1
|
Wang X, Zhang X, Zhang J, Zhou Y, Wang F, Wang Z, Li X. Advances in microbial production of geraniol: from metabolic engineering to potential industrial applications. Crit Rev Biotechnol 2025; 45:727-742. [PMID: 39266251 DOI: 10.1080/07388551.2024.2391881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024]
Abstract
Geraniol, an acyclic monoterpene alcohol, has significant potential applications in various fields, including: food, cosmetics, biofuels, and pharmaceuticals. However, the current sources of geraniol mainly include plant tissue extraction or chemical synthesis, which are unsustainable and suffer severely from high energy consumption and severe environmental problems. The process of microbial production of geraniol has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Escherichia coli (13.2 g/L) and Saccharomyces cerevisiae (5.5 g/L) laid a solid foundation for the microbial production of geraniol. In this review, recent advances in the development of geraniol-producing strains, including: metabolic pathway construction, key enzyme improvement, genetic modification strategies, and cytotoxicity alleviation, are critically summarized. Furthermore, the key challenges in scaling up geraniol production and future perspectives for the development of robust geraniol-producing strains are suggested. This review provides theoretical guidance for the industrial production of geraniol using microbial cell factories.
Collapse
Affiliation(s)
- Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jia Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yujunjie Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Han Y, Huang Y, Israr M, Li H, Zhang W. Advances in biosynthesis of 7-Dehydrocholesterol through de novo cell factory strategies. BIORESOURCE TECHNOLOGY 2025; 418:131888. [PMID: 39603472 DOI: 10.1016/j.biortech.2024.131888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
7-Dehydrocholesterol (7-DHC) is an important sterol for maintaining human health and is present in the skin. After sun exposure, 7-DHC in the skin is converted to vitamin D3 to strengthen the immune system. In recent years, synthetic biology has gained importance due to the effective and efficient production of various important compounds using microorganisms. Despite the understanding of the mechanisms and pathways of 7-DHC biosynthesis, achieving higher production yields remains a significant challenge. This review aims to provide a comprehensive overview of the current state of 7-DHC biosynthesis. Various synthetic strategies including optimization of rate-limiting enzymes, metabolic fluxes, redox balance, and subcellular localization are discussed. Moreover, the role of omics technology in designing important proteins and gene editing techniques for strain modification to efficiently synthesize 7-DHC will also be discussed.
Collapse
Affiliation(s)
- Yuchen Han
- University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, PR China
| | - Yawen Huang
- University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, PR China
| | - Muhammad Israr
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, PR China
| | - Huanhuan Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, PR China; National Innovation Center for Synthetic Biotechnology, 32 West 7th Avenue, Tianjin 300308, PR China.
| | - Wuyuan Zhang
- University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, PR China; National Innovation Center for Synthetic Biotechnology, 32 West 7th Avenue, Tianjin 300308, PR China.
| |
Collapse
|
3
|
Bassett S, Suganda JC, Da Silva NA. Engineering peroxisomal surface display for enhanced biosynthesis in the emerging yeast Kluyveromyces marxianus. Metab Eng 2024; 86:326-336. [PMID: 39489214 DOI: 10.1016/j.ymben.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The non-conventional yeast Kluyveromyces marxianus is a promising microbial host for industrial biomanufacturing. With the recent development of Cas9-based genome editing systems and other novel synthetic biology tools for K. marxianus, engineering of this yeast has become far more accessible. Enzyme colocalization is a proven approach to increase pathway flux and the synthesis of non-native products. Here, we engineer K. marxianus to enable peroxisomal surface display, an enzyme colocalization technique for displaying enzymes on the peroxisome membrane via an anchoring motif from the peroxin Pex15. The native KmPex15 anchoring motif was identified and fused to GFP, resulting in successful localization to the surface of the peroxisomes. To demonstrate the advantages for pathway localization, the Pseudomonas savastanoi IaaM and IaaH enzymes were co-displayed on the peroxisome surface; this increased production of indole-3-acetic acid 7.9-fold via substrate channeling effects. We then redirected pathway flux by displaying the violacein pathway enzymes VioE and VioD from Chromobacterium violaceum, increasing selectivity of proviolacein to prodeoxyviolacein by 2.5-fold. Finally, we improved direct access to peroxisomal acetyl-CoA and increased titers of the polyketide triacetic acid lactone (TAL) by 2-fold through concurrent display of the proteins Cat2, Acc1, and the type III PKS 2-pyrone synthase from Gerbera hybrida relative to the same three enzymes diffusing in the cytosol. We further improved TAL production by up to 2.1-fold through engineering peroxisome morphology and lifespan. Our findings demonstrate that peroxisomal surface display is an efficient enzyme colocalization strategy in K. marxianus and applicable for improving production of a wide range of non-native products.
Collapse
Affiliation(s)
- Shane Bassett
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, 92697-2580, USA
| | - Jonathan C Suganda
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, 92697-2580, USA
| | - Nancy A Da Silva
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, 92697-2580, USA.
| |
Collapse
|
4
|
Gao Q, Dong Y, Huang Y, Liu S, Zheng X, Ma Y, Qi Q, Wang X, Zhao ZK, Yang X. Dual-Regulation in Peroxisome and Cytoplasm toward Efficient Limonene Biosynthesis with Rhodotorula toruloides. ACS Synth Biol 2024; 13:2545-2554. [PMID: 38860733 DOI: 10.1021/acssynbio.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Rhodotorula toruloides is a potential workhorse for production of various value-added chemicals including terpenoids, oleo-chemicals, and enzymes from low-cost feedstocks. However, the limited genetic toolbox is hindering its metabolic engineering. In the present study, four type I and one novel type II peroxisomal targeting signal (PTS1/PTS2) were characterized and employed for limonene production for the first time in R. toruloides. The implant of the biosynthesis pathway into the peroxisome led to 111.5 mg/L limonene in a shake flask culture. The limonene titer was further boosted to 1.05 g/L upon dual-metabolic regulation in the cytoplasm and peroxisome, which included employing the acetoacetyl-CoA synthase NphT7, adding an additional copy of native ATP-dependent citrate lyase, etc. The final yield was 0.053 g/g glucose, which was the highest ever reported. The newly characterized PTSs should contribute to the expansion of genetic toolboxes forR. toruloides. The results demonstrated that R. toruloides could be explored for efficient production of terpenoids.
Collapse
Affiliation(s)
- Qidou Gao
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Yaqi Dong
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Ying Huang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Sasa Liu
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Xiaochun Zheng
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Yiming Ma
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zongbao Kent Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaobing Yang
- College of Enology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
5
|
de Lange EM, Mol FN, van der Klei IJ, Vlijm R. STED super-resolution microscopy unveils the dynamics of Atg30 on yeast Pex3-labeled peroxisomes. iScience 2024; 27:110481. [PMID: 39156652 PMCID: PMC11326945 DOI: 10.1016/j.isci.2024.110481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Peroxisomes are dynamic organelles with important metabolic functions. Yeast Pex3 is a multifunctional membrane protein aiding in peroxisomal biogenesis, inheritance, and degradation (pexophagy), by interacting with process-specific factors. Using multicolor (live-cell) stimulated emission depletion (STED) nanoscopy, we studied the localization of Pex3 and its binding partners in Hansenula polymorpha. Unlike confocal microscopy, STED allows resolving the membrane of tiny peroxisomes, enabling accurate measurements of the size of all Pex3-labeled peroxisomes. We localized Pex3 and its binding partners at peroxisome-repressing and -inducing conditions and during pexophagy. In-depth quantitative analysis of Pex3 and pexophagy receptor Atg30 showed dynamic changes in their (co)localization. One remarkable response of Atg30 was the shift in position from being sandwiched between clustered peroxisomes at proliferation conditions, to the cytosolically exposed parts of peroxisome clusters upon pexophagy induction. Summarizing, we show that STED allows characterizing dynamics of the localization of peroxisomal proteins in yeast cells.
Collapse
Affiliation(s)
- Eline M.F. de Lange
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Frank N. Mol
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Ida J. van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Rifka Vlijm
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| |
Collapse
|
6
|
Harnessing Cellular Organelles to Bring New Functionalities into Yeast. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Spatial-temporal regulation of fatty alcohol biosynthesis in yeast. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:141. [PMID: 36527110 PMCID: PMC9758912 DOI: 10.1186/s13068-022-02242-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Construction of efficient microbial cell factories is one of the core steps for establishing green bio-manufacturing processes. However, the complex metabolic regulation makes it challenging in driving the metabolic flux toward the product biosynthesis. Dynamically coupling the biosynthetic pathways with the cellular metabolism at spatial-temporal manner should be helpful for improving the production with alleviating the cellular stresses. RESULTS In this study, we observed the mismatch between fatty alcohol biosynthesis and cellular metabolism, which compromised the fatty alcohol production in Saccharomyces cerevisiae. To enhance the fatty alcohol production, we spatial-temporally regulated fatty alcohol biosynthetic pathway by peroxisomal compartmentalization (spatial) and dynamic regulation of gene expression (temporal). In particular, fatty acid/acyl-CoA responsive promoters were identified by comparative transcriptional analysis, which helped to dynamically regulate the expression of acyl-CoA reductase gene MaFAR1 and improved fatty alcohol biosynthesis by 1.62-fold. Furthermore, enhancing the peroxisomal supply of acyl-CoA and NADPH further improved fatty alcohol production to 282 mg/L, 2.52 times higher than the starting strain. CONCLUSIONS This spatial-temporal regulation strategy partially coordinated fatty alcohol biosynthesis with cellular metabolism including peroxisome biogenesis and precursor supply, which should be applied for production of other products in microbes.
Collapse
|
8
|
Jin K, Xia H, Liu Y, Li J, Du G, Lv X, Liu L. Compartmentalization and transporter engineering strategies for terpenoid synthesis. Microb Cell Fact 2022; 21:92. [PMID: 35599322 PMCID: PMC9125818 DOI: 10.1186/s12934-022-01819-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
Microbial cell factories for terpenoid synthesis form a less expensive and more environment-friendly approach than chemical synthesis and extraction, and are thus being regarded as mainstream research recently. Organelle compartmentalization for terpenoid synthesis has received much attention from researchers owing to the diverse physiochemical characteristics of organelles. In this review, we first systematically summarized various compartmentalization strategies utilized in terpenoid production, mainly plant terpenoids, which can provide catalytic reactions with sufficient intermediates and a suitable environment, while bypassing competing metabolic pathways. In addition, because of the limited storage capacity of cells, strategies used for the expansion of specific organelle membranes were discussed. Next, transporter engineering strategies to overcome the cytotoxic effects of terpenoid accumulation were analyzed. Finally, we discussed the future perspectives of compartmentalization and transporter engineering strategies, with the hope of providing theoretical guidance for designing and constructing cell factories for the purpose of terpenoid production.
Collapse
Affiliation(s)
- Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Hongzhi Xia
- Richen Bioengineering Co., Ltd, Nantong, 226000, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
9
|
Transcriptome Analysis on Key Metabolic Pathways in Rhodotorula mucilaginosa Under Pb(II) Stress. Appl Environ Microbiol 2022; 88:e0221521. [PMID: 35311507 DOI: 10.1128/aem.02215-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodotorula mucilaginosa shows adaption to a broad range of Pb2+ stress. In this study, three key pathways, i.e., glycolysis (EMP), the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS), were investigated under 0-2,500 mg · L-1 Pb stress, primarily based on biochemical analysis and RNA sequencing. R. mucilaginosa cells showed similar metabolic response to low/medium (500/1000 mg · L-1) Pb2+ stress. High (2,500 mg · L-1) Pb2+ stress exerted severe cytotoxicity to R. mucilaginosa. The downregulation of HK under low-medium Pb2+ suggested a correlation with the low hexokinase enzymatic activity in vivo. However, IDH3, regulating a key step of circulation in TCA, was upregulated to promote ATP feedstock for downstream OXPHOS. Then, through activation of complex I & IV in the electron transport chain (ETC) and ATP synthase, ATP production was finally enhanced. This mechanism enabled fungal cells to compensate for ATP consumption under low-medium Pb2+ toxicity. Hence, R. mucilaginosa tolerance to such a broad range of Pb2+ concentrations can be attributed to energy adaption. In contrast, high Pb2+ stress caused ATP deficiency. Then, the subsequent degradation of intracellular defense systems further intensified Pb toxicity. This study correlated responses of EMP, TCA, and OXPHOS pathways in R. mucilaginosa under Pb stress, hence providing new insights into the fungal resistance to heavy metal stress. IMPORTANCE Glycolysis (EMP), the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) are critical metabolism pathways for microorganisms to obtain energy during the resistance to heavy metal (HM) stress. However, these pathways at the genetic level have not been elucidated to evaluate their cytoprotective functions for Rhodotorula mucilaginosa under Pb stress. In this study, we investigated these three pathways based on biochemical analysis and RNA sequencing. Under low-medium (500-1,000 mg · L-1) Pb2+ stress, ATP production was stimulated mainly due to the upregulation of genes associated with the TCA cycle and the electron transport chain (ETC). Such an energy compensatory mechanism could allow R. mucilaginosa acclimation to a broad range of Pb2+ concentrations (up to 1000 mg · L-1). In contrast, high (2500 mg · L-1) Pb2+ stress exerted its excessive toxicity by provoking ATP deficiency and damage to intracellular resistance systems. This study provided new insights into R. mucilaginosa resistance to HM stress from the perspective of metabolism.
Collapse
|
10
|
Choi BH, Kang HJ, Kim SC, Lee PC. Organelle Engineering in Yeast: Enhanced Production of Protopanaxadiol through Manipulation of Peroxisome Proliferation in Saccharomyces cerevisiae. Microorganisms 2022; 10:microorganisms10030650. [PMID: 35336225 PMCID: PMC8950469 DOI: 10.3390/microorganisms10030650] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Isoprenoids, which are natural compounds with diverse structures, possess several biological activities that are beneficial to humans. A major consideration in isoprenoid production in microbial hosts is that the accumulation of biosynthesized isoprenoid within intracellular membranes may impede balanced cell growth, which may consequently reduce the desired yield of the target isoprenoid. As a strategy to overcome this suggested limitation, we selected peroxisome membranes as depots for the additional storage of biosynthesized isoprenoids to facilitate increased isoprenoid production in Saccharomyces cerevisiae. To maximize the peroxisome membrane storage capacity of S.cerevisiae, the copy number and size of peroxisomes were increased through genetic engineering of the expression of three peroxisome biogenesis-related peroxins (Pex11p, Pex34p, and Atg36p). The genetically enlarged and high copied peroxisomes in S.cerevisiae were stably maintained under a bioreactor fermentation condition. The peroxisome-engineered S.cerevisiae strains were then utilized as host strains for metabolic engineering of heterologous protopanaxadiol pathway. The yields of protopanaxadiol from the engineered peroxisome strains were ca 78% higher than those of the parent strain, which strongly supports the rationale for harnessing the storage capacity of the peroxisome membrane to accommodate the biosynthesized compounds. Consequently, this study presents in-depth knowledge on peroxisome biogenesis engineering in S.cerevisiae and could serve as basic information for improvement in ginsenosides production and as a potential platform to be utilized for other isoprenoids.
Collapse
Affiliation(s)
- Bo Hyun Choi
- Department of Molecular Science and Technology, Ajou University, World Cup-ro, Yeongtong-gu, Suwon 16499, Korea; (B.H.C.); (H.J.K.)
| | - Hyun Joon Kang
- Department of Molecular Science and Technology, Ajou University, World Cup-ro, Yeongtong-gu, Suwon 16499, Korea; (B.H.C.); (H.J.K.)
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Ajou University, World Cup-ro, Yeongtong-gu, Suwon 16499, Korea; (B.H.C.); (H.J.K.)
- Correspondence: ; Tel.: +82-31-219-2461
| |
Collapse
|
11
|
Cillingová A, Tóth R, Mojáková A, Zeman I, Vrzoňová R, Siváková B, Baráth P, Neboháčová M, Klepcová Z, Brázdovič F, Lichancová H, Hodorová V, Brejová B, Vinař T, Mutalová S, Vozáriková V, Mutti G, Tomáška Ľ, Gácser A, Gabaldón T, Nosek J. Transcriptome and proteome profiling reveals complex adaptations of Candida parapsilosis cells assimilating hydroxyaromatic carbon sources. PLoS Genet 2022; 18:e1009815. [PMID: 35255079 PMCID: PMC8929692 DOI: 10.1371/journal.pgen.1009815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/17/2022] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Many fungal species utilize hydroxyderivatives of benzene and benzoic acid as carbon sources. The yeast Candida parapsilosis metabolizes these compounds via the 3-oxoadipate and gentisate pathways, whose components are encoded by two metabolic gene clusters. In this study, we determine the chromosome level assembly of the C. parapsilosis strain CLIB214 and use it for transcriptomic and proteomic investigation of cells cultivated on hydroxyaromatic substrates. We demonstrate that the genes coding for enzymes and plasma membrane transporters involved in the 3-oxoadipate and gentisate pathways are highly upregulated and their expression is controlled in a substrate-specific manner. However, regulatory proteins involved in this process are not known. Using the knockout mutants, we show that putative transcriptional factors encoded by the genes OTF1 and GTF1 located within these gene clusters function as transcriptional activators of the 3-oxoadipate and gentisate pathway, respectively. We also show that the activation of both pathways is accompanied by upregulation of genes for the enzymes involved in β-oxidation of fatty acids, glyoxylate cycle, amino acid metabolism, and peroxisome biogenesis. Transcriptome and proteome profiles of the cells grown on 4-hydroxybenzoate and 3-hydroxybenzoate, which are metabolized via the 3-oxoadipate and gentisate pathway, respectively, reflect their different connection to central metabolism. Yet we find that the expression profiles differ also in the cells assimilating 4-hydroxybenzoate and hydroquinone, which are both metabolized in the same pathway. This finding is consistent with the phenotype of the Otf1p-lacking mutant, which exhibits impaired growth on hydroxybenzoates, but still utilizes hydroxybenzenes, thus indicating that additional, yet unidentified transcription factor could be involved in the 3-oxoadipate pathway regulation. Moreover, we propose that bicarbonate ions resulting from decarboxylation of hydroxybenzoates also contribute to differences in the cell responses to hydroxybenzoates and hydroxybenzenes. Finally, our phylogenetic analysis highlights evolutionary paths leading to metabolic adaptations of yeast cells assimilating hydroxyaromatic substrates.
Collapse
Affiliation(s)
- Andrea Cillingová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Renáta Tóth
- HCEMM-USZ Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Anna Mojáková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Igor Zeman
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Romana Vrzoňová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Barbara Siváková
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Neboháčová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Klepcová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Filip Brázdovič
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Hana Lichancová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Viktória Hodorová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Tomáš Vinař
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Sofia Mutalová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Giacomo Mutti
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Atilla Gácser
- HCEMM-USZ Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- * E-mail:
| |
Collapse
|
12
|
Meng X, Fang Y, Ding M, Zhang Y, Jia K, Li Z, Collemare J, Liu W. Developing fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity. Biotechnol Adv 2021; 54:107866. [PMID: 34780934 DOI: 10.1016/j.biotechadv.2021.107866] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
Natural products from fungi represent an important source of biologically active metabolites notably for therapeutic agent development. Genome sequencing revealed that the number of biosynthetic gene clusters (BGCs) in fungi is much larger than expected. Unfortunately, most of them are silent or barely expressed under laboratory culture conditions. Moreover, many fungi in nature are uncultivable or cannot be genetically manipulated, restricting the extraction and identification of bioactive metabolites from these species. Rapid exploration of the tremendous number of cryptic fungal BGCs necessitates the development of heterologous expression platforms, which will facilitate the efficient production of natural products in fungal cell factories. Host selection, BGC assembly methods, promoters used for heterologous gene expression, metabolic engineering strategies and compartmentalization of biosynthetic pathways are key aspects for consideration to develop such a microbial platform. In the present review, we summarize current progress on the above challenges to promote research effort in the relevant fields.
Collapse
Affiliation(s)
- Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yu Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Mingyang Ding
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yanyu Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Kaili Jia
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Zhongye Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China.
| |
Collapse
|
13
|
Vögtle FN, Meisinger C. Mitochondria as emergency landing for abandoned peroxins. EMBO Rep 2021; 22:e53790. [PMID: 34414648 PMCID: PMC8490976 DOI: 10.15252/embr.202153790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022] Open
Abstract
Zellweger spectrum disorder (ZSD) is the most severe peroxisomal biogenesis disorder (PBD). Why ZSD patients not only loose functional peroxisomes but also present with severe mitochondrial dysfunction was a long‐standing mystery. In this issue, Nuebel et al (2021) identified that loss of peroxisomes leads to re‐routing of peroxisomal proteins to mitochondria, thereby impairing mitochondrial structure and function. The findings provide the first molecular understanding of the mitochondrial‐peroxisomal link in ZSD.
Collapse
Affiliation(s)
- F-Nora Vögtle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Network Aging Research, Heidelberg University, Heidelberg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Chris Meisinger
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Yocum HC, Pham A, Da Silva NA. Successful Enzyme Colocalization Strategies in Yeast for Increased Synthesis of Non-native Products. Front Bioeng Biotechnol 2021; 9:606795. [PMID: 33634084 PMCID: PMC7901933 DOI: 10.3389/fbioe.2021.606795] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Yeast cell factories, particularly Saccharomyces cerevisiae, have proven valuable for the synthesis of non-native compounds, ranging from commodity chemicals to complex natural products. One significant challenge has been ensuring sufficient carbon flux to the desired product. Traditionally, this has been addressed by strategies involving "pushing" and "pulling" the carbon flux toward the products by overexpression while "blocking" competing pathways via downregulation or gene deletion. Colocalization of enzymes is an alternate and complementary metabolic engineering strategy to control flux and increase pathway efficiency toward the synthesis of non-native products. Spatially controlling the pathway enzymes of interest, and thus positioning them in close proximity, increases the likelihood of reaction along that pathway. This mini-review focuses on the recent developments and applications of colocalization strategies, including enzyme scaffolding, construction of synthetic organelles, and organelle targeting, in both S. cerevisiae and non-conventional yeast hosts. Challenges with these techniques and future directions will also be discussed.
Collapse
Affiliation(s)
- Hannah C Yocum
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Anhuy Pham
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Nancy A Da Silva
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| |
Collapse
|
15
|
Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids. Proc Natl Acad Sci U S A 2020; 117:31789-31799. [PMID: 33268495 DOI: 10.1073/pnas.2013968117] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current approaches for the production of high-value compounds in microorganisms mostly use the cytosol as a general reaction vessel. However, competing pathways and metabolic cross-talk frequently prevent efficient synthesis of target compounds in the cytosol. Eukaryotic cells control the complexity of their metabolism by harnessing organelles to insulate biochemical pathways. Inspired by this concept, herein we transform yeast peroxisomes into microfactories for geranyl diphosphate-derived compounds, focusing on monoterpenoids, monoterpene indole alkaloids, and cannabinoids. We introduce a complete mevalonate pathway in the peroxisome to convert acetyl-CoA to several commercially important monoterpenes and achieve up to 125-fold increase over cytosolic production. Furthermore, peroxisomal production improves subsequent decoration by cytochrome P450s, supporting efficient conversion of (S)-(-)-limonene to the menthol precursor trans-isopiperitenol. We also establish synthesis of 8-hydroxygeraniol, the precursor of monoterpene indole alkaloids, and cannabigerolic acid, the cannabinoid precursor. Our findings establish peroxisomal engineering as an efficient strategy for the production of isoprenoids.
Collapse
|
16
|
Choubey S, Das D, Majumdar S. Cell-to-cell variability in organelle abundance reveals mechanisms of organelle biogenesis. Phys Rev E 2020; 100:022405. [PMID: 31574672 DOI: 10.1103/physreve.100.022405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 12/20/2022]
Abstract
How cells regulate the number of organelles is a fundamental question in cell biology. While decades of experimental work have uncovered four fundamental processes that regulate organelle biogenesis, namely, de novo synthesis, fission, fusion, and decay, a comprehensive understanding of how these processes together control organelle abundance remains elusive. Recent fluorescence microscopy experiments allow for the counting of organelles at the single-cell level. These measurements provide information about the cell-to-cell variability in organelle abundance in addition to the mean level. Motivated by such measurements, we build upon a recent study and analyze a general stochastic model of organelle biogenesis. We compute the exact analytical expressions for the probability distribution of organelle numbers, their mean, and variance across a population of single cells. It is shown that different mechanisms of organelle biogenesis lead to distinct signatures in the distribution of organelle numbers which allow us to discriminate between these various mechanisms. By comparing our theory against published data for peroxisome abundance measurements in yeast, we show that a widely believed model of peroxisome biogenesis that involves de novo synthesis, fission, and decay is inadequate in explaining the data. Also, our theory predicts bimodality in certain limits of the model. Overall, the framework developed here can be harnessed to gain mechanistic insights into the process of organelle biogenesis.
Collapse
Affiliation(s)
- Sandeep Choubey
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstraße 38, 01187 Dresden, Germany
| | - Dipjyoti Das
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Saptarshi Majumdar
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstraße 38, 01187 Dresden, Germany
| |
Collapse
|
17
|
Liu GS, Li T, Zhou W, Jiang M, Tao XY, Liu M, Zhao M, Ren YH, Gao B, Wang FQ, Wei DZ. The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction. Metab Eng 2020; 57:151-161. [DOI: 10.1016/j.ymben.2019.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/19/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023]
|
18
|
Abstract
Microbial synthesis represents an alternative approach for the sustainable production of chemicals, fuels, and medicines. However, construction of biosynthetic pathways always suffers from side reactions, toxicity of intermediates, or low efficiency of substrate channeling. Subcellular compartmentalization may contribute to a more efficient production of target products by reducing side reactions and toxic effects within a compact insular space. The peroxisome, a type of organelle that is involved in catabolism of fatty acids and reactive oxygen species, has attracted a great deal of attention in the construction of eukaryotic cell factories with little impact on essential cellular function. In this chapter, we will systematically review recent advances in peroxisomal compartmentalization for microbial production of valuable biomolecules. Additionally, detailed experimental designs and protocols are also described. We hope a comprehensive understanding of peroxisomes will promote their application in metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
19
|
Abstract
Peroxisomes are key metabolic organelles, which contribute to cellular lipid metabolism, e.g. the β-oxidation of fatty acids and the synthesis of myelin sheath lipids, as well as cellular redox balance. Peroxisomal dysfunction has been linked to severe metabolic disorders in man, but peroxisomes are now also recognized as protective organelles with a wider significance in human health and potential impact on a large number of globally important human diseases such as neurodegeneration, obesity, cancer, and age-related disorders. Therefore, the interest in peroxisomes and their physiological functions has significantly increased in recent years. In this review, we intend to highlight recent discoveries, advancements and trends in peroxisome research, and present an update as well as a continuation of two former review articles addressing the unsolved mysteries of this astonishing organelle. We summarize novel findings on the biological functions of peroxisomes, their biogenesis, formation, membrane dynamics and division, as well as on peroxisome-organelle contacts and cooperation. Furthermore, novel peroxisomal proteins and machineries at the peroxisomal membrane are discussed. Finally, we address recent findings on the role of peroxisomes in the brain, in neurological disorders, and in the development of cancer.
Collapse
Affiliation(s)
- Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Manheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Alfred Voelkl
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - H Dariush Fahimi
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | | |
Collapse
|
20
|
Arinbasarova AY, Machulin AV, Biryukova EN, Sorokin VV, Medentsev AG, Suzina NE. Structural changes in the cell envelope of Yarrowia lipolytica yeast under stress conditions. Can J Microbiol 2018; 64:359-365. [PMID: 29444416 DOI: 10.1139/cjm-2018-0034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ultrastructural changes in the cell envelope of the yeast Yarrowia lipolytica as a stress response were examined using electron microscopy. The formation of new cellular surface structures, including membrane vesicles, pore channels, and wall surface globules, were shown for the first time under conditions of oxidative (endogenous and exogenous) or thermal stress. This demonstrates once again that under stress conditions the microorganisms reveal properties previously unknown for them. Particularly noteworthy is the accumulation of silicon in the surface globules, which was revealed by X-ray microanalysis of the elemental composition of thin sections of cells. A multilayered plasmalemma instead of a 3-layered one is also characteristic for stressed cells. The envelope modifications above were observed only as a stress response and were not detected in stationary-growth-phase yeast cells that assume different physiological states. A decrease in the intracellular level of cAMP allows us to assume that a common factor activates defensive mechanisms thus explaining the similarity of the response under different stress conditions. The data presented not only enable visualization of the yeast stress response and add to our awareness of the diversity of adaptive reactions, but they also raise questions about the interrelations of the stress phenomena and their functional necessity in the cell.
Collapse
Affiliation(s)
- Anna Yu Arinbasarova
- a G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Pr. Nauki, Pushchino, Moscow 142290, Russia
| | - Andrey V Machulin
- a G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Pr. Nauki, Pushchino, Moscow 142290, Russia
| | - Elena N Biryukova
- a G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Pr. Nauki, Pushchino, Moscow 142290, Russia
| | - Vladimir V Sorokin
- b Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 33, Building Leninsky Avenue, Moscow 119071, Russia
| | - Alexander G Medentsev
- a G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Pr. Nauki, Pushchino, Moscow 142290, Russia
| | - Natalya E Suzina
- a G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Pr. Nauki, Pushchino, Moscow 142290, Russia
| |
Collapse
|
21
|
Harnessing yeast organelles for metabolic engineering. Nat Chem Biol 2017; 13:823-832. [DOI: 10.1038/nchembio.2429] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 05/23/2016] [Indexed: 11/08/2022]
|
22
|
Chen X, Shen M, Yang J, Xing Y, Chen D, Li Z, Zhao W, Zhang Y. Peroxisomal fission is induced during appressorium formation and is required for full virulence of the rice blast fungus. MOLECULAR PLANT PATHOLOGY 2017; 18:222-237. [PMID: 26950649 PMCID: PMC6638267 DOI: 10.1111/mpp.12395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Peroxisomes are involved in various metabolic processes and are important for virulence in different pathogenic fungi. How peroxisomes rapidly emerge in the appressorium during fungal infection is poorly understood. Here, we describe a gene, PEF1, which can regulate peroxisome formation in the appressorium by controlling peroxisomal fission, and is required for plant infection in the rice blast fungus Magnaporthe oryzae. Targeted deletion of PEF1 resulted in a reduction in virulence and a delay in penetration and invasive growth in host cells. PEF1 was particularly expressed during appressorial development, and its encoding protein was co-localized with peroxisomes during appressorial development. Compared with the massive vesicle-shaped peroxisomes formed in the wild-type appressorium, the Δpef1 mutant could only form stringy linked immature peroxisomes, suggesting that PEF1 was involved in peroxisomal fission during appressorium formation. We also found that the Δpef1 mutant could not utilize fatty acids efficiently, which can improve significantly the expression level of PEF1 and induce peroxisomal fission. As expected, the Δpef1 mutant showed reduced intracellular production of reactive oxygen species (ROS) during appressorium formation and induced ROS accumulation in host cells during infection. Taken together, PEF1-mediated peroxisomal fission is important for fungal infection by controlling the number of peroxisomes in the appressorium.
Collapse
Affiliation(s)
- Xiao‐Lin Chen
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhan430070China
| | - Mi Shen
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Yunfei Xing
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Deng Chen
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Zhigang Li
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
23
|
Zhou YJ, Buijs NA, Zhu Z, Gómez DO, Boonsombuti A, Siewers V, Nielsen J. Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition. J Am Chem Soc 2016; 138:15368-15377. [DOI: 10.1021/jacs.6b07394] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | | | | | | | - Jens Nielsen
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
- Science
for Life Laboratory, Royal Institute of Technology, SE-17121 Stockholm, Sweden
| |
Collapse
|
24
|
Su H, Zhao Y, Zhou J, Feng H, Jiang D, Zhang KQ, Yang J. Trapping devices of nematode-trapping fungi: formation, evolution, and genomic perspectives. Biol Rev Camb Philos Soc 2015; 92:357-368. [PMID: 26526919 DOI: 10.1111/brv.12233] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 11/29/2022]
Abstract
Nematode-trapping fungi (NTF) are potential biological control agents against plant- and animal-parasitic nematodes. These fungi produce diverse trapping devices (traps) to capture, kill, and digest nematodes as food sources. Most NTF can live as both saprophytes and parasites. Traps are not only the weapons that NTF use to capture and infect nematodes, but also an important indicator of their switch from a saprophytic to a predacious lifestyle. Formation of traps and their numbers are closely related to the nematicidal activity of NTF, so the mechanisms governing trap formation have become a focus of research on NTF. Recently, much progress has been made in our understanding of trap formation, evolution, and the genome, proteome and transcriptome of NTF. Here we provide a comprehensive overview of recent advances in research on traps of NTF. Various inducers of trap formation, trap development, structural properties and evolution of traps are summarized and discussed. We specifically discuss the latest studies of NTF based on genomic, proteomic and transcriptomic analyses.
Collapse
Affiliation(s)
- Hao Su
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| | - Yong Zhao
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| | - Jing Zhou
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| | - Huihua Feng
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| | - Jinkui Yang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| |
Collapse
|
25
|
Delille HK, Dodt G, Schrader M. Pex11pβ-mediated maturation of peroxisomes. Commun Integr Biol 2014. [DOI: 10.4161/cib.13647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
26
|
Arinbasarova AY, Biryukova EN, Suzina NE, Medentsev AG. Synthesis and localization of L-lactate oxidase in yeasts Yarrowia lipolytica. Microbiology (Reading) 2014. [DOI: 10.1134/s002626171405004x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Williams M, Kim K. From membranes to organelles: emerging roles for dynamin-like proteins in diverse cellular processes. Eur J Cell Biol 2014; 93:267-77. [PMID: 24954468 DOI: 10.1016/j.ejcb.2014.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
Dynamin is a GTPase mechanoenzyme most noted for its role in vesicle scission during endocytosis, and belongs to the dynamin family proteins. The dynamin family consists of classical dynamins and dynamin-like proteins (DLPs). Due to structural and functional similarities DLPs are thought to carry out membrane tubulation and scission in a similar manner to dynamin. Here, we discuss the newly emerging roles for DLPs, which include vacuole fission and fusion, peroxisome maintenance, endocytosis and intracellular trafficking. Specific focus is given to the role of DLPs in the budding yeast Saccharomyces cerevisiae because the diverse function of DLPs has been well characterized in this organism. Recent insights into DLPs may provide a better understanding of mammalian dynamin and its associated diseases.
Collapse
Affiliation(s)
- Michelle Williams
- Department of Biology, Missouri State University, 901 South National, Springfield, MO 65897, United States
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 South National, Springfield, MO 65897, United States.
| |
Collapse
|
28
|
Vandenbosch D, De Canck E, Dhondt I, Rigole P, Nelis HJ, Coenye T. Genomewide screening for genes involved in biofilm formation and miconazole susceptibility inSaccharomyces cerevisiae. FEMS Yeast Res 2013; 13:720-30. [DOI: 10.1111/1567-1364.12071] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Davy Vandenbosch
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Evelien De Canck
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Inne Dhondt
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Hans J. Nelis
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| |
Collapse
|
29
|
Opaliński Ł, Bartoszewska M, Fekken S, Liu H, de Boer R, van der Klei I, Veenhuis M, Kiel JAKW. De novo peroxisome biogenesis in Penicillium chrysogenum is not dependent on the Pex11 family members or Pex16. PLoS One 2012; 7:e35490. [PMID: 22536392 PMCID: PMC3334907 DOI: 10.1371/journal.pone.0035490] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/16/2012] [Indexed: 11/18/2022] Open
Abstract
We have analyzed the role of the three members of the Pex11 protein family in peroxisome formation in the filamentous fungus Penicillium chrysogenum. Two of these, Pex11 and Pex11C, are components of the peroxisomal membrane, while Pex11B is present at the endoplasmic reticulum. We show that Pex11 is a major factor involved in peroxisome proliferation. We also demonstrate that P. chrysogenum cells deleted for known peroxisome fission factors (all Pex11 family proteins and Vps1) still contain peroxisomes. Interestingly, we find that, unlike in mammals, Pex16 is not essential for peroxisome biogenesis in P. chrysogenum, as partially functional peroxisomes are present in a pex16 deletion strain. We also show that Pex16 is not involved in de novo biogenesis of peroxisomes, as peroxisomes were still present in quadruple Δpex11 Δpex11B Δpex11C Δpex16 mutant cells. By contrast, pex3 deletion in P. chrysogenum led to cells devoid of peroxisomes, suggesting that Pex3 may function independently of Pex16. Finally, we demonstrate that the presence of intact peroxisomes is important for the efficiency of ß-lactam antibiotics production by P. chrysogenum. Remarkably, distinct from earlier results with low penicillin producing laboratory strains, upregulation of peroxisome numbers in a high producing P. chrysogenum strain had no significant effect on penicillin production.
Collapse
Affiliation(s)
- Łukasz Opaliński
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kluyver Centre for Genomics of Industrial Fermentation, AG Groningen, the Netherlands
| | - Magdalena Bartoszewska
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kluyver Centre for Genomics of Industrial Fermentation, AG Groningen, the Netherlands
| | - Susan Fekken
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kluyver Centre for Genomics of Industrial Fermentation, AG Groningen, the Netherlands
| | - Haiyin Liu
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kluyver Centre for Genomics of Industrial Fermentation, AG Groningen, the Netherlands
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kluyver Centre for Genomics of Industrial Fermentation, AG Groningen, the Netherlands
| | - Ida van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kluyver Centre for Genomics of Industrial Fermentation, AG Groningen, the Netherlands
| | - Marten Veenhuis
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kluyver Centre for Genomics of Industrial Fermentation, AG Groningen, the Netherlands
| | - Jan A. K. W. Kiel
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kluyver Centre for Genomics of Industrial Fermentation, AG Groningen, the Netherlands
- * E-mail:
| |
Collapse
|
30
|
|
31
|
Martín JF, Ullán RV, García-Estrada C. Role of peroxisomes in the biosynthesis and secretion of β-lactams and other secondary metabolites. J Ind Microbiol Biotechnol 2011; 39:367-82. [PMID: 22160272 DOI: 10.1007/s10295-011-1063-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/16/2011] [Indexed: 12/01/2022]
Abstract
Peroxisomes are eukaryotic organelles surrounded by a single bilayer membrane, containing a variety of proteins depending on the organism; they mainly perform degradation reactions of toxic metabolites (detoxification), catabolism of linear and branched-chain fatty acids, and removal of H(2)O(2) (formed in some oxidative processes) by catalase. Proteins named peroxins are involved in recruiting, transporting, and introducing the peroxisomal matrix proteins into the peroxisomes. The matrix proteins contain the peroxisomal targeting signals PTS1 and/or PTS2 that are recognized by the peroxins Pex5 and Pex7, respectively. Initial evidence indicated that the penicillin biosynthetic enzyme isopenicillin N acyltransferase (IAT) of Penicillium chrysogenum is located inside peroxisomes. There is now solid evidence (based on electron microscopy and/or biochemical data) confirming that IAT and the phenylacetic acid- and fatty acid-activating enzymes are also located in peroxisomes. Similarly, the Acremonium chrysogenum CefD1 and CefD2 proteins that perform the central reactions (activation and epimerization of isopenicillin N) of the cephalosporin pathway are targeted to peroxisomes. Growing evidence supports the conclusion that some enzymes involved in the biosynthesis of mycotoxins (e.g., AK-toxin), and the biosynthesis of signaling molecules in plants (e.g., jasmonic acid or auxins) occur in peroxisomes. The high concentration of substrates (in many cases toxic to the cytoplasm) and enzymes inside the peroxisomes allows efficient synthesis of metabolites with interesting biological or pharmacological activities. This compartmentalization poses additional challenges to the cell due to the need to import the substrates into the peroxisomes and to export the final products; the transporters involved in these processes are still very poorly known. This article focuses on new aspects of the metabolic processes occurring in peroxisomes, namely the degradation and detoxification processes that lead to the biosynthesis and secretion of secondary metabolites.
Collapse
Affiliation(s)
- Juan-Francisco Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain.
| | | | | |
Collapse
|
32
|
Delille HK, Dodt G, Schrader M. Pex11pβ-mediated maturation of peroxisomes. Commun Integr Biol 2011; 4:55-8. [PMID: 21509178 DOI: 10.4161/cib.4.1.13647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 01/04/2023] Open
Abstract
Peroxisomes are highly dynamic, multifunctional organelles that display remarkable changes in morphology, number and enzyme content. Peroxisomes multiply by growth and division of pre-existing organelles, but they can also form de novo from the ER. Growth and division of peroxisomes in mammalian cells involves elongation, membrane constriction and final fission and requires the peroxisome biogenesis Pex11 proteins as well as the recruitment of Dynamin-like protein DLP1/Drp1. We recently exploited the division-inhibiting properties of a unique Pex11pβ-YFP fusion protein to further dissect the process of peroxisomal growth and division. By applying life cell imaging and the HaloTag technology, our study revealed that Pex11pβ-mediated growth (elongation) and division of peroxisomes follows a multistep maturation pathway, which is initiated by the formation of an early peroxisomal membrane compartment from a pre-existing peroxisome and its stepwise conversion into a mature, metabolically active peroxisome compartment. Our observations support the view that peroxisomes formed by growth and division of pre-existing ones contain new membrane and matrix components. Peroxisome division is an asymmetric process, which is more complex than simple (symmetric) division of a preexisting organelle and equal distribution of the protein content. Our findings are in favor of Pex11pβ acting as a peroxisomal membrane shaping protein.
Collapse
Affiliation(s)
- Hannah K Delille
- Centre for Cell Biology & Dept. of Biology; University of Aveiro; Aveiro, Portugal
| | | | | |
Collapse
|
33
|
Peña-Soler E, Vega MC, Wilmanns M, Williams C. Structural features of peroxisomal catalase from the yeastHansenula polymorpha. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:690-8. [DOI: 10.1107/s0907444911022463] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/10/2011] [Indexed: 11/10/2022]
|
34
|
Coley AF, Dodson HC, Morris MT, Morris JC. Glycolysis in the african trypanosome: targeting enzymes and their subcellular compartments for therapeutic development. Mol Biol Int 2011; 2011:123702. [PMID: 22091393 PMCID: PMC3195984 DOI: 10.4061/2011/123702] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/16/2011] [Indexed: 12/16/2022] Open
Abstract
Subspecies of the African trypanosome, Trypanosoma brucei, which cause human African trypanosomiasis, are transmitted by the tsetse fly, with transmission-essential lifecycle stages occurring in both the insect vector and human host. During infection of the human host, the parasite is limited to using glycolysis of host sugar for ATP production. This dependence on glucose breakdown presents a series of targets for potential therapeutic development, many of which have been explored and validated as therapeutic targets experimentally. These include enzymes directly involved in glucose metabolism (e.g., the trypanosome hexokinases), as well as cellular components required for development and maintenance of the essential subcellular compartments that house the major part of the pathway, the glycosomes.
Collapse
Affiliation(s)
- April F Coley
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
35
|
Tower RJ, Fagarasanu A, Aitchison JD, Rachubinski RA. The peroxin Pex34p functions with the Pex11 family of peroxisomal divisional proteins to regulate the peroxisome population in yeast. Mol Biol Cell 2011; 22:1727-38. [PMID: 21441307 PMCID: PMC3093324 DOI: 10.1091/mbc.e11-01-0084] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Peroxisomes are ubiquitous organelles involved in diverse metabolic processes, most notably the metabolism of lipids and the detoxification of reactive oxygen species. Peroxisomes are highly dynamic and change in size and number in response to both intra- and extracellular cues. In the yeast Saccharomyces cerevisiae, peroxisome growth and division are controlled by both the differential import of soluble matrix proteins and a specialized divisional machinery that includes peroxisome-specific factors, such as members of the Pex11 protein family, and general organelle divisional factors, such as the dynamin-related protein Vps1p. Global yeast two-hybrid analyses have demonstrated interactions between the product of the S. cerevisiae gene of unknown function, YCL056c, and Pex proteins involved in peroxisome biogenesis. Here we show that the protein encoded by YCL056c, renamed Pex34p, is a peroxisomal integral membrane protein that acts independently and also in concert with the Pex11 protein family members Pex11p, Pex25p, and Pex27p to control the peroxisome populations of cells under conditions of both peroxisome proliferation and constitutive peroxisome division. Yeast two-hybrid analysis showed that Pex34p interacts physically with itself and with Pex11p, Pex25p, and Pex27p but not with Vps1p. Pex34p can act as a positive effector of peroxisome division as its overexpression leads to increased numbers of peroxisomes in wild type and pex34Δ cells. Pex34p requires the Pex11 family proteins to promote peroxisome division. Our discovery of Pex34p as a protein involved in the already complex control of peroxisome populations emphasizes the necessity of cells to strictly regulate their peroxisome populations to be able to respond appropriately to changing environmental conditions.
Collapse
Affiliation(s)
- Robert J Tower
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada Institute for Systems Biology, Seattle, WA 98103, USA
| | | | | | | |
Collapse
|
36
|
Wolf J, Schliebs W, Erdmann R. Peroxisomes as dynamic organelles: peroxisomal matrix protein import. FEBS J 2010; 277:3268-78. [PMID: 20629744 DOI: 10.1111/j.1742-4658.2010.07739.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The heterogeneity of peroxisomal matrix proteins which are imported in a folded, even oligomeric state, requires adaptive and dynamic properties of the translocation machinery. Dynamic multicompartmental subcellular distribution of peroxisomal proteins is governed by the accessibility of targeting signals. Conformational changes of peroxisomal targeting receptors upon cargo-binding might serve as a docking 'quality control'. Although the mechanisms are not understood in detail, recent work suggests the existence of a transient translocon within the peroxisomal membrane. Rapid formation and disassembly of the transient import pore ensures the integrity of the peroxisomal membrane barrier for small metabolites. In this review, we will focus on the regulatory aspects of peroxisomal matrix protein import.
Collapse
Affiliation(s)
- Janina Wolf
- Institut für Physiologische Chemie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany
| | | | | |
Collapse
|
37
|
|