycle (CDC) is driven by cyclin-dependent kinases (CDKs). Mathematical models based on molecular networks, as revealed by molecular and genetic studies, have reproduced the oscillatory behavior of CDK activity. Thus, one basic system for representing the CDC is a biochemical oscillator (CDK oscillator). However, genetically clonal cells divide with marked variability in their total duration of a single CDC round, exhibiting non-Gaussian statistical distributions. Therefore, the CDK oscillator model does not account for the statistical nature of cell-cycle control. Herein, we review quantitative studies of the statistical properties of the CDC. Over the past 70 years, studies have shown that the CDC is driven by a cluster of molecular oscillators. The CDK oscillator is coupled to transcriptional and mitochondrial metabolic oscillators, which cause deterministic chaotic dynamics for the CDC. Recent studies in animal embryos have raised the possibility that the dynamics of molecular oscillators underlying CDC control are affected by allometric volume scaling among the cellular compartments. Considering these studies, we discuss the idea that a cluster of molecular oscillators embedded in different cellular compartments coordinates cellular physiology and geometry for successful cell divisions.
Collapse
Affiliation(s)
| | - Hiroaki Takagi
- Department of Physics, School of Medicine, Nara Medical University, Nara, Japan
| |
Collapse
|
8
|
Electromagnetic Fields, Genomic Instability and Cancer: A Systems Biological View. Genes (Basel) 2019; 10:genes10060479. [PMID: 31242701 PMCID: PMC6627294 DOI: 10.3390/genes10060479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022] Open
Abstract
This review discusses the use of systems biology in understanding the biological effects of electromagnetic fields, with particular focus on induction of genomic instability and cancer. We introduce basic concepts of the dynamical systems theory such as the state space and attractors and the use of these concepts in understanding the behavior of complex biological systems. We then discuss genomic instability in the framework of the dynamical systems theory, and describe the hypothesis that environmentally induced genomic instability corresponds to abnormal attractor states; large enough environmental perturbations can force the biological system to leave normal evolutionarily optimized attractors (corresponding to normal cell phenotypes) and migrate to less stable variant attractors. We discuss experimental approaches that can be coupled with theoretical systems biology such as testable predictions, derived from the theory and experimental methods, that can be used for measuring the state of the complex biological system. We also review potentially informative studies and make recommendations for further studies.
Collapse
|
9
|
Lloyd D, Murray DB, Aon MA, Cortassa S, Roussel MR, Beckmann M, Poole RK. Temporal metabolic partitioning of the yeast and protist cellular networks: the cell is a global scale-invariant (fractal or self-similar) multioscillator. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-17. [PMID: 30516036 PMCID: PMC6992908 DOI: 10.1117/1.jbo.24.5.051404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Britton Chance, electronics expert when a teenager, became an enthusiastic student of biological oscillations, passing on this enthusiasm to many students and colleagues, including one of us (DL). This historical essay traces BC's influence through the accumulated work of DL to DL's many collaborators. The overall temporal organization of mass-energy, information, and signaling networks in yeast in self-synchronized continuous cultures represents, until now, the most characterized example of in vivo elucidation of time structure. Continuous online monitoring of dissolved gases by direct measurement (membrane-inlet mass spectrometry, together with NAD(P)H and flavin fluorescence) gives strain-specific dynamic information from timescales of minutes to hours as does two-photon imaging. The predominantly oscillatory behavior of network components becomes evident, with spontaneously synchronized cellular respiration cycles between discrete periods of increased oxygen consumption (oxidative phase) and decreased oxygen consumption (reductive phase). This temperature-compensated ultradian clock provides coordination, linking temporally partitioned functions by direct feedback loops between the energetic and redox state of the cell and its growing ultrastructure. Multioscillatory outputs in dissolved gases with 13 h, 40 min, and 4 min periods gave statistical self-similarity in power spectral and relative dispersional analyses: i.e., complex nonlinear (chaotic) behavior and a functional scale-free (fractal) network operating simultaneously over several timescales.
Collapse
Affiliation(s)
- David Lloyd
- Cardiff University, School of Biosciences, Cardiff, Wales, United Kingdom
| | - Douglas B. Murray
- Keio University, Institute for Advanced Biosciences, Tsuruoka, Japan
| | - Miguel A. Aon
- National Institutes of Health, National Institute on Aging, Laboratory of Cardiovascular Science, Baltimore, Maryland, United States
| | - Sonia Cortassa
- National Institutes of Health, National Institute on Aging, Laboratory of Cardiovascular Science, Baltimore, Maryland, United States
| | - Marc R. Roussel
- University of Lethbridge, Alberta RNA Research and Training Institute and Department of Chemistry and Biochemistry, Alberta, Canada
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural, Sciences, Aberystwyth, Wales, United Kingdom
| | - Robert K. Poole
- University of Sheffield, Department of Molecular Biology and Biotechnology, Firth Court, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
10
|
Kembro JM, Cortassa S, Lloyd D, Sollott SJ, Aon MA. Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability. Sci Rep 2018; 8:15422. [PMID: 30337561 PMCID: PMC6194025 DOI: 10.1038/s41598-018-33582-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022] Open
Abstract
Mitochondria serve multiple key cellular functions, including energy generation, redox balance, and regulation of apoptotic cell death, thus making a major impact on healthy and diseased states. Increasingly recognized is that biological network stability/instability can play critical roles in determining health and disease. We report for the first-time mitochondrial chaotic dynamics, characterizing the conditions leading from stability to chaos in this organelle. Using an experimentally validated computational model of mitochondrial function, we show that complex oscillatory dynamics in key metabolic variables, arising at the “edge” between fully functional and pathological behavior, sets the stage for chaos. Under these conditions, a mild, regular sinusoidal redox forcing perturbation triggers chaotic dynamics with main signature traits such as sensitivity to initial conditions, positive Lyapunov exponents, and strange attractors. At the “edge” mitochondrial chaos is exquisitely sensitive to the antioxidant capacity of matrix Mn superoxide dismutase as well as to the amplitude and frequency of the redox perturbation. These results have potential implications both for mitochondrial signaling determining health maintenance, and pathological transformation, including abnormal cardiac rhythms.
Collapse
Affiliation(s)
- Jackelyn M Kembro
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT-CONICET), and Instituto de Ciencia y Tecnología de los Alimentos, Cátedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Velez Sarsfield 1611, Córdoba, X5000HUA, Cordoba, Argentina
| | - Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH. 251 Bayview Boulevard, Baltimore, 21224, MD, USA
| | - David Lloyd
- School of Biosciences, Cardiff University, Main Building, Museum Avenue, Cardiff, CF10 3AT, Wales, UK
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH. 251 Bayview Boulevard, Baltimore, 21224, MD, USA
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH. 251 Bayview Boulevard, Baltimore, 21224, MD, USA.
| |
Collapse
|
11
|
Kurz FT, Aon MA, O'Rourke B, Armoundas AA. Functional Implications of Cardiac Mitochondria Clustering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:1-24. [PMID: 28551779 PMCID: PMC7003720 DOI: 10.1007/978-3-319-55330-6_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The spatio-temporal organization of mitochondria in cardiac myocytes facilitates myocyte-wide, cluster-bound, mitochondrial inner membrane potential oscillatory depolarizations, commonly triggered by metabolic or oxidative stressors. Local intermitochondrial coupling can be mediated by reactive oxygen species (ROS) that activate inner membrane pores to initiate a ROS-induced-ROS-release process that produces synchronized limit cycle oscillations of mitochondrial clusters within the whole mitochondrial network. The network's dynamic organization, structure and function can be assessed by quantifying dynamic local coupling constants and dynamic functional clustering coefficients, both providing information about the network's response to external stimuli. In addition to its special organization, the mitochondrial network of cardiac myocytes exhibits substrate-sensitive coupling constants and clustering coefficients. The myocyte's ability to form functional clusters of synchronously oscillating mitochondria is sensitive to conditions such as substrate availability (e.g., glucose, pyruvate, β-hydroxybutyrate), antioxidant status, respiratory chain activity, or history of oxidative challenge (e.g., ischemia-reperfusion). This underscores the relevance of quantitative methods to characterize the network's functional status as a way to assess the myocyte's resilience to pathological stressors.
Collapse
Affiliation(s)
- Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
- Massachusetts General Hospital, Cardiovascular Research Center, Harvard Medical School, Charlestown, MA, USA.
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Antonis A Armoundas
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
12
|
Chen TR, Hsu CF, Chen CL, Witek HA, Urban PL. Nucleotide-Dependent Bioautocatalytic Timer Reaction. ACS Synth Biol 2016; 5:962-8. [PMID: 27231752 DOI: 10.1021/acssynbio.6b00116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a biochemical timer composed of three biocatalytic reactions involving three types of adenylate nucleotides: adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP). The timer is triggered by a small amount of ATP or ADP. An abrupt increase in the ATP concentration (following numerous amplification cycles) leads to a sudden increase of luminescence from the reaction mixture. The time point when the luminescence appears is found to be a function of the initial concentration of the triggering nucleotide (5.0 × 10(-8)-1.0 × 10(-6) M), even in the presence of a complex biological matrix. The mechanism of the observed dependence of the time of luminescence increase on the concentration has been confirmed with simple kinetic models. Due to the biocompatibility of the proposed trienzymatic reaction scheme (sensitivity to common nucleotides and occurrence in a neutral pH aqueous environment), the scheme can be used in bioengineered systems that require modulation of the response time (light emission) by concentration.
Collapse
Affiliation(s)
- Ting-Ru Chen
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
| | - Ching-Fong Hsu
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
| | - Chih-Lin Chen
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
| | - Henryk A. Witek
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
| | - Pawel L. Urban
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
| |
Collapse
|
13
|
Kurz FT, Kembro JM, Flesia AG, Armoundas AA, Cortassa S, Aon MA, Lloyd D. Network dynamics: quantitative analysis of complex behavior in metabolism, organelles, and cells, from experiments to models and back. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 9. [PMID: 27599643 DOI: 10.1002/wsbm.1352] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022]
Abstract
Advancing from two core traits of biological systems: multilevel network organization and nonlinearity, we review a host of novel and readily available techniques to explore and analyze their complex dynamic behavior within the framework of experimental-computational synergy. In the context of concrete biological examples, analytical methods such as wavelet, power spectra, and metabolomics-fluxomics analyses, are presented, discussed, and their strengths and limitations highlighted. Further shown is how time series from stationary and nonstationary biological variables and signals, such as membrane potential, high-throughput metabolomics, O2 and CO2 levels, bird locomotion, at the molecular, (sub)cellular, tissue, and whole organ and animal levels, can reveal important information on the properties of the underlying biological networks. Systems biology-inspired computational methods start to pave the way for addressing the integrated functional dynamics of metabolic, organelle and organ networks. As our capacity to unravel the control and regulatory properties of these networks and their dynamics under normal or pathological conditions broadens, so is our ability to address endogenous rhythms and clocks to improve health-span in human aging, and to manage complex metabolic disorders, neurodegeneration, and cancer. WIREs Syst Biol Med 2017, 9:e1352. doi: 10.1002/wsbm.1352 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Felix T Kurz
- Massachusetts General Hospital, Cardiovascular Research Center, Harvard Medical School, Charlestown, MA, USA.,Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jackelyn M Kembro
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT-CONICET), and Instituto de Ciencia y Tecnología de los Alimentos, Cátedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana G Flesia
- Centro de Investigaciones y Estudios de Matemática (CIEM-CONICET), and Facultad de Matemática, Astronomía y Física FAMAF, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Antonis A Armoundas
- Massachusetts General Hospital, Cardiovascular Research Center, Harvard Medical School, Charlestown, MA, USA
| | - Sonia Cortassa
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Miguel A Aon
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David Lloyd
- Cardiff University School of Biosciences, Cardiff, UK
| |
Collapse
|
14
|
Abstract
Fundamental understanding of life depends on both structural and functional details at the molecular level. Continually improving means of measurement of spatial and dynamic properties of biochemical constituents and cellular components complement studies of whole organisms. Integration of the interaction of components to provide coherent behaviour depends on highly elaborate orchestration in space and time. Whereas spatial information on a nanometre resolution is available, and fast dynamic analyses provide biochemical reaction rates measured in nanoseconds, functional coordination of the system requires integrated time dependence. While we are well aware of the special complexity of living organisms, appreciation of temporal scales and their organisation in time is still fragmentary. This article summarises current developments in research on biological time on scales from nanoseconds to years, the networks that connect different time domains and the oscillations, rhythms and biological clocks that coordinate and synchronise the complexity of the living state. “It is the pattern maintained by this homeostasis, which is the touchstone of our personal identity. Our tissues change as we live: the food we eat and the air we breathe become flesh of our flesh, and bone of our bone, and the momentary elements of our flesh and bone pass out of our body every day with our excreta. We are but whirlpools in a river of ever-flowing water. We are not the stuff that abides, but patterns that perpetuate themselves”60. Wiener, 1954 “What are called structures are slow processes of long duration, functions are quick processes of short duration”61. Von Bertalanffy, 1952
Collapse
Affiliation(s)
- David Lloyd
- Cardiff School of Biosciences, Wales, UK, and the Memphys Research Group, Biochemistry and Molecular Biology Department, at the University of Southern Denmark, Odense
| |
Collapse
|
15
|
|
16
|
Aon MA, Cortassa S. Function of metabolic and organelle networks in crowded and organized media. Front Physiol 2015; 5:523. [PMID: 25653618 PMCID: PMC4300868 DOI: 10.3389/fphys.2014.00523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/19/2014] [Indexed: 11/13/2022] Open
Abstract
(Macro)molecular crowding and the ability of the ubiquitous cytoskeleton to dynamically polymerize–depolymerize are prevalent cytoplasmic conditions in prokaryotic and eukaryotic cells. Protein interactions, enzymatic or signaling reactions - single, sequential or in complexes - whole metabolic pathways and organelles can be affected by crowding, the type and polymeric status of cytoskeletal proteins (e.g., tubulin, actin), and their imparted organization. The self-organizing capability of the cytoskeleton can orchestrate metabolic fluxes through entire pathways while its fractal organization can frame the scaling of activities in several levels of organization. The intracellular environment dynamics (e.g., biochemical reactions) is dominated by the orderly cytoskeleton and the intrinsic randomness of molecular crowding. Existing evidence underscores the inherent capacity of intracellular organization to generate emergent global behavior. Yet unknown is the relative impact on cell function provided by organelle or functional compartmentation based on transient proteins association driven by weak interactions (quinary structures) under specific environmental challenges or functional conditions (e.g., hypoxia, division, differentiation). We propose a qualitative, integrated structural–functional model of cytoplasmic organization based on a modified version of the Sierspinsky–Menger–Mandelbrot sponge, a 3D representation of a percolation cluster, and examine its capacity to accommodate established experimental facts.
Collapse
Affiliation(s)
- Miguel A Aon
- Department of Medicine, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Sonia Cortassa
- Department of Medicine, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
17
|
Kembro JM, Cortassa S, Aon MA. Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function. Front Physiol 2014; 5:257. [PMID: 25071602 PMCID: PMC4085651 DOI: 10.3389/fphys.2014.00257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/17/2014] [Indexed: 12/31/2022] Open
Abstract
The time-keeping properties bestowed by oscillatory behavior on functional rhythms represent an evolutionarily conserved trait in living systems. Mitochondrial networks function as timekeepers maximizing energetic output while tuning reactive oxygen species (ROS) within physiological levels compatible with signaling. In this work, we explore the potential for timekeeping functions dependent on mitochondrial dynamics with the validated two-compartment mitochondrial energetic-redox (ME-R) computational model, that takes into account (a) four main redox couples [NADH, NADPH, GSH, Trx(SH)2], (b) scavenging systems (glutathione, thioredoxin, SOD, catalase) distributed in matrix and extra-matrix compartments, and (c) transport of ROS species between them. Herein, we describe that the ME-R model can exhibit highly complex oscillatory dynamics in energetic/redox variables and ROS species, consisting of at least five frequencies with modulated amplitudes and period according to power spectral analysis. By stability analysis we describe that the extent of steady state—as against complex oscillatory behavior—was dependent upon the abundance of Mn and Cu, Zn SODs, and their interplay with ROS production in the respiratory chain. Large parametric regions corresponding to oscillatory dynamics of increasingly complex waveforms were obtained at low Cu, Zn SOD concentration as a function of Mn SOD. This oscillatory domain was greatly reduced at higher levels of Cu, Zn SOD. Interestingly, the realm of complex oscillations was located at the edge between normal and pathological mitochondrial energetic behavior, and was characterized by oxidative stress. We conclude that complex oscillatory dynamics could represent a frequency- and amplitude-modulated H2O2 signaling mechanism that arises under intense oxidative stress. By modulating SOD, cells could have evolved an adaptive compromise between relative constancy and the flexibility required under stressful redox/energetic conditions.
Collapse
Affiliation(s)
- Jackelyn M Kembro
- Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Investigaciones Biológicas y Tecnológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-UNC) and Instituto de Ciencia y Tecnología de los Alimentos, Universidad Nacional de Córdoba Córdoba, Argentina
| | - Sonia Cortassa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Miguel A Aon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
18
|
|
19
|
|
20
|
Chin SL, Marcus IM, Klevecz RR, Li CM. Dynamics of oscillatory phenotypes in Saccharomyces cerevisiae reveal a network of genome-wide transcriptional oscillators. FEBS J 2012; 279:1119-30. [PMID: 22289124 DOI: 10.1111/j.1742-4658.2012.08508.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genetic and environmental factors are well-studied influences on phenotype; however, time is a variable that is rarely considered when studying changes in cellular phenotype. Time-resolved microarray data revealed genome-wide transcriptional oscillation in a yeast continuous culture system with ∼ 2 and ∼ 4 h periods. We mapped the global patterns of transcriptional oscillations into a 3D map to represent different cellular phenotypes of redox cycles. This map shows the dynamic nature of gene expression in that transcripts are ordered and coupled to each other through time and concentration space. Although cells differed in oscillation periods, transcripts involved in certain processes were conserved in a deterministic way. When oscillation period lengthened, the peak to trough ratio of transcripts increased and the fraction of cells in the unbudded (G0/G1) phase of the cell division cycle increased. Decreasing the glucose level in the culture medium was one way to increase the redox cycle, possibly from changes in metabolic flux. The period may be responding to lower glucose levels by increasing the fraction of cells in G1 and reducing S-phase gating so that cells can spend more time in catabolic processes. Our results support that gene transcripts are coordinated with metabolic functions and the cell division cycle.
Collapse
Affiliation(s)
- Shwe L Chin
- Dynamic Systems Group, Division of Biology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | | | | | | |
Collapse
|
21
|
Lloyd D, Cortassa S, O'Rourke B, Aon MA. What yeast and cardiomyocytes share: ultradian oscillatory redox mechanisms of cellular coherence and survival. Integr Biol (Camb) 2012; 4:65-74. [PMID: 22143867 PMCID: PMC3348865 DOI: 10.1039/c1ib00124h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The coherent and robust, yet sensitively adaptable, nature of organisms is an astonishing phenomenon that involves massive parallel processing and concerted network performance at the molecular level. Unravelling the dynamic complexities of the living state underlines the essential operation of ultradian oscillations, rhythms and clocks for the establishment and maintenance of functional order simultaneously on fast and slower timescales. Non-invasive monitoring of respiration, mitochondrial inner membrane potentials, and redox states (especially those of NAD(P)H, flavin, and the monochlorobimane complex of glutathione), even after more than 50 years research, continue to provide both new insights and biomedical applications. Experiments with yeast and in cardiac cells reveal astonishing parallels and similarities in their dynamic biochemical organization.
Collapse
Affiliation(s)
- David Lloyd
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AT Wales, UK.
| | | | | | | |
Collapse
|
22
|
Murray DB, Haynes K, Tomita M. Redox regulation in respiring Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2011; 1810:945-58. [PMID: 21549177 DOI: 10.1016/j.bbagen.2011.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/16/2011] [Accepted: 04/17/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND In biological systems, redox reactions are central to most cellular processes and the redox potential of the intracellular compartment dictates whether a particular reaction can or cannot occur. Indeed the widespread use of redox reactions in biological systems makes their detailed description outside the scope of one review. SCOPE OF THE REVIEW Here we will focus on how system-wide redox changes can alter the reaction and transcriptional landscape of Saccharomyces cerevisiae. To understand this we explore the major determinants of cellular redox potential, how these are sensed by the cell and the dynamic responses elicited. MAJOR CONCLUSIONS Redox regulation is a large and complex system that has the potential to rapidly and globally alter both the reaction and transcription landscapes. Although we have a basic understanding of many of the sub-systems and a partial understanding of the transcriptional control, we are far from understanding how these systems integrate to produce coherent responses. We argue that this non-linear system self-organises, and that the output in many cases is temperature-compensated oscillations that may temporally partition incompatible reactions in vivo. GENERAL SIGNIFICANCE Redox biochemistry impinges on most of cellular processes and has been shown to underpin ageing and many human diseases. Integrating the complexity of redox signalling and regulation is perhaps one of the most challenging areas of biology. This article is part of a Special Issue entitled Systems Biology of Microorganisms.
Collapse
Affiliation(s)
- Douglas B Murray
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.
| | | | | |
Collapse
|
23
|
Ouyang Y, Xu Q, Mitsui K, Motizuki M, Xu Z. PSK2 coordinates glucose metabolism and utilization to maintain ultradian clock-coupled respiratory oscillation in Saccharomyces cerevisiae yeast. Arch Biochem Biophys 2011; 509:52-8. [PMID: 21345330 DOI: 10.1016/j.abb.2011.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 02/03/2011] [Accepted: 02/08/2011] [Indexed: 01/13/2023]
Abstract
Ultradian clock-coupled respiratory oscillation (UCRO) in an aerobic continuous culture of Saccharomyces cerevisiae S288C is principally regulated by control of certain redox reactions of energy metabolism. It is also modulated by the metabolism of storage carbohydrates during adaptation to environmental change. However, the mechanism of cell sensing and response to environmental nutrients in UCRO is unknown. The purpose of the present study was to determine the role of PSK2 kinase in UCRO in yeast. S. cerevisiae in culture showed oscillation in PSK2 mRNA levels with a definite phase relationship to the respiratory oscillation. Furthermore, inactivation of Psk2 by gene disruption severely affected UCRO and its decline to undetectable levels within 2days. In addition, the extracellular and intracellular glucose concentrations of PSK2 deletion mutants in culture were higher and lower, respectively, than those of the wild type. PSK2 mutant cells showed no alteration in redox state. Furthermore, the levels of storage carbohydrates such as glycogen and trehalose fluctuated in PSK2 mutants with attenuated amplitudes comparable to those in the wild type. The results indicated that PSK2 kinase is important for the uptake of glucose and regulation of storage-carbohydrate synthesis and hence the maintenance of an unperturbed continuously oscillating state.
Collapse
Affiliation(s)
- Yuhui Ouyang
- Department of Biochemistry 2, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | | | | | | | | |
Collapse
|
24
|
Steuer R, Junker BH. Computational Models of Metabolism: Stability and Regulation in Metabolic Networks. ADVANCES IN CHEMICAL PHYSICS 2008. [DOI: 10.1002/9780470475935.ch3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Aon MA, Roussel MR, Cortassa S, O'Rourke B, Murray DB, Beckmann M, Lloyd D. The scale-free dynamics of eukaryotic cells. PLoS One 2008; 3:e3624. [PMID: 18982073 PMCID: PMC2575856 DOI: 10.1371/journal.pone.0003624] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 10/11/2008] [Indexed: 01/19/2023] Open
Abstract
Temporal organization of biological processes requires massively parallel processing on a synchronized time-base. We analyzed time-series data obtained from the bioenergetic oscillatory outputs of Saccharomyces cerevisiae and isolated cardiomyocytes utilizing Relative Dispersional (RDA) and Power Spectral (PSA) analyses. These analyses revealed broad frequency distributions and evidence for long-term memory in the observed dynamics. Moreover RDA and PSA showed that the bioenergetic dynamics in both systems show fractal scaling over at least 3 orders of magnitude, and that this scaling obeys an inverse power law. Therefore we conclude that in S. cerevisiae and cardiomyocytes the dynamics are scale-free in vivo. Applying RDA and PSA to data generated from an in silico model of mitochondrial function indicated that in yeast and cardiomyocytes the underlying mechanisms regulating the scale-free behavior are similar. We validated this finding in vivo using single cells, and attenuating the activity of the mitochondrial inner membrane anion channel with 4-chlorodiazepam to show that the oscillation of NAD(P)H and reactive oxygen species (ROS) can be abated in these two evolutionarily distant species. Taken together these data strongly support our hypothesis that the generation of ROS, coupled to redox cycling, driven by cytoplasmic and mitochondrial processes, are at the core of the observed rhythmicity and scale-free dynamics. We argue that the operation of scale-free bioenergetic dynamics plays a fundamental role to integrate cellular function, while providing a framework for robust, yet flexible, responses to the environment.
Collapse
Affiliation(s)
- Miguel A. Aon
- The Johns Hopkins University Institute of Molecular Cardiobiology, Baltimore, Maryland, United States of America
| | - Marc R. Roussel
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Sonia Cortassa
- The Johns Hopkins University Institute of Molecular Cardiobiology, Baltimore, Maryland, United States of America
| | - Brian O'Rourke
- The Johns Hopkins University Institute of Molecular Cardiobiology, Baltimore, Maryland, United States of America
| | - Douglas B. Murray
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Manfred Beckmann
- Institute of Biological Sciences, University of Wales, Aberystwyth, Wales, United Kingdom
| | - David Lloyd
- Microbiology Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
26
|
Affiliation(s)
- David Lloyd
- Microbiology, BIOSI 1, Main Building, Cardiff University, PO Box 915, Cardiff CF10 3TL Wales, UK.
| |
Collapse
|
27
|
FRICKER M, LEE J, BEBBER D, TLALKA M, HYNES J, DARRAH P, WATKINSON S, BODDY L. Imaging complex nutrient dynamics in mycelial networks. J Microsc 2008; 231:317-31. [DOI: 10.1111/j.1365-2818.2008.02043.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
29
|
Abstract
Ultradian rhythms are those that cycle many times in a day and are therefore measured in hours, minutes, seconds or even fractions of a second. In yeasts and protists, a temperature-compensated clock with a period of about an hour (30-90 minutes) provides the time base upon which all central processes are synchronized. A 40-minute clock in yeast times metabolic, respiratory and transcriptional processes, and controls cell division cycle progression. This system has at its core a redox cycle involving NAD(P)H and dithiol-disulfide interconversions. It provides an archetype for biological time keeping on longer time scales (e.g. the daily cycles driven by circadian clocks) and underpins these rhythms, which cannot be understood in isolation. Ultradian rhythms are the foundation upon which the coherent functioning of the organism depends.
Collapse
Affiliation(s)
- David Lloyd
- Microbiology, School of Biosciences, Cardiff University, Wales, UK.
| | | |
Collapse
|