1
|
Hall DCN, Benndorf RA. Aspirin sensitivity of PIK3CA-mutated Colorectal Cancer: potential mechanisms revisited. Cell Mol Life Sci 2022; 79:393. [PMID: 35780223 PMCID: PMC9250486 DOI: 10.1007/s00018-022-04430-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
PIK3CA mutations are amongst the most prevalent somatic mutations in cancer and are associated with resistance to first-line treatment along with low survival rates in a variety of malignancies. There is evidence that patients carrying PIK3CA mutations may benefit from treatment with acetylsalicylic acid, commonly known as aspirin, particularly in the setting of colorectal cancer. In this regard, it has been clarified that Class IA Phosphatidylinositol 3-kinases (PI3K), whose catalytic subunit p110α is encoded by the PIK3CA gene, are involved in signal transduction that regulates cell cycle, cell growth, and metabolism and, if disturbed, induces carcinogenic effects. Although PI3K is associated with pro-inflammatory cyclooxygenase-2 (COX-2) expression and signaling, and COX-2 is among the best-studied targets of aspirin, the mechanisms behind this clinically relevant phenomenon are still unclear. Indeed, there is further evidence that the protective, anti-carcinogenic effect of aspirin in this setting may be mediated in a COX-independent manner. However, until now the understanding of aspirin's prostaglandin-independent mode of action is poor. This review will provide an overview of the current literature on this topic and aims to analyze possible mechanisms and targets behind the aspirin sensitivity of PIK3CA-mutated cancers.
Collapse
Affiliation(s)
- Daniella C N Hall
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
2
|
Pandolfi S, Chirumbolo S. Home therapy of COVID-19 at the earliest may greatly prevent hospitalization. Basic Clin Pharmacol Toxicol 2021; 129:395-396. [PMID: 34494369 PMCID: PMC8652880 DOI: 10.1111/bcpt.13650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022]
Affiliation(s)
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Liu J, Zong Z, Zhang W, Chen Y, Wang X, Shen J, Yang C, Liu X, Deng H. Nicotinamide Mononucleotide Alleviates LPS-Induced Inflammation and Oxidative Stress via Decreasing COX-2 Expression in Macrophages. Front Mol Biosci 2021; 8:702107. [PMID: 34295923 PMCID: PMC8290259 DOI: 10.3389/fmolb.2021.702107] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 11/23/2022] Open
Abstract
Macrophage activation is an important process in controlling infection, but persistent macrophage activation leads to chronic inflammation and diseases, such as tumor progression, insulin resistance and atherosclerosis. Characterizing metabolic signatures of macrophage activation is important for developing new approaches for macrophage inactivation. Herein, we performed metabolomic analysis on lipopolysaccharide (LPS)-activated macrophages and identified the associated changes in metabolites. Notably, the cellular Nicotinamide adenine dinucleotide+ levels were decreased while NADPH was increased, proposing that NAD+ restoration can inhibit macrophage activation. Indeed, supplementation of nicotinamide mononucleotide (NMN) increased cellular NAD+ levels and decreased cytokine productions in LPS-activated cells. Quantitative proteomics identified that nicotinamide mononucleotide downregulated the expressions of LPS-responsive proteins, in which cyclooxygenase-2 (COX-2) expression was significantly decreased in NMN-treated cells. Consequently, the cellular levels of prostaglandin E2 (PGE2) was also decreased, indicating that NMN inactivated macrophages via COX-2-PGE2 pathway, which was validated in activated THP-1 cells and mouse peritoneal macrophages. In conclusion, the present study identified the metabolic characteristics of activated macrophages and revealed that NMN replenishment is an efficient approach for controlling macrophage activation.
Collapse
Affiliation(s)
- Jing Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhaoyun Zong
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xueying Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Shen
- Shenzhen Hope Life Biotechnology Co., LTD, Shenzhen, China
| | - Changmei Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Jara-Gutiérrez Á, Baladrón V. The Role of Prostaglandins in Different Types of Cancer. Cells 2021; 10:cells10061487. [PMID: 34199169 PMCID: PMC8231512 DOI: 10.3390/cells10061487] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
The prostaglandins constitute a family of lipids of 20 carbon atoms that derive from polyunsaturated fatty acids such as arachidonic acid. Traditionally, prostaglandins have been linked to inflammation, female reproductive cycle, vasodilation, or bronchodilator/bronchoconstriction. Recent studies have highlighted the involvement of these lipids in cancer. In this review, existing information on the prostaglandins associated with different types of cancer and the advances related to the potential use of them in neoplasm therapies have been analyzed. We can conclude that the effect of prostaglandins depends on multiple factors, such as the target tissue, their plasma concentration, and the prostaglandin subtype, among others. Prostaglandin D2 (PGD2) seems to hinder tumor progression, while prostaglandin E2 (PGE2) and prostaglandin F2 alpha (PGF2α) seem to provide greater tumor progression and aggressiveness. However, more studies are needed to determine the role of prostaglandin I2 (PGI2) and prostaglandin J2 (PGJ2) in cancer due to the conflicting data obtained. On the other hand, the use of different NSAIDs (non-steroidal anti-inflammatory drugs), especially those selective of COX-2 (cyclooxygenase 2), could have a crucial role in the fight against different neoplasms, either as prophylaxis or as an adjuvant treatment. In addition, multiple targets, related to the action of prostaglandins on the intracellular signaling pathways that are involved in cancer, have been discovered. Thus, in depth research about the prostaglandins involved in different cancer and the different targets modulated by them, as well as their role in the tumor microenvironment and the immune response, is necessary to obtain better therapeutic tools to fight cancer.
Collapse
|
5
|
Burman A, Garcia-Milian R, Wood M, DeWitt NA, Vasiliou V, Guller S, Abrahams VM, Whirledge S. Acetaminophen Attenuates invasion and alters the expression of extracellular matrix enzymes and vascular factors in human first trimester trophoblast cells. Placenta 2021; 104:146-160. [PMID: 33348283 DOI: 10.1016/j.placenta.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
Acetaminophen is one of the most common medications taken during pregnancy, considered safe for maternal health and fetal development. However, recent epidemiological studies have associated prenatal acetaminophen use with several developmental disorders in offspring. As acetaminophen can freely cross into and through the placenta, epidemiological associations with prenatal acetaminophen use may reflect direct actions on the fetus and/or the impact of altered placental functions. In the absence of rigorous mechanistic studies, our understanding of how prenatal acetaminophen exposure can cause long-term effects in offspring is limited. The objective of this study was to determine whether acetaminophen can alter key functions of a major placental cell type by utilizing immortalized human first trimester trophoblast cells. This study employed a comparative analysis with the nonsteroidal, anti-inflammatory drug aspirin, which has established effects in first trimester trophoblast cells. We report that immortalized trophoblast cells express the target proteins of acetaminophen and aspirin: cyclooxygenase (COX) -1 and -2. Unlike aspirin, acetaminophen significantly repressed the expression of angiogenesis and vascular remodeling genes in HTR-8/SVneo cells. Moreover, acetaminophen impaired trophoblast invasion by over 80%, while aspirin had no effect on invasion. Acetaminophen exposure reduced the expression of matrix metalloproteinase (MMP)-2 and -9 and increased the expression of tissue inhibitors of matrix metalloproteinases 2, leading to an imbalance in the ratio of proteolytic enzymes. Finally, a bioinformatic approach identified novel acetaminophen-responsive gene networks associated with key trophoblast functions and disease. Together these results suggest that prenatal acetaminophen use may interfere with critical trophoblast functions early in gestation, which may subsequently impact fetal development.
Collapse
Affiliation(s)
- Andreanna Burman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Madeleine Wood
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Natalie A DeWitt
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Seth Guller
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06510, USA.
| |
Collapse
|
6
|
Chang MC, Kwak SG, Park JS, Park D. The effectiveness of nonsteroidal anti-inflammatory drugs and acetaminophen in reduce the risk of amyotrophic lateral sclerosis? A meta-analysis. Sci Rep 2020; 10:14759. [PMID: 32901053 PMCID: PMC7479139 DOI: 10.1038/s41598-020-71813-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
To test the hypothesis that aspirin, non-aspirin nonsteroidal anti-infammatory drugs (NA-NSAIDs), or acetaminophen can reduce the risk of ALS, we conducted a systematic review and meta-analysis of related previous studies. A comprehensive search was conducted on the PubMed, Embase, Cochrane Library and SCOPUS databases. It included studies published up to 29 February 2020 that fulfilled our inclusion criteria. Aspirin, acetaminophen and NA-NSAIDs use information, between the ALS and control groups, was collected for the meta-analysis. Rates of aspirin, NA-NSAID, and acetaminophen use in ALS group, compared with control group were investigated. In the results, only three studies that relate the risk of ALS to aspirin, NA-NSAIDs and acetaminophen use satisfied the inclusion criteria for the meta-analysis. Regarding aspirin, the studies did not show any statistically significant difference in aspirin use between the ALS and control groups (Odds ratio, 1.04 [95% confidence interval, 0.90-1.21]). NA-NSAIDs and acetaminophen use, however, did show up statistically significant differences in between the ALS and control groups. (Odds ratio, 0.82 [95% confidence interval, 0.73-0.91]) and (Odds ratio, 0.80 [95% confidence interval, 0.69-0.93]). However, our study has some limitations. Firstly, we only included a small number of studies. Secondly, the included studies did not control for past medical history, which may have confounded their results, and in turn, could have caused bias in our study. Thirdly, in this meta-analysis, the ALS patients were not subdivided into sporadic or familial type. Lastly, the studies also did not consider the types of NSAIDs and dosages used of each drug. For more convincing evidence regarding the effectiveness of aspirin, NA-NSAIDs and acetaminophen to reduce the risk of ALS occurrence, more qualified prospective studies are required. In conclusion, the use of NA-NSAIDs and acetaminophen is associated with a decreased risk for the development of ALS. In contrast, aspirin did not have any effect on the reduction of the risk of ALS occurrence.
Collapse
Affiliation(s)
- Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Sang Gyu Kwak
- Department of Medical Statistics, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Jin-Sung Park
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Donghwi Park
- Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, 877, Bangeojinsunghwndo-ro, Dong-gu, Ulsan, 44033, Republic of Korea.
| |
Collapse
|
7
|
Naveed K, Javeed A, Ashraf M, Riaz A, Ghafoor A, Sattar A. Effect of nabumetone on humoral immune responses in mice. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-11460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Nabumetone is used to reduce the pain and inflammation in rheumatoid arthritis. In the current study, immunomodulatory effect of Nabumetone is investigated in mice. The control group was administered normal saline orally as placebo. Nabumetone was administered orally via gavage in two treatment groups at 14mg/kg.b.w. doses and 28mg/kgb.w., respectively. Haemagglutination (HA) assay, Jerne hemolytic plaque and mice lethality assays were applied. In HA assay, the titer was significantly decreased in Nabumetone treatment groups (P< 0.001). In Jerne hemolytic plaque formation assay, there was a significant reduction (P< 0.001) in number of plaques in Nabumetone treated groups when compared with control. In mice lethality assay, there was a significant difference in mortality ratio of mice in control and Nabumetone treated groups (P< 0.001). Therefore, it is concluded that Nabumetone suppresses the humoral immune response in mice.
Collapse
Affiliation(s)
- Khalid Naveed
- University of Veterinary and Animal Sciences, Pakistan
| | - Aqeel Javeed
- University of Veterinary and Animal Sciences, Pakistan
| | | | - Amjad Riaz
- University of Veterinary and Animal Sciences, Pakistan
| | - Aamir Ghafoor
- University of Veterinary and Animal Sciences, Pakistan
| | - Adeel Sattar
- University of Veterinary and Animal Sciences, Pakistan
| |
Collapse
|
8
|
Mohamed WA, Abd-Elhakim YM, Ismail SAA. Involvement of the anti-inflammatory, anti-apoptotic, and anti-secretory activity of bee venom in its therapeutic effects on acetylsalicylic acid-induced gastric ulceration in rats. Toxicology 2019; 419:11-23. [PMID: 30885738 DOI: 10.1016/j.tox.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/21/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
Acetylsalicylic acid (ASA) is the most highly consumed pharmaceutical product worldwide. Importantly, gastrointestinal ulceration due to ASA is a major complication. Hence, the present work aimed to examine, for the first time, the healing properties of bee venom (BV) in acute gastric ulceration induced by ASA. Forty adult male Sprague-Dawley rats were divided into four groups that received distilled water only, ASA (500 mg/kg BW) twice daily for 3 days, ASA for 3 days followed by BV (2 mg/kg BW) for 7 days, or ASA for 3 days followed by ranitidine hydrochloride (50 mg/kg BW) for 7 days. Haematological analysis, haemostatic evaluation, and inflammatory marker estimation were performed. Rat stomachs were collected for ulcer scoring, gene expression analysis, oxidative stress assays, histopathological and immunohistochemical examinations, and tissue eosinophil scoring. The results revealed that BV markedly decreased the ulcer index, pro-inflammatory cytokine levels, malondialdehyde levels, BAX distribution, caspase-3 expression, and tissue eosinophil levels. Additionally, significant increases in antioxidant enzymes and heat shock protein 70 localization in gastric tissue were evident following BV treatment after ASA exposure. Also, BV has been found to attenuate the haematological, haemostatic, and histopathological alterations induced by ASA. Our findings collectively indicate that the gastroprotective effect of BV against ASA-induced ulceration in rats is mediated by its antioxidant, anti-inflammatory, anti-apoptotic, and anti-secretory properties.
Collapse
Affiliation(s)
- Wafaa A Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Shimaa A A Ismail
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Pergolizzi JV, Raffa RB, Nalamachu S, Taylor R. Evolution to low-dose NSAID therapy. Pain Manag 2016; 6:175-89. [PMID: 26980438 DOI: 10.2217/pmt.15.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
All NSAIDs are to varying degrees associated with gastrointestinal, cardiovascular and renal adverse effects (AEs). Differences in selectivity for inhibition of the COX isozymes (COX-1/COX-2) have been used as an indicator of the likelihood of experiencing an AE, but the measure of 'selectivity' commonly used is less than desirable, and selectivity has not yielded unequivocal superior safety. Recent guidelines recommend that NSAIDs be used at the lowest effective dose and for the shortest period of time. In response, 'low-dose' NSAID formulations have been developed. Such formulations may help by reducing overall systemic exposure, thereby reducing the frequency or severity of AEs. It seems timely to review the need, rationale and application of such an approach.
Collapse
Affiliation(s)
- Joseph V Pergolizzi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Robert B Raffa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | | | | |
Collapse
|
10
|
Bruno A, Tacconelli S, Patrignani P. Variability in the response to non-steroidal anti-inflammatory drugs: mechanisms and perspectives. Basic Clin Pharmacol Toxicol 2013; 114:56-63. [PMID: 23953622 DOI: 10.1111/bcpt.12117] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/09/2013] [Indexed: 01/22/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are a chemically heterogeneous group of compounds that provide unmistakable and significant health benefits in the treatment of pain and inflammation. They include traditional NSAIDs (tNSAIDs), which act by inhibiting both cyclooxygenase (COX)-1 and COX-2 and selective COX-2 inhibitors (coxibs). The development of biomarkers predictive of the impact of NSAIDs on COX-1 and COX-2 activities in vitro, ex vivo and in vivo has been essential to read out the clinical consequences of selective and non-selective inhibition of COX isozymes in human beings. The analgesic and anti-inflammatory effects of NSAIDs are COX-2-dependent effects, unrelated to COX-2 selectivity. The intensity and duration of these effects are influenced by dose and half-life of the NSAID. However, the inhibition of COX-1 in cells of the gastrointestinal (GI) system and COX-2 in vascular cells translates into increased risk of serious GI adverse events and atherothrombosis and hypertension, respectively. The COX-2 selectivity of NSAIDs can predict, at least in part, the GI toxicity. In contrast, the CV effects are largely COX-2-dependent effects, unrelated to COX-2 selectivity but are dose dependent. The reduction in the dose is recommended and presumably will limit the number of patients exposed to a CV or a GI hazard by NSAIDs and coxibs. It will not, however, eliminate the risk on an individual level because there is a marked variability in how different people react to these drugs, based on their genetic background. The challenge of the next future will be to develop biomarkers useful to identify the individuals who react abnormally to COX inhibition.
Collapse
Affiliation(s)
- Annalisa Bruno
- Department of Medicine and Aging, Chieti, Italy; Center of Excellence on Aging (CeSI), "Gabriele d'Annunzio" Foundation, Chieti, Italy
| | | | | |
Collapse
|
11
|
Yıldırım E, Sağıroğlu O, Kılıç FS, Erol K. Effects of Nabumetone and Dipyrone on Experimentally Induced Gastric Ulcers in Rats. Inflammation 2012; 36:476-81. [DOI: 10.1007/s10753-012-9568-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Staniaszek LE, Norris LM, Kendall DA, Barrett DA, Chapman V. Effects of COX-2 inhibition on spinal nociception: the role of endocannabinoids. Br J Pharmacol 2010; 160:669-76. [PMID: 20590570 DOI: 10.1111/j.1476-5381.2010.00703.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent studies suggest that the effects of cyclooxygenase-2 (COX-2) inhibition are mediated by cannabinoid receptor activation. However, some non-steroidal anti-inflammatory drugs inhibit the enzyme fatty acid amide hydrolase, which regulates levels of some endocannabinoids. Whether COX-2 directly regulates levels of endocannabinoids in vivo is unclear. Here, the effect of the COX-2 inhibitor nimesulide, which does not inhibit fatty acid amide hydrolase, on spinal nociceptive processing was determined. Effects of nimesulide on tissue levels of endocannabinoids and related compounds were measured and the role of cannabinoid 1 (CB(1)) receptors was determined. EXPERIMENTAL APPROACH Effects of spinal and peripheral administration of nimesulide (1-100 microg per 50 microL) on mechanically evoked responses of rat dorsal horn neurones were measured, and the contribution of the CB(1) receptor was determined with the antagonist AM251 (N-(piperidin-1-yl)-5-(-4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide), in anaesthetized rats. Effects of nimesulide on spinal levels of endocannabinoids and related compounds were quantified using liquid chromatography-tandem mass spectrometry. KEY RESULTS Spinal, but not peripheral, injection of nimesulide (1-100 microg per 50 microL) significantly reduced mechanically evoked responses of dorsal horn neurones. Inhibitory effects of spinal nimesulide were blocked by the CB(1) receptor antagonist AM251 (1 microg per 50 microL), but spinal levels of endocannabinoids were not elevated. Indeed, both anandamide and N-oleoylethanolamide (OEA) were significantly decreased by nimesulide. CONCLUSIONS AND IMPLICATIONS Although the inhibitory effects of COX-2 blockade on spinal neuronal responses by nimesulide were dependent on CB(1) receptors, we did not detect a concomitant elevation in anandamide or 2-AG. Further understanding of the complexities of endocannabinoid catabolism by multiple enzymes is essential to understand their contribution to COX-2-mediated analgesia.
Collapse
Affiliation(s)
- L E Staniaszek
- School of Biomedical Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK.
| | | | | | | | | |
Collapse
|
13
|
Fornai M, Antonioli L, Colucci R, Bernardini N, Ghisu N, Tuccori M, De Giorgio R, Del Tacca M, Blandizzi C. Emerging role of cyclooxygenase isoforms in the control of gastrointestinal neuromuscular functions. Pharmacol Ther 2010; 125:62-78. [DOI: 10.1016/j.pharmthera.2009.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 09/16/2009] [Indexed: 02/06/2023]
|
14
|
Calderón-Garcidueñas L, Mora-Tiscareño A, Gómez-Garza G, Carrasco-Portugal MDC, Pérez-Guillé B, Flores-Murrieta FJ, Pérez-Guillé G, Osnaya N, Juárez-Olguín H, Monroy ME, Monroy S, González-Maciel A, Reynoso-Robles R, Villarreal-Calderon R, Patel SA, Kumarathasan P, Vincent R, Henríquez-Roldán C, Torres-Jardón R, Maronpot RR. Effects of a cyclooxygenase-2 preferential inhibitor in young healthy dogs exposed to air pollution: a pilot study. Toxicol Pathol 2009; 37:644-60. [PMID: 19638440 DOI: 10.1177/0192623309340277] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Residency in cities with high air pollution is associated with neuroinflammation and neurodegeneration in healthy children, young adults, and dogs. Nonsteroidal anti-inflammatory drugs may offer neuroprotection. The authors measured the plasma concentrations of 3-nitrotyrosine and the cerebro-spinal-fluid concentrations of prostaglandin E2 metabolite and the oligomeric form of amyloid derived diffusible ligand; measured the mRNA expression of cyclooxygenase-2, interleukin 1beta, CD14, and Aquaporin-4 in target brain areas; and evaluated brain MRI, cognition, and neuropathology in 8 dogs treated with a preferential cyclooxygenase-2 inhibitor (Nimesulide) versus 7 untreated litter-matched Mexico City dogs. Nimesulide significantly decreased nitrotyrosine in plasma (p < .0001), frontal gray IL1beta (p = .03), and heart IL1beta (p = .02). No effect was seen in mRNA COX2, amyloid, and PGE2 in CSF or the MRI white matter lesions. All exposed dogs exhibited olfactory bulb and frontal accumulation of Abeta(42) in neurons and blood vessels and frontal vascular subcortical pathology. White matter hyperintense MRI frontal lesions were seen in 4/6 non-treated and 6/8 treated dogs. Nonsteroidal anti-inflammatory drugs may offer limited neuroprotection in the setting of severe air pollution exposures. The search for potentially beneficial drugs useful to ameliorate the brain effects of pollution represents an enormous clinical challenge.
Collapse
|