1
|
Wu Y, Zhang K, Zheng Y, Jin H. A review of potential mechanisms and treatments of gastric intestinal metaplasia. Eur J Gastroenterol Hepatol 2025; 37:383-394. [PMID: 39975991 DOI: 10.1097/meg.0000000000002903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Gastric intestinal metaplasia (GIM) is a pathological process where gastric mucosal epithelial cells are replaced by intestinal-type cells, serving as a precursor lesion for gastric cancer. This transformation involves various genetic and environmental factors, affecting key genes and signaling pathways. Recent research has revealed complex mechanisms, including changes in gene expression, abnormal signaling pathway activation, and altered cell behavior. This review summarizes the latest research on GIM, discussing its pathogenesis, current treatment strategies, and potential efficacy of emerging approaches like gene editing, microbiome interventions, and integrative medicine. By exploring these strategies, we aim to provide more effective treatments for GIM and reduce gastric cancer incidence. The review also highlights the importance of interdisciplinary studies in understanding GIM mechanisms and improving treatment strategies.
Collapse
Affiliation(s)
- Yueyao Wu
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | | | | | | |
Collapse
|
2
|
Sugano K, Moss SF, Kuipers EJ. Gastric Intestinal Metaplasia: Real Culprit or Innocent Bystander as a Precancerous Condition for Gastric Cancer? Gastroenterology 2023; 165:1352-1366.e1. [PMID: 37652306 DOI: 10.1053/j.gastro.2023.08.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Gastric intestinal metaplasia (GIM), which denotes conversion of gastric mucosa into an intestinal phenotype, can occur in all regions of the stomach, including cardiac, fundic, and pyloric mucosa. Since the earliest description of GIM, its association with gastric cancer of the differentiated (intestinal) type has been a well-recognized concern. Many epidemiologic studies have confirmed GIM to be significantly associated with subsequent gastric cancer development. Helicobacter pylori, the principal etiologic factor for gastric cancer, plays the most important role in predisposing to GIM. Although the role of GIM in the stepwise progression model of gastric carcinogenesis (the so-called "Correa cascade") has come into question recently, we review the scientific evidence that strongly supports this long-standing model and propose a new progression model that builds on the Correa cascade. Eradication of H pylori is the most important method for preventing gastric cancer globally, but the effect of eradication on established GIM, is limited, if any. Endoscopic surveillance for GIM may, therefore, be necessary, especially when there is extensive corpus GIM. Recent advances in image-enhanced endoscopy with integrated artificial intelligence have facilitated the identification of GIM and neoplastic lesions, which will impact preventive strategies in the near future.
Collapse
Affiliation(s)
| | - Steven F Moss
- Alpert Medical School of Brown University, Providence, Rhode Island
| | - Ernst J Kuipers
- Erasmus Medical Center, Rotterdam and Minister, Ministry of Health, Welfare, and Sport, Hague, The Netherlands
| |
Collapse
|
3
|
Abstract
ABSTRACT Gastric intestinal metaplasia (GIM) is a precancerous lesion of gastric cancer (GC) and is considered an irreversible point of progression for GC. Helicobacter pylori infection can cause GIM, but its eradication still does not reverse the process. Bile reflux is also a pathogenic factor in GIM and can continuously irritate the gastric mucosa, and bile acids in refluxed fluid have been widely reported to be associated with GIM. This paper reviews in detail the relationship between bile reflux and GIM and the mechanisms by which bile acids induce GIM.
Collapse
|
4
|
Koide T, Koyanagi-Aoi M, Uehara K, Kakeji Y, Aoi T. CDX2-induced intestinal metaplasia in human gastric organoids derived from induced pluripotent stem cells. iScience 2022; 25:104314. [PMID: 35602937 PMCID: PMC9118752 DOI: 10.1016/j.isci.2022.104314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 11/03/2022] Open
Abstract
Intestinal metaplasia is related to gastric carcinogenesis. Previous studies have suggested the important role of CDX2 in intestinal metaplasia, and several reports have shown that the overexpression of CDX2 in mouse gastric mucosa caused intestinal metaplasia. However, no study has examined the induction of intestinal metaplasia using human gastric mucosa. In the present study, to produce an intestinal metaplasia model in human gastric mucosa in vitro, we differentiated human-induced pluripotent stem cells (hiPSC) to gastric organoids, followed by the overexpression of CDX2 using a tet-on system. The overexpression of CDX2 induced, although not completely, intestinal phenotypes and the enhanced expression of many, but not all, intestinal genes and previously reported intestinal metaplasia-related genes in the gastric organoids. This model can help clarify the mechanisms underlying intestinal metaplasia and carcinogenesis in human gastric mucosa and develop therapies to restitute precursor conditions of gastric cancer to normal mucosa.
Collapse
Affiliation(s)
- Takahiro Koide
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Japan.,Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Japan.,Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan
| | - Keiichiro Uehara
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Japan.,Department of Diagnostic Pathology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Takashi Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Japan.,Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan
| |
Collapse
|
5
|
He Q, Liu L, Wei J, Jiang J, Rong Z, Chen X, Zhao J, Jiang K. Roles and action mechanisms of bile acid-induced gastric intestinal metaplasia: a review. Cell Death Dis 2022; 8:158. [PMID: 35379788 PMCID: PMC8979943 DOI: 10.1038/s41420-022-00962-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022]
Abstract
Gastric intestinal metaplasia (IM) is a precancerous lesion that increases the risk of subsequent gastric cancer (GC) development. Therefore, the mechanism of IM has been the focus of basic and clinical research. Helicobacter pylori (H. pylori) infection has been recognized as the main pathogenesis of gastric IM. However, more and more studies have shown that chronic inflammation of gastric mucosa caused by bile reflux is the key pathogenic factor of gastric IM. Bile reflux activates the expression of IM biomarkers via the bile acid receptor. In addition, microRNAs, exosomes, and epigenetics are also involved in the occurrence and development of bile acid-induced gastric IM. Currently, the relevant research is still very few. The molecular mechanism of the phenotypic transformation of gastrointestinal epithelial cells induced by bile acids has not been fully understood. This article mainly reviews the physiology and pathology of bile acid, mechanism of gastric IM induced by bile acid, bile acid receptors, and so on, in order to provide reference for further research.
Collapse
Affiliation(s)
- Qijin He
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China
| | - Limin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China
| | - Jiaying Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China
| | - Zheng Rong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China.
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China.
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China.
| |
Collapse
|
6
|
Chen HY, Hu Y, Lu NH, Zhu Y. Caudal type homeoboxes as a driving force in Helicobacter pylori infection-induced gastric intestinal metaplasia. Gut Microbes 2020; 12:1-12. [PMID: 33031021 PMCID: PMC7553748 DOI: 10.1080/19490976.2020.1809331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
(H. pylori), a common pathogenic bacterium in the stomach, has been demonstrated to be a major cause of gastric cancer (GC). The typical pathological evolution of H. pylori infection-induced GC involves development from gastric atrophy, via intestinal metaplasia (IM) and dysplasia, to intestinal-type GC. During this process, IM is considered to be an "irreversible point" that significantly increases the risk for GC. Therefore, the elucidation of the mechanism underlying IM is of great significance for the prevention and treatment of gastric mucosal carcinogenesis associated with H. pylori infection. Caudal type homeoboxes (CDXs) are transcription factors involved in intestinal differentiation establishment and the maintenance of normal intestinal mucosa and IM. H. pylori infection increases the expression of CDXs through epigenetic regulation, the nuclear factor-kappaB signaling pathway and its downstream proinflammatory factors, and the transforming growth factor-beta signaling pathway, leading to the progression from normal gastric mucosa to IM. However, the precise mechanisms of gastric intestinal metaplasia have not yet been fully elucidated. In this review, we focus on research progress revealing the functions of CDXs in H. pylori infection-induced IM, as well as the regulators modulating this process.
Collapse
Affiliation(s)
- Hong-Yan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China,CONTACT Yin Zhu Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi Province, China
| |
Collapse
|
7
|
Zhou H, Ni Z, Li T, Su L, Zhang L, Liu N, Shi Y. Activation of FXR promotes intestinal metaplasia of gastric cells via SHP-dependent upregulation of the expression of CDX2. Oncol Lett 2018; 15:7617-7624. [PMID: 29849798 PMCID: PMC5962842 DOI: 10.3892/ol.2018.8342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
Gastric intestinal metaplasia (IM) induced by bile acid is a precancerous lesion of gastric adenocarcinoma and is associated with the expression of caudal-related homeobox 2 (CDX2). In the present study, the role of farnesoid X receptor (FXR) on the regulation of CDX2 in gastric cells was investigated and the underlying molecular mechanisms were examined. Human gastric cell lines were treated with chenodeoxycholic acid (CDCA) or FXR agonist GW4064. Cells were treated with CDCA in the presence or absence of the FXR antagonist or FXR siRNA transfection. Next, cells were treated with CDCA in the presence or absence of SHP siRNA transfection and FXR, CDX2 and SHP mRNA and protein levels were determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis. A chromatin immunoprecipitation assay was performed to examine the relationship between FXR and SHP and the expressions of FXR and CDX2 in gastritis and IM tissues were detected using immunohistochemistry. The results revealed that CDCA was able to induce CDX2 expression, which could be blocked by inhibition or knockdown of FXR. Mechanistically, FXR directly induced the expression of small heterodimer partner (SHP). SHP knockdown significantly decreased CDCA-induced CDX2 expression. ChIP results indicated that FXR could directly bind SHP promoter and promote SHP expression. Finally, immunohistochemistry results demonstrated that the expression levels of CDX2 and FXR in human IM lesions were significantly higher, compared with those in gastritis lesions, and were positively correlated. Collectively, these results revealed that the activation of FXR and sequential direct transcriptional induction of SHP were involved in the expression of CDX2 induced by bile acid in gastric IM lesions.
Collapse
Affiliation(s)
- Haining Zhou
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhen Ni
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ting Li
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Linna Su
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lianfeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Na Liu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
8
|
Follow-Up Study on CDX1 and CDX2 mRNA Expression in Noncancerous Gastric Mucosae After Helicobacter pylori Eradication. Dig Dis Sci 2016; 61:1051-9. [PMID: 26841784 DOI: 10.1007/s10620-016-4048-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/19/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Changes in CDX1/CDX2 in gastric mucosae following Helicobacter pylori eradication have not been clarified yet. AIMS To evaluate the changes in CDX1/CDX2 expression after H. pylori eradication, in relation to the reversibility of intestinal metaplasia (IM). METHODS Time course of CDX1/CDX2 expressions was investigated in 176 subjects with various gastroduodenal disorders. Among them, 132 patients were H. pylori positives; H. pylori were eradicated in 107 of them; 13 failed to eradicate; and 12 did not receive H. pylori eradication therapy. Forty-four subjects were H. pylori negatives. Expression levels in CDX1 and CDX2 from noncancerous gastric mucosae of the corpus, as well as the histologic findings of gastric mucosae, were evaluated during the follow-up. RESULTS Average follow-up duration was 33.7 months (range 2-97 months). Expression levels in both CDX1 and CDX2 mRNAs were correlated with IM grade in the corpus (ρ = 0.633 and 0.554, respectively, all P < 0.001). Changes in CDX1/CDX2 mRNA expressions following H. pylori eradication showed only insignificant results; IM grade at the antrum and corpus showed a tendency to decrease after H. pylori eradication without statistical significance (P > 0.05). However, histologic improvement of IM at the corpus was associated with a decrease in CDX2 mRNA expression during the follow-up (linear mixed model, P for slope = 0.015). CONCLUSIONS In this study, eradication of H. pylori did not show any beneficial effects on aberrant CDX1/CDX2 expressions or IM. Reversibility of IM may be associated with a decrease in CDX2 mRNA expression.
Collapse
|
9
|
Abstract
Premalignant lesions of gastric cancer encompass a variety of conditions such as chronic gastritis, intestinal metaplasia and dysplasia, in which elevated risk of developing gastric cancer have been documented. Among them, intestinal metaplasia is frequently encountered in our daily endoscopic examination, yet its clinical significance is often underestimated despite of a number of reports demonstrating genetic and epigenetic alterations in the intestinal metaplastic mucosa. In this review, I will describe the molecular mechanisms of phenotypic changes from gastric mucosa to intestinal metaplasia based on our analysis of mouse model of intestinal metaplasia generated by ectopic expression of CDX2 in conjunction with the studies with human intestinal metaplasia.
Collapse
Affiliation(s)
- Kentaro Sugano
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
10
|
Hu B, Chen H, Liu X, Zhang C, Cole GJ, Lee JA, Chen X. Transgenic overexpression of cdx1b induces metaplastic changes of gene expression in zebrafish esophageal squamous epithelium. Zebrafish 2013; 10:218-227. [PMID: 23672288 PMCID: PMC3673616 DOI: 10.1089/zeb.2012.0784] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cdx2 has been suggested to play an important role in Barrett's esophagus or intestinal metaplasia (IM) in the esophagus. To investigate whether transgenic overexpression of cdx1b, the functional equivalent of mammalian Cdx2 in zebrafish, may lead to IM of zebrafish esophageal squamous epithelium, a transgenic zebrafish system was developed by expressing cdx1b gene under the control of zebrafish keratin 5 promoter (krt5p). Gene expression in the esophageal squamous epithelium of wild-type and transgenic zebrafish was analyzed by Affymetrix microarray and confirmed by in situ hybridization. Morphology, mucin expression, cell proliferation, and apoptosis were analyzed by hematoxylin & eosin (HE) staining, Periodic acid Schiff (PAS) Alcian blue staining, proliferating cell nuclear antigen (PCNA) immunohistochemical staining, and TUNEL assay as well. cdx1b was found to be overexpressed in the nuclei of esophageal squamous epithelial cells of the transgenic zebrafish. Ectopic expression of cdx1b disturbed the development of this epithelium in larval zebrafish and induced metaplastic changes in gene expression in the esophageal squamous epithelial cells of adult zebrafish, that is, up-regulation of intestinal differentiation markers and down-regulation of squamous differentiation markers. However, cdx1b failed to induce histological IM, or to modulate cell proliferation and apoptosis in the squamous epithelium of adult transgenic zebrafish.
Collapse
Affiliation(s)
- Bo Hu
- Cancer Research Program, Department of Biology, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
| | - Hao Chen
- Cancer Research Program, Department of Biology, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
| | - Xiuping Liu
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Chengjin Zhang
- Neuroscience Research Program, Department of Biology, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
| | - Gregory J. Cole
- Neuroscience Research Program, Department of Biology, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
| | - Ju-Ahng Lee
- Neuroscience Research Program, Department of Biology, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
| | - Xiaoxin Chen
- Cancer Research Program, Department of Biology, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
| |
Collapse
|
11
|
Bornschein J, Tóth K, Selgrad M, Kuester D, Wex T, Molnár B, Tulassay Z, Malfertheiner P. Dysregulation of CDX1, CDX2 and SOX2 in patients with gastric cancer also affects the non-malignant mucosa. J Clin Pathol 2013; 66:819-22. [PMID: 23613102 DOI: 10.1136/jclinpath-2013-201448] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Multiple microRNAs induced by Cdx1 suppress Cdx2 in human colorectal tumour cells. Biochem J 2012; 447:449-55. [PMID: 22849325 DOI: 10.1042/bj20120434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mammalian transcriptional factors, Cdx1 and Cdx2 (Cdx is caudal-type homeobox) are paralogues and critical for the cellular differentiation of intestinal or colorectal epithelia. It has been reported previously that in Cdx1 transgenic or knockout mice, endogenous Cdx2 levels are inversely correlated with Cdx1 levels. Recently, we found that exogenous Cdx1 expression can suppress Cdx2 in a human colorectal tumour cell line, SW480, although the underlying molecular mechanisms were unclear. In the present study, we show that several microRNAs induced by exogenous Cdx1 expression directly bind to the CDX2 mRNA 3'UTR (untranslated region) to destabilize these transcripts, finally leading to their degradation. Using microarray analysis, we found that several miRNAs that were computationally predicted to target CDX2 mRNAs are up-regulated by exogenous Cdx1 expression in SW480 cells. Among these molecules, we identified miR-9, miR-16 and miR-22 as having the potential to suppress Cdx2 through the binding of the 3'UTR to its transcript. Importantly, simultaneous mutations of both the miR-9- and miR-16-binding sites in the CDX2 3'UTR were shown to be sufficient to block Cdx2 suppression. The results of the present study suggest a unique feature of miRNAs in which they contribute to homoeostasis by limiting the levels of transcription factors belonging to the same gene family.
Collapse
|
13
|
Wang XT, Wei WY, Kong FB, Lian C, Luo W, Xiao Q, Xie YB. Prognostic significance of Cdx2 immunohistochemical expression in gastric cancer: a meta-analysis of published literatures. J Exp Clin Cancer Res 2012; 31:98. [PMID: 23181722 PMCID: PMC3533813 DOI: 10.1186/1756-9966-31-98] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 10/20/2012] [Indexed: 12/16/2022] Open
Abstract
Cdx2 is a homeobox domain-containing transcription factor that is important in the development and differentiation of the intestinal cells, and served as a potential biomarker of tumor progression in early intestinal-type gastric cancer. However, its prognostic value and significance in gastric cancer remain controversial. A meta-analysis based on published studies was performed to obtain an accurate evaluation of the association between the presence of Cdx2-positive in clinical samples and clinical outcome. A total of 13 eligible retrospective cohort studies with 1513 patients were included. Cdx2-positive cases were significantly associated with higher male-to-female ratio (RR=1.27, 95% CI: 1.17-1.38, P<0.00001 fixed-effect), lower (I+II) clinical stage (RR=1.63, 95% CI: 1.42-1.87, P<0.00001 fixed-effect), better histologic differentiation (RR=1.54, 95% CI: 1.34-1.76, P<0.00001 fixed-effect), and lower rate of vascular invasion (RR=1.23, 95% CI: 1.08-1.41, P=0.002 fixed-effect) and lymph node metastasis (RR=1.52, 95% CI: 1.33-1.73, P<0.00001 fixed-effect), as well as higher 5-year survival rate (HR=2.22, 95% CI: 1.78-2.75, P<0.00001 fixed-effect). However, the presence of Cdx2 was not associated with tumor size. In summary, Cdx2 is a prognostic factor in gastric cancer, which acts as a marker of good outcome in patients with gastric cancer. Further clinical studies are needed to confirm the role of Cdx2 in clinical practice.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- Departments of Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, PR China
| | - Wei-Yuan Wei
- Departments of Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, PR China
| | - Fan-Biao Kong
- Departments of Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, PR China
| | - Chao Lian
- Departments of Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, PR China
| | - Wen Luo
- Departments of Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, PR China
| | - Qiang Xiao
- Departments of Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, PR China
| | - Yu-Bo Xie
- Departments of Anesthesiology, The First Affiliated Hospital, Guangxi Medical University, Nanning, PR China
| |
Collapse
|
14
|
CDX1 confers intestinal phenotype on gastric epithelial cells via induction of stemness-associated reprogramming factors SALL4 and KLF5. Proc Natl Acad Sci U S A 2012; 109:20584-9. [PMID: 23112162 DOI: 10.1073/pnas.1208651109] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Intestinal metaplasia of the stomach, a mucosal change characterized by the conversion of gastric epithelium into an intestinal phenotype, is a precancerous lesion from which intestinal-type gastric adenocarcinoma arises. Chronic infection with Helicobacter pylori is a major cause of gastric intestinal metaplasia, and aberrant induction by H. pylori of the intestine-specific caudal-related homeobox (CDX) transcription factors, CDX1 and CDX2, plays a key role in this metaplastic change. As such, a critical issue arises as to how these factors govern the cell- and tissue-type switching. In this study, we explored genes directly activated by CDX1 in gastric epithelial cells and identified stemness-associated reprogramming factors SALL4 and KLF5. Indeed, SALL4 and KLF5 were aberrantly expressed in the CDX1(+) intestinal metaplasia of the stomach in both humans and mice. In cultured gastric epithelial cells, sustained expression of CDX1 gave rise to the induction of early intestinal-stemness markers, followed by the expression of intestinal-differentiation markers. Furthermore, the induction of these markers was suppressed by inhibiting either SALL4 or KLF5 expression, indicating that CDX1-induced SALL4 and KLF5 converted gastric epithelial cells into tissue stem-like progenitor cells, which then transdifferentiated into intestinal epithelial cells. Our study places the stemness-related reprogramming factors as critical components of CDX1-directed transcriptional circuitries that promote intestinal metaplasia. Requirement of a transit through dedifferentiated stem/progenitor-like cells, which share properties in common with cancer stem cells, may underlie predisposition of intestinal metaplasia to neoplastic transformation.
Collapse
|
15
|
Methylation-dependent activation of CDX1 through NF-κB: a link from inflammation to intestinal metaplasia in the human stomach. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:487-98. [PMID: 22749770 DOI: 10.1016/j.ajpath.2012.04.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/16/2012] [Accepted: 04/12/2012] [Indexed: 02/07/2023]
Abstract
The caudal homeobox factor 1 (CDX1) is an essential transcription factor for intestinal differentiation. Its aberrant expression in intestinal metaplasia of the upper gastrointestinal tract is a hallmark within the gastritis-metaplasia-carcinoma sequence. CDX1 expression is influenced by certain pathways, such as Wnt, Ras, or NF-κB signaling; however, these pathways alone cannot explain the transient expression of CDX1 in intestinal metaplasia or the molecular inactivation mechanism of its loss in cases of advanced gastric cancer. In this study, we investigated the epigenetic inactivation of CDX1 by promoter methylation, as well as the functional link of CDX1 promoter methylation to the inflammatory NF-κB signaling pathway. We identified methylation-dependent NF-κB binding to the CDX1 promoter and quantified it using competitive electrophoretic mobility shift assays and chromatin immunoprecipitation. A methylated CDX1 promoter was associated with closed chromatin structure, reduced NF-κB binding, and transcriptional silencing. Along the gastritis-metaplasia-carcinoma sequence, we observed a biphasic pattern of tumor necrosis factor-α (TNF-α) protein expression and an inverse biphasic pattern of CDX1 promoter methylation; both are highly consistent with CDX1 protein expression. The stages of hyper-, hypo-, and hyper-methylation patterns of the CDX1 promoter were inversely correlated with the NF-κB signaling activity along this sequence. In conclusion, these functionally interacting events drive CDX1 expression and contribute to intestinal metaplasia, epithelial dedifferentiation, and carcinogenesis in the human stomach.
Collapse
|
16
|
Lee BH, Kim N, Lee HS, Kang JM, Park HK, Jo HJ, Shin CM, Lee SH, Park YS, Hwang JH, Kim JW, Jeong SH, Lee DH, Jung HC, Song IS. The Role of CDX2 in Intestinal Metaplasia Evaluated Using Immunohistochemistry. Gut Liver 2012; 6:71-7. [PMID: 22375174 PMCID: PMC3286742 DOI: 10.5009/gnl.2012.6.1.71] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/13/2011] [Indexed: 12/31/2022] Open
Abstract
Background/Aims Intestinal metaplasia (IM) has been regarded as a premalignant condition. This study evaluated the role of the transforming factor CDX2 according to the severity and type of IM. Methods This analysis was performed on 383 subjects with IM in the antrum and/or body, with diagnoses that were categorized as controls, dysplasias, and gastric cancers. The IM grades were classified into four groups as negative, mild, moderate or severe using the updated Sydney scoring system. The IM subtypes were categorized as type I, type II, and type III using high iron diamine and alcian blue (pH 2.5) staining. The CDX2 expression in the IM foci was evaluated using immunohistochemistry in specimens from the antrum and/or body. Results CDX2 expression increased according to IM severity (p=0.001) but was not associated with the IM subtype (p=0.881) in the antrum specimens. Similarly, CDX2 expression increased according to the IM grade (p=0.001) but was not associated with the IM subtype (p=0.755) in the body specimens. CDX2 expression was also increased according to baseline disease in the antrum, especially dysplastic and GC group (p=0.003), but not in the body (p=0.582). However, status of Helicobacter pylori infection was not associated with CDX2 expression in the antrum (p=0.692) and body (p=0.271). Conclusions These results show that CDX2 expression is associated with the IM grade regardless of the IM subtype and that it was more frequent in the dysplasia group. These results suggest that CDX2 expression might play an important role in the progression of IM in various environments that can affect neoplastic change.
Collapse
Affiliation(s)
- Byoung Hwan Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cell lineage dynamics in the process leading to intestinal metaplasia. J Gastroenterol 2011; 46:620-8. [PMID: 21384254 DOI: 10.1007/s00535-011-0391-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/30/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gene expression in the early stage of the transition to intestinal metaplasia in human gastric mucosa has not been determined. In this study, we investigated the temporal relationship between cell lineage changes and intestine-specific gene expression in the process leading to intestinal metaplasia, using Cdx2-transgenic mice. METHODS Cellular phenotypes were analyzed by immunohistochemistry and were compared with the gene expression profiles of cell lineage markers by real-time polymerase chain reaction. RESULTS Up to postnatal day (PD) 20, the gastric mucosae of Cdx2-transgenic mice were histologically similar to those of their normal littermates. However, at approximately PD 20, we observed the sporadic appearance of glands in which all the epithelial cells expressed Cdx2 (Cdx2-diffuse positive glands). In the Cdx2-diffuse positive glands, parietal cells had disappeared, the proliferating zone had moved from the isthmus to the base, and absorptive cells and goblet cells were recognized. In contrast, the surrounding mucosa retained the phenotype of the gastric gland in which only some of the epithelial cells expressed Cdx2. During PDs 30 and 40, the entire fundic mucosa changed to transdifferentiated mucosa that was a composite of intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia. An increase in the expression of intestine-specific genes, with a reciprocal decrease in gastric-specific gene expression, began much earlier than the emergence of Cdx2-diffuse positive glands. CONCLUSIONS A dramatic increase in intestine-specific gene expression precedes the morphological appearance of intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia.
Collapse
|