1
|
Ásgeirsson B, Markússon S, Hlynsdóttir SS, Helland R, Hjörleifsson JG. X-ray crystal structure of Vibrio alkaline phosphatase with the non-competitive inhibitor cyclohexylamine. Biochem Biophys Rep 2020; 24:100830. [PMID: 33102813 PMCID: PMC7569297 DOI: 10.1016/j.bbrep.2020.100830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
Background Para-nitrophenyl phosphate, the common substrate for alkaline phosphatase (AP), is available as a cyclohexylamine salt. Here, we report that cyclohexylamine is a non-competitive inhibitor of APs. Methods Cyclohexylamine inhibited four different APs. Co-crystallization with the cold-active Vibrio AP (VAP) was performed and the structure solved. Results Inhibition of VAP fitted a non-competitive kinetic model (Km unchanged, Vmax reduced) with IC50 45.3 mM at the pH optimum 9.8, not sensitive to 0.5 M NaCl, and IC50 27.9 mM at pH 8.0, where the addition of 0.5 M NaCl altered the inhibition to the level observed at pH 9.8. APs from E. coli and calf intestines were less sensitive to cyclohexylamine, whereas an Antarctic bacterial AP was similar to VAP in this respect. X-ray crystallography at 2.3 Å showed two binding sites, one in the active site channel and another at the surface close to dimer interface. Antarctic bacterial AP and VAP have Trp274 in common in their active-sites, that takes part in binding cyclohexylamine. VAP variants W274A, W274K, and W274H gave IC50 values of 179 mM, 188 mM and 187 mM, respectively, at pH 9.8. Conclusions The binding of cyclohexylamine in locations at the dimeric interface and/or in the active site of APs may delay product release or reduce the rate of catalytic step(s) involving conformational changes and intersubunit communications. General significance Cyclohexylamine is a common chemical in industries and used as a counterion in substrates for alkaline phosphatase, a clinically important and common enzyme in the biosphere. Cyclohexylamine inhibits alkaline phosphatase activity non-competitively. X-ray structure was solved that shows cyclohexylamine bound to alkaline phosphatase at two sites. Alkaline phosphatases from four different organisms bind cyclohexylamine with varying affinity.
Collapse
Affiliation(s)
- Bjarni Ásgeirsson
- Department of Biochemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Sigurbjörn Markússon
- Department of Biochemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Sigríður S Hlynsdóttir
- Department of Biochemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Ronny Helland
- NorStruct, Department of Chemistry, Faculty of Science and Technology, UiT - the Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Jens G Hjörleifsson
- Department of Biochemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| |
Collapse
|
2
|
Thermostabilization of VPR, a kinetically stable cold adapted subtilase, via multiple proline substitutions into surface loops. Sci Rep 2020; 10:1045. [PMID: 31974391 PMCID: PMC6978356 DOI: 10.1038/s41598-020-57873-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/27/2019] [Indexed: 11/24/2022] Open
Abstract
Protein stability is a widely studied topic, there are still aspects however that need addressing. In this paper we examined the effects of multiple proline substitutions into loop regions of the kinetically stable proteinase K-like serine protease VPR, using the thermostable structural homologue AQUI as a template. Four locations for proline substitutions were chosen to imitate the structure of AQUI. Variants were produced and characterized using differential scanning calorimetry (DSC), circular dichroism (CD), steady state fluorescence, acrylamide fluorescence quenching and thermal inactivation experiments. The final product VPRΔC_N3P/I5P/N238P/T265P was greatly stabilized which was achieved without any noticeable detrimental effects to the catalytic efficiency of the enzyme. This stabilization seems to be derived from the conformation restrictive properties of the proline residue in its ability to act as an anchor point and strengthen pre-existing interactions within the protein and allowing for these interactions to prevail when thermal energy is applied to the system. In addition, the results underline the importance of the synergy between distant local protein motions needed to result in stabilizing effects and thus giving an insight into the nature of the stability of VPR, its unfolding landscape and how proline residues can infer kinetic stability onto protein structures.
Collapse
|
3
|
Hjörleifsson JG, Ásgeirsson B. Chloride promotes refolding of active Vibrio alkaline phosphatase through an inactive dimeric intermediate with an altered interface. FEBS Open Bio 2018; 9:169-184. [PMID: 30652084 PMCID: PMC6325577 DOI: 10.1002/2211-5463.12565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Most enzymes are homodimers or higher order multimers. Cold‐active alkaline phosphatase from Vibrio splendidus (VAP) transitions into a dimer with very low activity under mild denaturation conditions. The desire to understand why this dimer fails to efficiently catalyse phosphomonoester hydrolysis led us to investigate interfacial communication between subunits. Here, we studied in detail the unfolding mechanism at two pH values and in the presence or absence of sodium chloride. At pH 8.0, the denaturation model had to include an inactive dimer intermediate and follow the pathway: N2 → I2 → 2U. At pH 10.5, the model was of a two‐state nature. Enzyme activity was not recovered under several examined refolding conditions. However, in the presence of 0.5 m NaCl, the enzyme was nearly fully reactivated after urea treatment. Thermal inactivation experiments were biphasic where the inactivation could be detected using CD spectroscopy at 190–200 nm. By incorporating a bimane fluorescence probe at the dimer interface, we could monitor inactivation/denaturation at two distinct sites at the dimer interface. A change in bimane fluorescence at both sites was observed during inactivation, but prior to the global unfolding event. Furthermore, the rate of change in bimane fluorescence correlated with inactivation rates at 40 °C. These results indicate and support the hypothesis that the subunits of VAP are only functional in the dimeric state due to the cooperative nature of the reaction mechanism when proper crosstalk between subunits is facilitated.
Collapse
Affiliation(s)
| | - Bjarni Ásgeirsson
- Department of Biochemistry, Science Institute University of Iceland Reykjavik Iceland
| |
Collapse
|
4
|
Manganese Is Essential for PlcP Metallophosphoesterase Activity Involved in Lipid Remodeling in Abundant Marine Heterotrophic Bacteria. Appl Environ Microbiol 2018; 84:AEM.01109-18. [PMID: 29802183 DOI: 10.1128/aem.01109-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 11/20/2022] Open
Abstract
In vast areas of the ocean, microbes must adapt to the availability of scarce nutrients, and a key strategy for reducing the cellular phosphorus (P) quota is to remodel membranes by replacing phospholipids with non-P surrogate lipids. A metallophosphoesterase, PlcP, is essential for lipid remodeling in cosmopolitan marine bacteria of the Roseobacter (e.g., Phaeobacter sp. strain MED193) and SAR11 (e.g., Pelagibacter sp. strain HTCC7211) clades, and transcription of plcP is known to be induced by P limitation. In order to better understand PlcP-mediated lipid remodeling, we sought to characterize PlcP for its metal ion requirement and to determine its selectivity for native bacterial phospholipids. Here, we report the occurrence of a highly conserved binuclear ion center in PlcPs from MED193 and HTCC7211 and show that manganese is the preferred metal for metallophosphoesterase activity. PlcP displayed high activity towards the major bacterial phospholipids, e.g., phosphatidylglycerol but also phosphatidic acid, a key intermediate in phospholipid biosynthesis. In contrast, phosphatidylserine and phosphatidylinositol, both of which are rare lipids in bacteria, are not preferred substrates. These data suggest that PlcP undertakes a generic lipid remodeling role during the cellular response of marine bacteria to P deficiency and that manganese availability may play a key role in regulating the lipid remodeling process.IMPORTANCE Membrane lipids form the structural basis of all cells. In the marine environment, it is well established that phosphorus availability significantly affects lipid composition in cosmopolitan marine bacteria, whereby non-phosphorus-containing lipids are used to replace phospholipids in response to phosphorus stress. Central to this lipid remodeling pathway is a newly identified phospholipase C-type metallophosphoesterase (PlcP). However, little is known about how PlcP activity is regulated. Here, we determined the role of metal ions in regulating PlcP activity and compared PlcP substrate specificities in PlcP enzymes from two model marine bacteria from the marine Roseobacter clade and the SAR11 clade. Our data provide new insights into the regulation of lipid remodeling in these marine bacteria.
Collapse
|
5
|
Kashif A, Tran LH, Jang SH, Lee C. Roles of Active-Site Aromatic Residues in Cold Adaptation of Sphingomonas glacialis Esterase EstSP1. ACS OMEGA 2017; 2:8760-8769. [PMID: 31457406 PMCID: PMC6645578 DOI: 10.1021/acsomega.7b01435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/23/2017] [Indexed: 06/10/2023]
Abstract
The aromatic amino acids, Tyr or Trp, which line the active-site walls of esterases, stabilize the catalytic His loop via hydrogen bonding. A Tyr residue is preferred in extremophilic esterases (psychrophilic or hyperthermophilic esterases), whereas a Trp residue is preferred in moderate-temperature esterases. Here, we provide evidence that Tyr and Trp play distinct roles in cold adaptation of the psychrophilic esterase EstSP1 isolated from an Arctic bacterium Sphingomonas glacialis PAMC 26605. Stern-Volmer plots showed that the mutation of Tyr191 to Ala, Phe, Trp, and His resulted in reduced conformational flexibility of the overall protein structure. Interestingly, the Y191W and Y191H mutants showed increased thermal stability at moderate temperatures. All Tyr191 mutants showed reduced catalytic activity relative to wild-type EstSP1. Our results indicate that Tyr with its phenyl hydroxyl group is favored for increased conformational flexibility and high catalytic activity of EstSP1 at low temperatures at the expense of thermal stability. The results of this study suggest that, in the permanently cold Arctic zone, enzyme activity has been selected for psychrophilic enzymes over thermal stability. The results presented herein provide novel insight into the roles of Tyr and Trp residues for temperature adaptation of enzymes that function at low, moderate, and high temperatures.
Collapse
Affiliation(s)
| | | | | | - ChangWoo Lee
- E-mail: . Tel: +82-53-850-6464. Fax: +82-53-850-6469
| |
Collapse
|
6
|
Hjörleifsson JG, Ásgeirsson B. pH-Dependent Binding of Chloride to a Marine Alkaline Phosphatase Affects the Catalysis, Active Site Stability, and Dimer Equilibrium. Biochemistry 2017; 56:5075-5089. [DOI: 10.1021/acs.biochem.7b00690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jens G. Hjörleifsson
- Department of Biochemistry,
Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Bjarni Ásgeirsson
- Department of Biochemistry,
Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| |
Collapse
|
7
|
Hjörleifsson JG, Ásgeirsson B. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:755-65. [DOI: 10.1016/j.bbapap.2016.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/08/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022]
|
8
|
Ebrahimi KH, Hagedoorn PL, Jacobs D, Hagen WR. Accurate label-free reaction kinetics determination using initial rate heat measurements. Sci Rep 2015; 5:16380. [PMID: 26574737 PMCID: PMC4647221 DOI: 10.1038/srep16380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/13/2015] [Indexed: 11/08/2022] Open
Abstract
Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity.
Collapse
Affiliation(s)
- Kourosh Honarmand Ebrahimi
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Denise Jacobs
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Wilfred R. Hagen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
9
|
Homaei A. Purification and biochemical properties of highly efficient alkaline phosphatase from Fenneropenaeus merguiensis brain. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Golotin V, Balabanova L, Likhatskaya G, Rasskazov V. Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:130-143. [PMID: 25260971 DOI: 10.1007/s10126-014-9601-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
The psychrophilic marine bacterium, Cobetia marina, recovered from the mantle tissue of the marine mussel, Crenomytilus grayanus, which contained a gene encoding alkaline phosphatase (AP) with apparent biotechnology advantages. The enzyme was found to be more efficient than its counterparts and showed k cat value 10- to 100-fold higher than those of all known commercial APs. The enzyme did not require the presence of exogenous divalent cations and dimeric state of its molecule for activity. The recombinant enzyme (CmAP) production and purification were optimized with a final recovery of 2 mg of the homogenous protein from 1 L of the transgenic Escherichia coli Rosetta(DE3)/Pho40 cells culture. CmAP displayed a half-life of 16 min at 45 °C and 27 min at 40 °C in the presence of 2 mM EDTA, thus suggesting its relative thermostability in comparison with the known cold-adapted analogues. A high concentration of EDTA in the incubation mixture did not appreciably inhibit CmAP. The enzyme was stable in a wide range of pH (6.0-11.0). CmAP exhibited its highest activity at the reaction temperature of 40-50 °C and pH 9.5-10.3. The structural features of CmAP could be the reason for the increase in its stability and catalytic turnover. We have modeled the CmAP 3D structure on the base of the high-quality experimental structure of the close homologue Vibrio sp. AP (VAP) and mutated essential residues predicted to break Mg(2+) bonds in CmAP. It seems probable that the intrinsically tight binding of catalytic and structural metal ions together with the flexibility of intermolecular and intramolecular links in CmAP could be attributed to the adapted mutualistic lifestyle in oceanic waters.
Collapse
Affiliation(s)
- Vasily Golotin
- G.B. Elyakova Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of Russian Academy of Sciences, Prospect 100-letya Vladivostoka, 159, Vladivostok, Russian Federation
| | | | | | | |
Collapse
|
11
|
Boyineni J, Kim J, Kang BS, Lee C, Jang SH. Enhanced catalytic site thermal stability of cold-adapted esterase EstK by a W208Y mutation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1076-82. [DOI: 10.1016/j.bbapap.2014.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 12/12/2022]
|
12
|
Papaleo E, Renzetti G, Invernizzi G, Ásgeirsson B. Dynamics fingerprint and inherent asymmetric flexibility of a cold-adapted homodimeric enzyme. A case study of the Vibrio alkaline phosphatase. Biochim Biophys Acta Gen Subj 2013; 1830:2970-80. [DOI: 10.1016/j.bbagen.2012.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/31/2023]
|
13
|
Yang LQ, Sang P, Tao Y, Fu YX, Zhang KQ, Xie YH, Liu SQ. Protein dynamics and motions in relation to their functions: several case studies and the underlying mechanisms. J Biomol Struct Dyn 2013; 32:372-93. [PMID: 23527883 PMCID: PMC3919177 DOI: 10.1080/07391102.2013.770372] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure–function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca2+ removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca2+ removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein–ligand binding, including the concept of the free energy landscape (FEL) of the protein–solvent system, how the ruggedness and variability of FEL determine protein's dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth.
Collapse
Affiliation(s)
- Li-Quan Yang
- a Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education , Yunnan University , Kunming , 650091 , P.R. China
| | | | | | | | | | | | | |
Collapse
|
14
|
Karan R, Capes MD, DasSarma S. Function and biotechnology of extremophilic enzymes in low water activity. AQUATIC BIOSYSTEMS 2012; 8:4. [PMID: 22480329 PMCID: PMC3310334 DOI: 10.1186/2046-9063-8-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/02/2012] [Indexed: 05/31/2023]
Abstract
Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology.
Collapse
Affiliation(s)
- Ram Karan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA
| | - Melinda D Capes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA
| |
Collapse
|
15
|
Liu SQ, Tao Y, Meng ZH, Fu YX, Zhang KQ. The effect of calciums on molecular motions of proteinase K. J Mol Model 2010; 17:289-300. [DOI: 10.1007/s00894-010-0724-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
|
16
|
Heidarsson PO, Sigurdsson ST, Ásgeirsson B. Structural features and dynamics of a cold-adapted alkaline phosphatase studied by EPR spectroscopy. FEBS J 2009; 276:2725-35. [DOI: 10.1111/j.1742-4658.2009.06996.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Helland R, Larsen RL, Asgeirsson B. The 1.4 Å crystal structure of the large and cold-active Vibrio sp. alkaline phosphatase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:297-308. [PMID: 18977465 DOI: 10.1016/j.bbapap.2008.09.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 09/21/2008] [Accepted: 09/23/2008] [Indexed: 11/16/2022]
Affiliation(s)
- Ronny Helland
- The Norwegian Structural Biology Centre, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | | | | |
Collapse
|