1
|
Li B, Hu P, Liang H, Zhao X, Zhang A, Xu Y, Zhang B, Zhang J. Evaluating the causal effect of circulating proteome on the risk of inflammatory bowel disease-related traits using Mendelian randomization. Front Immunol 2024; 15:1434369. [PMID: 39144148 PMCID: PMC11321985 DOI: 10.3389/fimmu.2024.1434369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Objective This study sought to identify circulating proteins causally linked to Inflammatory Bowel Disease (IBD) traits through a Mendelian Randomization (MR) analytical framework. Methods Using a large-scale, two-sample MR approach, we estimated the genetic links of numerous plasma proteins with IBD and its subtypes, leveraging information from the Inflammatory Bowel Disease Genetics Consortium. To assess the robustness of MR findings, methods like Bayesian colocalization, and Steiger filtering analysis, evaluation of protein-altering variants. Further insights into IBD's underlying mechanisms and therapeutic targets were gleaned from single-cell sequencing analyses, protein-protein interaction assessments, pathway enrichment analyses, and evaluation of drug targets. Results By cis-only MR analysis, we identified 83 protein-phenotype associations involving 27 different proteins associated with at least one IBD subtype. Among these proteins, DAG1, IL10, IL12B, IL23R, MST1, STAT3 and TNFRSF6B showed overlapping positive or negative associations in all IBD phenotypes. Extending to cis + trans MR analysis, we further identified 117 protein-feature associations, including 44 unique proteins, most of which were not detected in the cis-only analysis. In addition, by performing co-localization analysis and Steiger filtering analysis on the prioritized associations, we further confirmed the causal relationship between these proteins and the IBD phenotype and verified the exact causal direction from the protein to the IBD-related feature. Conclusion MR analysis facilitated the identification of numerous circulating proteins associated with IBD traits, unveiling protein-mediated mechanisms and promising therapeutic targets.
Collapse
Affiliation(s)
- Beining Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ping Hu
- Department of Orthopedic, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyan Liang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xingliang Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Aiting Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yingchong Xu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bin Zhang
- Department of Orthopedic, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
2
|
Nakata T, Li C, Mayassi T, Lin H, Ghosh K, Segerstolpe Å, Diamond EL, Herbst P, Biancalani T, Gaddam S, Parkar S, Lu Z, Jaiswal A, Li B, Creasey EA, Lefkovith A, Daly MJ, Graham DB, Xavier RJ. Genetic vulnerability to Crohn's disease reveals a spatially resolved epithelial restitution program. Sci Transl Med 2023; 15:eadg5252. [PMID: 37878672 PMCID: PMC10798370 DOI: 10.1126/scitranslmed.adg5252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023]
Abstract
Effective tissue repair requires coordinated intercellular communication to sense damage, remodel the tissue, and restore function. Here, we dissected the healing response in the intestinal mucosa by mapping intercellular communication at single-cell resolution and integrating with spatial transcriptomics. We demonstrated that a risk variant for Crohn's disease, hepatocyte growth factor activator (HGFAC) Arg509His (R509H), disrupted a damage-sensing pathway connecting the coagulation cascade to growth factors that drive the differentiation of wound-associated epithelial (WAE) cells and production of a localized retinoic acid (RA) gradient to promote fibroblast-mediated tissue remodeling. Specifically, we showed that HGFAC R509H was activated by thrombin protease activity but exhibited impaired proteolytic activation of the growth factor macrophage-stimulating protein (MSP). In Hgfac R509H mice, reduced MSP activation in response to wounding of the colon resulted in impaired WAE cell induction and delayed healing. Through integration of single-cell transcriptomics and spatial transcriptomics, we demonstrated that WAE cells generated RA in a spatially restricted region of the wound site and that mucosal fibroblasts responded to this signal by producing extracellular matrix and growth factors. We further dissected this WAE cell-fibroblast signaling circuit in vitro using a genetically tractable organoid coculture model. Collectively, these studies exploited a genetic perturbation associated with human disease to disrupt a fundamental biological process and then reconstructed a spatially resolved mechanistic model of tissue healing.
Collapse
Affiliation(s)
- Toru Nakata
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chenhao Li
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Toufic Mayassi
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Helen Lin
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Koushik Ghosh
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Åsa Segerstolpe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Emma L. Diamond
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Paula Herbst
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | - Ziqing Lu
- Genentech, South San Francisco, CA 94080, USA
| | - Alok Jaiswal
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bihua Li
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elizabeth A. Creasey
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ariel Lefkovith
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mark J. Daly
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B. Graham
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J. Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Chuang TD, Gao J, Quintanilla D, McSwiggin H, Boos D, Yan W, Khorram O. Differential Expression of MED12-Associated Coding RNA Transcripts in Uterine Leiomyomas. Int J Mol Sci 2023; 24:ijms24043742. [PMID: 36835153 PMCID: PMC9960582 DOI: 10.3390/ijms24043742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
Recent studies have demonstrated that somatic MED12 mutations in exon 2 occur at a frequency of up to 80% and have a functional role in leiomyoma pathogenesis. The objective of this study was to elucidate the expression profile of coding RNA transcripts in leiomyomas, with and without these mutations, and their paired myometrium. Next-generation RNA sequencing (NGS) was used to systematically profile the differentially expressed RNA transcripts from paired leiomyomas (n = 19). The differential analysis indicated there are 394 genes differentially and aberrantly expressed only in the mutated tumors. These genes were predominantly involved in the regulation of extracellular constituents. Of the differentially expressed genes that overlapped in the two comparison groups, the magnitude of change in gene expression was greater for many genes in tumors bearing MED12 mutations. Although the myometrium did not express MED12 mutations, there were marked differences in the transcriptome landscape of the myometrium from mutated and non-mutated specimens, with genes regulating the response to oxygen-containing compounds being most altered. In conclusion, MED12 mutations have profound effects on the expression of genes pivotal to leiomyoma pathogenesis in the tumor and the myometrium which could alter tumor characteristics and growth potential.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
| | - Jianjun Gao
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
| | - Derek Quintanilla
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
| | - Hayden McSwiggin
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
| | - Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90502, USA
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90502, USA
- Correspondence: ; Tel.: +1-(310)-222-3867
| |
Collapse
|
4
|
Sargsyan A, Doridot L, Hannou SA, Tong W, Srinivasan H, Ivison R, Monn R, Kou HH, Haldeman JM, Arlotto M, White PJ, Grimsrud PA, Astapova I, Tsai LT, Herman MA. HGFAC is a ChREBP-regulated hepatokine that enhances glucose and lipid homeostasis. JCI Insight 2023; 8:e153740. [PMID: 36413406 PMCID: PMC9870088 DOI: 10.1172/jci.insight.153740] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Carbohydrate response element-binding protein (ChREBP) is a carbohydrate-sensing transcription factor that regulates both adaptive and maladaptive genomic responses in coordination of systemic fuel homeostasis. Genetic variants in the ChREBP locus associate with diverse metabolic traits in humans, including circulating lipids. To identify novel ChREBP-regulated hepatokines that contribute to its systemic metabolic effects, we integrated ChREBP ChIP-Seq analysis in mouse liver with human genetic and genomic data for lipid traits and identified hepatocyte growth factor activator (HGFAC) as a promising ChREBP-regulated candidate in mice and humans. HGFAC is a protease that activates the pleiotropic hormone hepatocyte growth factor. We demonstrate that HGFAC-KO mice had phenotypes concordant with putative loss-of-function variants in human HGFAC. Moreover, in gain- and loss-of-function genetic mouse models, we demonstrate that HGFAC enhanced lipid and glucose homeostasis, which may be mediated in part through actions to activate hepatic PPARγ activity. Together, our studies show that ChREBP mediated an adaptive response to overnutrition via activation of HGFAC in the liver to preserve glucose and lipid homeostasis.
Collapse
Affiliation(s)
- Ashot Sargsyan
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Ludivine Doridot
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | - Sarah A. Hannou
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Wenxin Tong
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Harini Srinivasan
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Rachael Ivison
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | - Ruby Monn
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Henry H. Kou
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Jonathan M. Haldeman
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Michelle Arlotto
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Phillip J. White
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, and
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Paul A. Grimsrud
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, and
| | - Inna Astapova
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, and
| | - Linus T. Tsai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Mark A. Herman
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, and
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Understanding the genetic basis for cholangiocarcinoma. Adv Cancer Res 2022; 156:137-165. [DOI: 10.1016/bs.acr.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Lorenc VE, Lima e Silva R, Hackett SF, Fortmann SD, Liu Y, Campochiaro PA. Hepatocyte growth factor is upregulated in ischemic retina and contributes to retinal vascular leakage and neovascularization. FASEB Bioadv 2020; 2:219-233. [PMID: 32259049 PMCID: PMC7133726 DOI: 10.1096/fba.2019-00074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/01/2019] [Accepted: 01/31/2020] [Indexed: 11/11/2022] Open
Abstract
In patients with macular edema due to ischemic retinopathy, aqueous levels of hepatocyte growth factor (HGF) correlate with edema severity. We tested whether HGF expression and activity in mice with oxygen-induced ischemic retinopathy supports a role in macular edema. In ischemic retina, HGF was increased in endogenous cells and macrophages associated with retinal neovascularization (NV). HGF activator was increased in and around retinal vessels potentially providing vascular targeting. One day after intravitreous injection of HGF, VE-cadherin was reduced and albumin levels in retina and vitreous were significantly increased indicating vascular leakage. Injection of VEGF caused higher levels of vitreous albumin than HGF, and co-injection of both growth factors caused significantly higher levels than either alone. HGF increased the number of macrophages on the retinal surface, which was blocked by anti-c-Met and abrogated in chemokine (C-C motif) ligand 2 (CCL2)-/- mice. Injection of anti-c-Met significantly decreased leakage within 24 hours and after 5 days it reduced retinal NV in mice with ischemic retinopathy, but had no effect on choroidal NV. These data indicate that HGF is a pro-permeability, pro-inflammatory, and pro-angiogenic factor and along with its activator is increased in ischemic retina providing support for a potential role of HGF in macular edema in ischemic retinopathies.
Collapse
Affiliation(s)
- Valeria E. Lorenc
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Raquel Lima e Silva
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Sean F. Hackett
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Seth D. Fortmann
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Yuanyuan Liu
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Present address:
Department of OphthalmologyTianjin Medical University General HospitalTianjinChina
| | - Peter A. Campochiaro
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
7
|
Damalanka VC, Wildman SA, Janetka JW. Piperidine carbamate peptidomimetic inhibitors of the serine proteases HGFA, matriptase and hepsin. MEDCHEMCOMM 2019; 10:1646-1655. [PMID: 31803403 DOI: 10.1039/c9md00234k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
Abstract
Matriptase and hepsin are type II transmembrane serine proteases (TTSPs). Along with related S1 trypsin like serine protease HGFA (hepatocyte growth factor activator), their unregulated proteolytic activity has been associated with cancer including tumor progression and metastasis. These three proteases have two substrates in common, hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP), the ligands for MET and recepteur d'origine nantais (RON) receptor tyrosine kinases. Mechanism-based tetrapeptide and benzamidine inhibitors of these proteases have been shown to block HGF/MET and MSP/RON cancer cell signaling. Herein, we have rationally designed a new class of peptidomimetic hybrid small molecule piperidine carbamate dipeptide inhibitors comparable in potency to much larger tetrapeptides. We have identified multiple compounds which have potent activity against matriptase and hepsin and with excellent selectivity over the off-target serine proteases factor Xa and thrombin.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St. Louis , Missouri , USA . ; Tel: +314 362 0509
| | - Scott A Wildman
- University of Wisconsin Carbone Cancer Center , Drug Development Core , University of Wisconsin-Madison , Madison , Wisconsin , USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St. Louis , Missouri , USA . ; Tel: +314 362 0509
| |
Collapse
|
8
|
Hepatocyte Growth Factor Activator: A Proteinase Linking Tissue Injury with Repair. Int J Mol Sci 2018; 19:ijms19113435. [PMID: 30388869 PMCID: PMC6275078 DOI: 10.3390/ijms19113435] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 01/16/2023] Open
Abstract
Hepatocyte growth factor (HGF) promotes pleiotropic signaling through its specific receptor tyrosine kinase, MET. As such, it has important roles in the regeneration of injured tissues. Since HGF is produced mainly by mesenchymal cells and MET is expressed in most epithelial, endothelial and somatic stem cells, HGF functions as a typical paracrine growth factor. HGF is secreted as an inactive precursor (proHGF) and requires proteolytic activation to initiate HGF-induced MET signaling. HGF activator (HGFAC) is a serum activator of proHGF and produces robust HGF activities in injured tissues. HGFAC is a coagulation factor XII-like serine endopeptidase that circulates in the plasma as a zymogen (proHGFAC). Thrombin, kallikrein-related peptidase (KLK)-4 or KLK-5 efficiently activates proHGFAC. The activated HGFAC cleaves proHGF at Arg494-Val495, resulting in the formation of the active disulfide-linked heterodimer HGF. Macrophage stimulating protein, a ligand of RON, is also activated by HGFAC in vivo. Although HGFAC functions primarily at the site of damaged tissue, a recent report has suggested that activated HGFAC relays a signal to stem cells in non-injured tissues via proHGF activation in the stem cell niche. This review focuses on current knowledge regarding HGFAC-mediated proHGF activation and its roles in tissue regeneration and repair.
Collapse
|
9
|
Khaibullina A, Adjei EA, Afangbedji N, Ivanov A, Kumari N, Almeida LEF, Quezado ZMN, Nekhai S, Jerebtsova M. RON kinase inhibition reduces renal endothelial injury in sickle cell disease mice. Haematologica 2018. [PMID: 29519868 PMCID: PMC5927980 DOI: 10.3324/haematol.2017.180992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sickle cell disease patients are at increased risk of developing a chronic kidney disease. Endothelial dysfunction and inflammation associated with hemolysis lead to vasculopathy and contribute to the development of renal disease. Here we used a Townes sickle cell disease mouse model to examine renal endothelial injury. Renal disease in Townes mice was associated with glomerular hypertrophy, capillary dilation and congestion, and significant endothelial injury. We also detected substantial renal macrophage infiltration, and accumulation of macrophage stimulating protein 1 in glomerular capillary. Treatment of human cultured macrophages with hemin or red blood cell lysates significantly increased expression of macrophage membrane-associated protease that might cleave and activate circulating macrophage stimulating protein 1 precursor. Macrophage stimulating protein 1 binds to and activates RON kinase, a cell surface receptor tyrosine kinase. In cultured human renal glomerular endothelial cells, macrophage stimulating protein 1 induced RON downstream signaling, resulting in increased phosphorylation of ERK and AKT kinases, expression of Von Willebrand factor, increased cell motility, and re-organization of F-actin. Specificity of macrophage stimulating protein 1 function was confirmed by treatment with RON kinase inhibitor BMS-777607 that significantly reduced downstream signaling. Moreover, treatment of sickle cell mice with BMS-777607 significantly reduced glomerular hypertrophy, capillary dilation and congestion, and endothelial injury. Taken together, our findings demonstrated that RON kinase is involved in the induction of renal endothelial injury in sickle cell mice. Inhibition of RON kinase activation may provide a novel approach for prevention of the development of renal disease in sickle cell disease.
Collapse
Affiliation(s)
- Alfia Khaibullina
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Elena A Adjei
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA.,Departments of Genetics and Human Genetics, College of Medicine, Howard University, Washington, DC, USA
| | - Nowah Afangbedji
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Andrey Ivanov
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Namita Kumari
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Luis E F Almeida
- Department of Perioperative Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA.,Department of Medicine, College of Medicine, Howard University, Washington, DC, USA.,Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| | - Marina Jerebtsova
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
10
|
Kataoka H, Kawaguchi M, Fukushima T, Shimomura T. Hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2): Emerging key players in epithelial integrity and cancer. Pathol Int 2018; 68:145-158. [PMID: 29431273 DOI: 10.1111/pin.12647] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
The growth, survival, and metabolic activities of multicellular organisms at the cellular level are regulated by intracellular signaling, systemic homeostasis and the pericellular microenvironment. Pericellular proteolysis has a crucial role in processing bioactive molecules in the microenvironment and thereby has profound effects on cellular functions. Hepatocyte growth factor activator inhibitor type 1 (HAI-1) and HAI-2 are type I transmembrane serine protease inhibitors expressed by most epithelial cells. They regulate the pericellular activities of circulating hepatocyte growth factor activator and cellular type II transmembrane serine proteases (TTSPs), proteases required for the activation of hepatocyte growth factor (HGF)/scatter factor (SF). Activated HGF/SF transduces pleiotropic signals through its receptor tyrosine kinase, MET (coded by the proto-oncogene MET), which are necessary for cellular migration, survival, growth and triggering stem cells for accelerated healing. HAI-1 and HAI-2 are also required for normal epithelial functions through regulation of TTSP-mediated activation of other proteases and protease-activated receptor 2, and also through suppressing excess degradation of epithelial junctional proteins. This review summarizes current knowledge regarding the mechanism of pericellular HGF/SF activation and highlights emerging roles of HAIs in epithelial development and integrity, as well as tumorigenesis and progression of transformed epithelial cells.
Collapse
Affiliation(s)
- Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Takeshi Shimomura
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| |
Collapse
|
11
|
Menou A, Duitman J, Flajolet P, Sallenave JM, Mailleux AA, Crestani B. Human airway trypsin-like protease, a serine protease involved in respiratory diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L657-L668. [DOI: 10.1152/ajplung.00509.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 01/12/2023] Open
Abstract
More than 2% of all human genes are coding for a complex system of more than 700 proteases and protease inhibitors. Among them, serine proteases play extraordinary, diverse functions in different physiological and pathological processes. The human airway trypsin-like protease (HAT), also referred to as TMPRSS11D and serine 11D, belongs to the emerging family of cell surface proteolytic enzymes, the type II transmembrane serine proteases (TTSPs). Through the cleavage of its four major identified substrates, HAT triggers specific responses, notably in epithelial cells, within the pericellular and extracellular environment, including notably inflammatory cytokine production, inflammatory cell recruitment, or anticoagulant processes. This review summarizes the potential role of this recently described protease in mediating cell surface proteolytic events, to highlight the structural features, proteolytic activity, and regulation, including the expression profile of HAT, and discuss its possible roles in respiratory physiology and disease.
Collapse
Affiliation(s)
- Awen Menou
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - JanWillem Duitman
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Pauline Flajolet
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Jean-Michel Sallenave
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Arnaud André Mailleux
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Bruno Crestani
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
- APHP, Hôpital Bichat, Service de Pneumologie A, Paris, France
| |
Collapse
|
12
|
Faham N, Welm AL. RON Signaling Is a Key Mediator of Tumor Progression in Many Human Cancers. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:177-188. [PMID: 28057847 DOI: 10.1101/sqb.2016.81.031377] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With an increasing body of literature covering RON receptor tyrosine kinase function in different types of human cancers, it is becoming clear that RON has prominent roles in both cancer cells and in the tumor-associated microenvironment. RON not only activates several oncogenic signaling pathways in cancer cells, leading to more aggressive behavior, but also promotes an immunosuppressive, alternatively activated phenotype in macrophages and limits the antitumor immune response. These two unique functions of this oncogene, the strong correlation between RON expression and poor outcomes in cancer, and the high tolerability of a new RON inhibitor make it an exciting therapeutic target, the blocking of which offers an advantage toward improving the survival of cancer patients. Here, we discuss recent findings on the role of RON signaling in cancer progression and its potential in cancer therapy.
Collapse
Affiliation(s)
- Najme Faham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
13
|
Zarei O, Benvenuti S, Ustun-Alkan F, Hamzeh-Mivehroud M, Dastmalchi S. Strategies of targeting the extracellular domain of RON tyrosine kinase receptor for cancer therapy and drug delivery. J Cancer Res Clin Oncol 2016; 142:2429-2446. [PMID: 27503093 DOI: 10.1007/s00432-016-2214-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/01/2016] [Indexed: 01/22/2023]
Abstract
PURPOSE Cancer is one of the most important life-threatening diseases in the world. The current efforts to combat cancer are being focused on molecular-targeted therapies. The main purpose of such approaches is based on targeting cancer cell-specific molecules to minimize toxicity for the normal cells. RON (Recepteur d'Origine Nantais) tyrosine kinase receptor is one of the promising targets in cancer-targeted therapy and drug delivery. METHODS In this review, we will summarize the available agents against extracellular domain of RON with potential antitumor activities. RESULTS The presented antibodies and antibody drug conjugates against RON in this review showed wide spectrum of in vitro and in vivo antitumor activities promising the hope for them entering the clinical trials. CONCLUSION Due to critical role of extracellular domain of RON in receptor activation, the development of therapeutic agents against this region could lead to fruitful outcome in cancer therapy.
Collapse
Affiliation(s)
- Omid Zarei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Silvia Benvenuti
- Molecular Therapeutics and Exploratory Research Laboratory, Candiolo Cancer Institute-FPO-IRCCS, Candiolo, Turin, Italy
| | - Fulya Ustun-Alkan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Han Z, Harris PKW, Karmakar P, Kim T, Owusu BY, Wildman SA, Klampfer L, Janetka JW. α-Ketobenzothiazole Serine Protease Inhibitors of Aberrant HGF/c-MET and MSP/RON Kinase Pathway Signaling in Cancer. ChemMedChem 2016; 11:585-99. [PMID: 26889658 DOI: 10.1002/cmdc.201500600] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 12/20/2022]
Abstract
Upregulation of the HGF and MSP growth-factor processing serine endopeptidases HGFA, matriptase and hepsin is correlated with increased metastasis in multiple tumor types driven by c-MET or RON kinase signaling. We rationally designed P1' α-ketobenzothiazole mechanism-based inhibitors of these proteases. Structure-activity studies are presented, which resulted in the identification of potent inhibitors with differential selectivity. The tetrapeptide inhibitors span the P1-P1' substrate cleavage site via a P1' amide linker off the benzothiazole, occupying the S3' pocket. Optimized inhibitors display sub-nanomolar enzyme inhibition against one, two, or all three of HGFA, matriptase, and hepsin. Several compounds also have good selectivity against the related trypsin-like proteases, thrombin and Factor Xa. Finally, we show that inhibitors block the fibroblast (HGF)-mediated migration of invasive DU145 prostate cancer cells. In addition to prostate cancer, breast, colon, lung, pancreas, gliomas, and multiple myeloma tumors all depend on HGF and MSP for tumor survival and progression. Therefore, these unique inhibitors have potential as new therapeutics for a diverse set of tumor types.
Collapse
Affiliation(s)
- Zhenfu Han
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Peter K W Harris
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Partha Karmakar
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Tommy Kim
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Ben Y Owusu
- Department of Oncology, Southern Research Institute, 2000 9th Ave., Birmingham, AL, 35205, USA
| | - Scott A Wildman
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA
| | - Lidija Klampfer
- Department of Oncology, Southern Research Institute, 2000 9th Ave., Birmingham, AL, 35205, USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Sugie S, Mukai S, Yamasaki K, Kamibeppu T, Tsukino H, Kamoto T. Plasma macrophage-stimulating protein and hepatocyte growth factor levels are associated with prostate cancer progression. Hum Cell 2015; 29:22-9. [PMID: 26250899 DOI: 10.1007/s13577-015-0123-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
Abstract
Hepatocyte growth factor (HGF) is a well-known multifunctional growth factor, and evidence has accumulated indicating that the HGF/MET (HGF receptor) signaling axis is involved in the progression of cancer. Macrophage-stimulating protein (MSP) is also known as a growth factor which activates not only macrophages but also cancer cells and osteoclasts through the activation of the specific Receptor d'origine nantais (RON). Pro-HGF and pro-MSP lack biological activity and, therefore, require proteolytic activation for conversion to an active two-chain form by HGF activator (HGFA). Although, there are several studies on HGF/MET signaling with castration-resistant prostate cancer (CRPC) and bone metastasis, reports on plasma protein are rare. In addition, the MSP/RON signaling axis in PC is not well understood. Here, we analyzed associations between PC progression and plasma HGF and MSP levels. We tested plasma samples from 58 patients with PC: 36 with castration-resistant (CR) PC and 22 with pretreatment for PC as control. We used enzyme-linked immunosorbent assay (ELISA) kit to determine plasma levels of HGF, MSP and HGFA, and examined correlations with clinicopathological characteristics such as Gleason grade and bone metastasis. PCR was used to evaluate HGF and MSP-related molecules in PC cell lines. Plasma levels of HGF, MSP and HGFA in the CRPC group were higher than in the control group (HGF: P < 0.001; MSP: P = 0.008; HGFA: P < 0.001). HGF and MSP levels were significantly correlated (P = 0.003). In the CRPC group, plasma HGF and MSP levels and Gleason score were not correlated; however, high plasma MSP level correlated with bone metastasis. (P = 0.016). In cell lines, PC3 expressed significantly more HGF, MET and RON than did LNCaP (P < 0.001), and both cell lines expressed MSP. Plasma concentrations of HGF, MSP and HGFA are significantly elevated in patients with CRPC. Also, as plasma MSP levels are significantly associated with bone metastasis in CRPC patients, MSP may be a candidate for serum marker of bone metastasis. Our results show the importance of the HGF/MET and MSP/RON signaling systems in CRPC.
Collapse
Affiliation(s)
- Satoru Sugie
- Department of Urology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki, 889-1692, Japan
| | - Shoichiro Mukai
- Department of Urology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki, 889-1692, Japan.
| | - Koji Yamasaki
- Department of Urology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki, 889-1692, Japan
| | - Toyoharu Kamibeppu
- Department of Urology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki, 889-1692, Japan
| | - Hiromasa Tsukino
- Department of Urology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki, 889-1692, Japan
| | - Toshiyuki Kamoto
- Department of Urology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki, 889-1692, Japan
| |
Collapse
|
16
|
Franco FM, Jones DE, Harris PK, Han Z, Wildman SA, Jarvis CM, Janetka JW. Structure-based discovery of small molecule hepsin and HGFA protease inhibitors: Evaluation of potency and selectivity derived from distinct binding pockets. Bioorg Med Chem 2015; 23:2328-43. [DOI: 10.1016/j.bmc.2015.03.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/20/2015] [Accepted: 03/27/2015] [Indexed: 11/28/2022]
|
17
|
Glasbey JC, Sanders AJ, Bosanquet DC, Ruge F, Harding KG, Jiang WG. Expression of Hepatocyte Growth Factor-Like Protein in Human Wound Tissue and Its Biological Functionality in Human Keratinocytes. Biomedicines 2015; 3:110-123. [PMID: 28536402 PMCID: PMC5344237 DOI: 10.3390/biomedicines3010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/29/2014] [Accepted: 01/27/2015] [Indexed: 01/04/2023] Open
Abstract
human keratinocyte model, may indicate a role for HGFl in active wound healing.
Collapse
Affiliation(s)
- James C Glasbey
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University-Peking University Cancer Institute, Cardiff University-Capital Medical University Joint Centre Biomedical Research, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK.
- Department of Wound Healing and Welsh Wound Innovation Centre, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University-Peking University Cancer Institute, Cardiff University-Capital Medical University Joint Centre Biomedical Research, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK.
| | - David C Bosanquet
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University-Peking University Cancer Institute, Cardiff University-Capital Medical University Joint Centre Biomedical Research, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK.
- Department of Wound Healing and Welsh Wound Innovation Centre, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University-Peking University Cancer Institute, Cardiff University-Capital Medical University Joint Centre Biomedical Research, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK.
- Department of Wound Healing and Welsh Wound Innovation Centre, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Keith G Harding
- Department of Wound Healing and Welsh Wound Innovation Centre, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University-Peking University Cancer Institute, Cardiff University-Capital Medical University Joint Centre Biomedical Research, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
18
|
Li J, Chanda D, Shiri-Sverdlov R, Neumann D. MSP: an emerging player in metabolic syndrome. Cytokine Growth Factor Rev 2014; 26:75-82. [PMID: 25466635 DOI: 10.1016/j.cytogfr.2014.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/22/2014] [Indexed: 12/15/2022]
Abstract
MSP (Macrophage Stimulating Protein; also known as Hepatocyte Growth Factor-like protein (HGFL) and MST1) is a secreted protein and the ligand for transmembrane receptor tyrosine kinase Recepteur d'Origine Nantais (RON; also known as MST1R). Since its discovery, MSP has been demonstrated to play a key role in regulating inflammation in the peripheral tissues of multiple disease models. Recent evidences also point toward a beneficial role of MSP in the regulation of hepatic lipid and glucose metabolism, thereby implicating MSP as a crucial regulator in maintaining metabolic homeostasis while simultaneously suppressing inflammatory processes. In this review, we discuss the recent advances that demonstrate the significance of MSP in metabolic syndrome and build a strong case supporting its therapeutic potential.
Collapse
Affiliation(s)
- Jieyi Li
- Department of Molecular Genetics, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Dipanjan Chanda
- Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Dietbert Neumann
- Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
19
|
Mechanisms of hepatocyte growth factor activation in cancer tissues. Cancers (Basel) 2014; 6:1890-904. [PMID: 25268161 PMCID: PMC4276949 DOI: 10.3390/cancers6041890] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/16/2022] Open
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) plays critical roles in cancer progression through its specific receptor, MET. HGF/SF is usually synthesized and secreted as an inactive proform (pro-HGF/SF) by stromal cells, such as fibroblasts. Several serine proteases are reported to convert pro-HGF/SF to mature HGF/SF and among these, HGF activator (HGFA) and matriptase are the most potent activators. Increased activities of both proteases have been observed in various cancers. HGFA is synthesized mainly by the liver and secreted as an inactive pro-form. In cancer tissues, pro-HGFA is likely activated by thrombin and/or human kallikrein 1-related peptidase (KLK)-4 and KLK-5. Matriptase is a type II transmembrane serine protease that is expressed by most epithelial cells and is also synthesized as an inactive zymogen. Matriptase activation is likely to be mediated by autoactivation or by other trypsin-like proteases. Recent studies revealed that matriptase autoactivation is promoted by an acidic environment. Given the mildly acidic extracellular environment of solid tumors, matriptase activation may, thus, be accelerated in the tumor microenvironment. HGFA and matriptase activities are regulated by HGFA inhibitor (HAI)-1 (HAI-1) and/or HAI-2 in the pericellular microenvironment. HAIs may have an important role in cancer cell biology by regulating HGF/SF-activating proteases.
Collapse
|
20
|
Identification of head and neck squamous cell carcinoma biomarker candidates through proteomic analysis of cancer cell secretome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2308-16. [PMID: 23665456 DOI: 10.1016/j.bbapap.2013.04.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/21/2013] [Accepted: 04/29/2013] [Indexed: 01/11/2023]
|
21
|
Wang MH, Zhang R, Zhou YQ, Yao HP. Pathogenesis of RON receptor tyrosine kinase in cancer cells: activation mechanism, functional crosstalk, and signaling addiction. J Biomed Res 2013; 27:345-56. [PMID: 24086167 PMCID: PMC3783819 DOI: 10.7555/jbr.27.20130038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/27/2013] [Indexed: 12/15/2022] Open
Abstract
The RON receptor tyrosine kinase, a member of the MET proto-oncogene family, is a pathogenic factor implicated in tumor malignancy. Specifically, aberrations in RON signaling result in increased cancer cell growth, survival, invasion, angiogenesis, and drug resistance. Biochemical events such as ligand binding, receptor overexpression, generation of structure-defected variants, and point mutations in the kinase domain contribute to RON signaling activation. Recently, functional crosstalk between RON and signaling proteins such as MET and EFGR has emerged as an additional mechanism for RON activation, which is critical for tumorigenic development. The RON signaling crosstalk acts either as a regulatory feedback loop that strengthens or enhances tumorigenic phenotype of cancer cells or serves as a signaling compensatory pathway providing a growth/survival advantage for cancer cells to escape targeted therapy. Moreover, viral oncoproteins derived from Friend leukemia or Epstein-Barr viruses interact with RON to drive viral oncogenesis. In cancer cells, RON signaling is integrated into cellular signaling network essential for cancer cell growth and survival. These activities provide the molecular basis of targeting RON for cancer treatment. In this review, we will discuss recent data that uncover the mechanisms of RON activation in cancer cells, review evidence of RON signaling crosstalk relevant to cancer malignancy, and emphasize the significance of the RON signaling addiction by cancer cells for tumor therapy. Understanding aberrant RON signaling will not only provide insight into the mechanisms of tumor pathogenesis, but also lead to the development of novel strategies for molecularly targeted cancer treatment.
Collapse
Affiliation(s)
- Ming-Hai Wang
- Cancer Biology Research Center, ; Department of Biomedical Sciences, and
| | | | | | | |
Collapse
|
22
|
Abstract
Since the discovery of MSP (macrophage-stimulating protein; also known as MST1 and hepatocyte growth factor-like (HGFL)) as the ligand for the receptor tyrosine kinase RON (also known as MST1R) in the early 1990s, the roles of this signalling axis in cancer pathogenesis has been extensively studied in various model systems. Both in vitro and in vivo evidence has revealed that MSP-RON signalling is important for the invasive growth of different types of cancers. Currently, small-molecule inhibitors and antibodies blocking RON signalling are under investigation. Substantial responses have been achieved in human tumour xenograft models, laying the foundation for clinical validation. In this Review, we discuss recent advances that demonstrate the importance of MSP-RON signalling in cancer and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hang-Ping Yao
- Viral Oncogenesis Section in State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P. R. China
| | | | | | | |
Collapse
|
23
|
Eyob H, Ekiz HA, Derose YS, Waltz SE, Williams MA, Welm AL. Inhibition of ron kinase blocks conversion of micrometastases to overt metastases by boosting antitumor immunity. Cancer Discov 2013; 3:751-60. [PMID: 23612011 DOI: 10.1158/2159-8290.cd-12-0480] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many "nonmetastatic" cancers have spawned undetectable metastases before diagnosis. Eventual outgrowth of these microscopic lesions causes metastatic relapse and death, yet the events that dictate when and how micrometastases convert to overt metastases are largely unknown. We report that macrophage-stimulating protein and its receptor, Ron, are key mediators in conversion of micrometastases to bona fide metastatic lesions through immune suppression. Genetic deletion of Ron tyrosine kinase activity specifically in the host profoundly blocked metastasis. Our data show that loss of Ron function promotes an effective antitumor CD8(+) T-cell response, which specifically inhibits outgrowth of seeded metastatic colonies. Treatment of mice with a Ron-selective kinase inhibitor prevented outgrowth of lung metastasis, even when administered after micrometastatic colonies had already been established. Our findings indicate that Ron inhibitors may hold potential to specifically prevent outgrowth of micrometastases in patients with cancer in the adjuvant setting.
Collapse
Affiliation(s)
- Henok Eyob
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
24
|
Macrophage stimulating protein promotes liver metastases of small cell lung cancer cells by affecting the organ microenvironment. Clin Exp Metastasis 2012; 30:333-44. [PMID: 23011677 DOI: 10.1007/s10585-012-9540-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 09/19/2012] [Indexed: 12/12/2022]
Abstract
The organ microenvironment significantly affects the processes of cancer metastasis. Elucidating the molecular mechanisms of interaction between tumor cells and the organ microenvironment is crucial for the development of effective therapeutic strategies to eradicate cancer metastases. Macrophage stimulating protein (MSP), an activator of macrophages, regulates a pleiotropic array of effects, including proliferation, cellular motility, invasiveness, angiogenesis, and resistance to anoikis. However, the role of MSP in cancer metastasis is still largely unknown. In this study, the action of MSP on the production of metastases was determined in a multiple-organ metastasis model. The murine MSP gene was transfected into two human SCLC cell lines, SBC-5 and H1048, to establish transfectants secreting biologically active MSP. MSP gene transduction did not affect cell proliferation and motility in vitro. Intravenously inoculated MSP transfectants produced significantly larger numbers of liver metastases than parental cells or vector control clones, while there were no significant differences in bone or lung metastases among them. Immunohistochemical analyses of liver metastases revealed that tumor-associated microvessel density and tumor-infiltrating macrophages were significantly increased in lesions produced by MSP transfectants. MSP could stimulate the migration of murine macrophages and endothelial cells in vitro. Consequently, MSP may be one of the major determinants that affects the properties of tumor stroma and that produces a permissive microenvironment to promote cancer metastasis.
Collapse
|
25
|
Orikawa H, Kawaguchi M, Baba T, Yorita K, Sakoda S, Kataoka H. Activation of macrophage-stimulating protein by human airway trypsin-like protease. FEBS Lett 2012; 586:217-21. [PMID: 22245154 DOI: 10.1016/j.febslet.2012.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/21/2011] [Accepted: 01/01/2012] [Indexed: 10/14/2022]
Abstract
Macrophage-stimulating protein (MSP) circulates as a proform protein and requires proteolytic processing for activation. Respiratory ciliated cells express the MSP receptor, recepteur d'origine nantais (RON), at the apical surface, which reportedly has an important role in ciliary function. Like RON, human airway trypsin-like protease (HAT) is also expressed at the apical surface of ciliated cells. Here we show that HAT cleaves proMSP at the physiological activation site, Arg483-Val484. MSP processed by HAT could induce chemotactic responses and morphological changes of peritoneal macrophages. In human respiratory epithelial cells, knock down of HAT expression reduced proMSP processing and RON autophosphorylation. We suggest that HAT is important for MSP-RON signaling in the respiratory tract.
Collapse
Affiliation(s)
- Hiroshi Orikawa
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Ganesan R, Kolumam GA, Lin SJ, Xie MH, Santell L, Wu TD, Lazarus RA, Chaudhuri A, Kirchhofer D. Proteolytic activation of pro-macrophage-stimulating protein by hepsin. Mol Cancer Res 2011; 9:1175-86. [PMID: 21875933 DOI: 10.1158/1541-7786.mcr-11-0004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macrophage-stimulating protein (MSP) is a plasminogen-related growth factor and ligand for the receptor tyrosine kinase RON. The MSP/RON system promotes wound healing and invasive tumor growth and suppresses proinflammatory immune response. MSP binding to RON requires proteolytic conversion of the inactive single-chain form (pro-MSP) into the disulfide-linked α/β heterodimer. The pro-MSP cleavage sequence (Ser-Lys-Leu-Arg(483)↓Val(484)) closely matches the substrate recognition sequences of hepsin, a type II transmembrane serine protease, that is overexpressed in several cancers. Here, we show that recombinant hepsin cleaves pro-MSP at the consensus site Arg(483)-Val(484) with superior efficiency compared with the known activators MT-SP1 and hepatocyte growth factor activator (HGFA). At least 50% of pro-MSP was processed within 1 hour at a hepsin concentration of 2.4 nmol/L and at a molar enzyme to substrate ratio of 1:500. An uncleavable single-chain variant of MSP weakly bound to a RON-Fc fusion protein, whereas hepsin-cleaved MSP bound with a K(D) of 10.3 nmol/L, suggesting that the high-affinity binding site in MSP β-chain was properly formed. LNCaP prostate cancer cells overexpressing hepsin on the cell surface efficiently activated pro-MSP, which was blocked by a specific anti-hepsin antibody. Incubation of pro-MSP with hepsin led to robust RON-mediated phosphorylation of mitogen-activated protein kinase, ribosomal S6 protein, and Akt in human A2780 ovarian carcinoma cells stably expressing RON protein. In macrophages, pro-MSP with hepsin induced chemotaxis and attenuated lipopolysaccharide-dependent production of nitric oxide. These findings suggest that the MSP/RON signaling pathway may be regulated by hepsin in tissue homeostasis and in disease pathologies, such as in cancer and immune disorders.
Collapse
Affiliation(s)
- Rajkumar Ganesan
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, MS #27, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kawaguchi M, Takeda N, Hoshiko S, Yorita K, Baba T, Sawaguchi A, Nezu Y, Yoshikawa T, Fukushima T, Kataoka H. Membrane-bound serine protease inhibitor HAI-1 is required for maintenance of intestinal epithelial integrity. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1815-26. [PMID: 21840293 DOI: 10.1016/j.ajpath.2011.06.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/21/2011] [Accepted: 06/27/2011] [Indexed: 01/13/2023]
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1), encoded by the serine protease inhibitor Kunitz type 1 (SPINT1) gene, is a membrane-bound serine protease inhibitor expressed in epithelial tissues. Mutant mouse models revealed that HAI-1/SPINT1 is essential for placental labyrinth formation and is critically involved in regulating epidermal keratinization through interaction with its cognate cell surface protease, matriptase. HAI-1/SPINT1 is abundantly expressed in both human and mouse intestinal epithelium; therefore, we analyzed its role in intestinal function using mice with intestinal epithelial cell-specific deletion of Spint1 generated by interbreeding mice carrying Spint1(LoxP) homozygous alleles with transgenic mice carrying the Cre recombinase gene controlled by the intestine-specific Villin promoter. Although the resulting mice had normal development and appearance, crypts in the proximal aspect of the colon, including the cecum, exhibited histologic abnormalities and increased apoptosis and epithelial cell turnover accompanied by increased intestinal permeability. Distended endoplasmic reticula were observed ultrastructurally in some crypt epithelial cells, indicative of endoplasmic reticular stress. To study the role of HAI-1/SPINT1 in mucosal injury, we induced colitis by adding dextran sodium sulfate to the drinking water. After dextran sodium sulfate treatment, intestine-specific HAI-1/SPINT1-deficient mice had more severe symptoms and a significantly lower survival rate relative to control mice. These results suggest that HAI-1/SPINT1 plays an important role in maintaining colonic epithelium integrity.
Collapse
Affiliation(s)
- Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Antibodies display great versatility in protein interactions and have become important therapeutic agents for a variety of human diseases. Their ability to discriminate between highly conserved sequences could be of great use for therapeutic approaches that target proteases, for which structural features are conserved among family members. Recent crystal structures of antibody-protease complexes provide exciting insight into the variety of ways antibodies can interfere with the catalytic machinery of serine proteases. The studies revealed the molecular details of two fundamental mechanisms by which antibodies inhibit catalysis of trypsin-like serine proteases, exemplified by hepatocyte growth factor activator and MT-SP1 (matriptase). Enzyme kinetics defines both mechanisms as competitive inhibition systems, yet, on the molecular level, they involve distinct structural elements of the active-site region. In the steric hindrance mechanism, the antibody binds to protruding surface loops and inserts one or two CDR (complementarity-determining region) loops into the enzyme's substrate-binding cleft, which results in obstruction of substrate access. In the allosteric inhibition mechanism the antibody binds outside the active site at the periphery of the substrate-binding cleft and, mediated through a conformational change of a surface loop, imposes structural changes at important substrate interaction sites resulting in impaired catalysis. At the centre of this allosteric mechanism is the 99-loop, which is sandwiched between the substrate and the antibody-binding sites and serves as a mobile conduit between these sites. These findings provide comprehensive structural and functional insight into the molecular versatility of antibodies for interfering with the catalytic machinery of proteases.
Collapse
|
29
|
Laskin DL, Chen L, Hankey PA, Laskin JD. Role of STK in mouse liver macrophage and endothelial cell responsiveness during acute endotoxemia. J Leukoc Biol 2010; 88:373-82. [PMID: 20453108 DOI: 10.1189/jlb.0210113] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acute endotoxemia is associated with excessive production of proinflammatory mediators by hepatic macrophages and endothelial cells, which have been implicated in liver injury and sepsis. In these studies, we analyzed the role of MSP and its receptor STK in regulating the activity of these cells. Acute endotoxemia, induced by administration of LPS (3 mg/kg) to mice, resulted in increased expression of STK mRNA and protein in liver macrophages and endothelial cells, an effect that was dependent on TLR-4. This was correlated with decreased MSP and increased pro-MSP in serum. In Kupffer cells, but not endothelial cells, MSP suppressed LPS-induced NOS-2 expression, with no effect on COX-2. LPS treatment of mice caused a rapid (within 3 h) increase in the proinflammatory proteins NOS-2, IL-1beta, and TNF-alpha, as well as TREM-1 and TREM-3 and the anti-inflammatory cytokine IL-10 in liver macrophages and endothelial cells. Whereas LPS-induced expression of proinflammatory proteins was unchanged in STK-/- mice, IL-10 expression was reduced significantly. Enzymes mediating eicosanoid biosynthesis including COX-2 and mPGES-1 also increased in macrophages and endothelial cells after LPS administration. In STK-/- mice treated with LPS, mPGES-1 expression increased, although COX-2 expression was reduced. LPS-induced up-regulation of SOD was also reduced in STK-/- mice in liver macrophages and endothelial cells. These data suggest that MSP/STK signaling plays a role in up-regulating macrophage and endothelial cell anti-inflammatory activity during hepatic inflammatory responses. This may be important in protecting the liver from tissue injury.
Collapse
Affiliation(s)
- Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, 160 Frelinghuysen Rd., Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
30
|
Kataoka H, Kawaguchi M. Hepatocyte growth factor activator (HGFA): pathophysiological functions in vivo. FEBS J 2010; 277:2230-7. [PMID: 20402763 DOI: 10.1111/j.1742-4658.2010.07640.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocyte growth factor activator (HGFA) is a serine protease initially identified as a potent activator of hepatocyte growth factor/scatter factor. Hepatocyte growth factor/scatter factor is known to be critically involved in tissue morphogenesis, regeneration, and tumor progression, via its receptor, MET. In vivo, HGFA also activates macrophage-stimulating protein, which has roles in macrophage recruitment and inflammatory processes, cellular survival and wound healing through its receptor, RON. Therefore, the pericellular activity of HGFA might be an important factor regulating the activities of these multifunctional cytokines in vivo. HGFA is secreted mainly by the liver, circulates in the plasma as a zymogen (pro-HGFA), and is activated in response to tissue injury, including tumor growth. In addition, local production of pro-HGFA by epithelial, stromal or tumor cells has been reported. Although the generation of HGFA-knockout mice revealed that the role played by HGFA in normal development and physiological settings can be compensated for by other protease systems, HGFA has important roles in regeneration and initial macrophage recruitment in injured tissue in vivo. Insufficient activity of HGFA results in impaired regeneration of severely damaged mucosal epithelium, and may contribute to the progression of fibrotic lung diseases. On the other hand, deregulated excess activity of HGFA may be involved in the progression of some types of cancer.
Collapse
Affiliation(s)
- Hiroaki Kataoka
- Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan.
| | | |
Collapse
|
31
|
Eigenbrot C, Ganesan R, Kirchhofer D. Hepatocyte growth factor activator (HGFA): molecular structure and interactions with HGFA inhibitor-1 (HAI-1). FEBS J 2010; 277:2215-22. [DOI: 10.1111/j.1742-4658.2010.07638.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Ganesan R, Eigenbrot C, Wu Y, Liang WC, Shia S, Lipari MT, Kirchhofer D. Unraveling the allosteric mechanism of serine protease inhibition by an antibody. Structure 2010; 17:1614-1624. [PMID: 20004165 DOI: 10.1016/j.str.2009.09.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/17/2009] [Accepted: 09/18/2009] [Indexed: 11/29/2022]
Abstract
Recent structural studies have outlined the mechanism of protease inhibition by active site-directed antibodies. However, the molecular basis of allosteric inhibition by antibodies has been elusive. Here we report the 2.35 A resolution structure of the trypsin-like serine protease hepatocyte growth factor activator (HGFA) in complex with the allosteric antibody Ab40, a potent inhibitor of HGFA catalytic activity. The antibody binds at the periphery of the substrate binding cleft and imposes a conformational change on the entire 99-loop (chymotrypsinogen numbering). The altered conformation of the 99-loop is incompatible with substrate binding due to the partial collapse of subsite S2 and the reorganization of subsite S4. Remarkably, a single residue deletion of Ab40 abolished inhibition of HGFA activity, commensurate with the reversal of the 99-loop conformation to its "competent" state. The results define an "allosteric switch" mechanism as the basis of protease inhibition by an allosteric antibody.
Collapse
Affiliation(s)
- Rajkumar Ganesan
- Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Charles Eigenbrot
- Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080, USA; Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Yan Wu
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Wei-Ching Liang
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Steven Shia
- Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Michael T Lipari
- Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Daniel Kirchhofer
- Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|