1
|
Quintanilha MVT, Gobbo GDAM, Pinheiro GB, de Souza ACB, Camargo LC, Mortari MR. Evaluating a Venom-Bioinspired Peptide, NOR-1202, as an Antiepileptic Treatment in Male Mice Models. Toxins (Basel) 2024; 16:342. [PMID: 39195752 PMCID: PMC11359417 DOI: 10.3390/toxins16080342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Epilepsy, a neurological disorder characterized by excessive neuronal activity and synchronized electrical discharges, ranks among the most prevalent global neurological conditions. Despite common use, antiepileptic drugs often result in adverse effects and lack effectiveness in controlling seizures in temporal lobe epilepsy (TLE) patients. Recent research explored the potential of occidentalin-1202, a peptide inspired by Polybia occidentalis venom, in safeguarding Wistar rats from chemically induced seizures. The present study evaluated the new analog from occidentalin-1202 named NOR-1202 using acute and chronic pilocarpine-induced models and an acute kainic acid (KA) male mice model. NOR-1202 was administered through the intracerebroventricular (i.c.v.), subcutaneous, or intraperitoneal routes, with stereotaxic procedures for the i.c.v. injection. In the acute pilocarpine-induced model, NOR-1202 (i.c.v.) protected against generalized seizures and mortality but lacked systemic antiepileptic activity. In the KA model, it did not prevent generalized seizures but improved survival. In the chronic TLE model, NOR-1202's ED50 did not differ significantly from the epileptic or healthy groups regarding time spent in spontaneous recurrent seizures during the five-day treatment. However, the NOR-1202 group exhibited more seizures than the healthy group on the second day of treatment. In summary, NOR-1202 exhibits antiepileptic effects against chemoconvulsant-induced seizures, but no effect was observed when administered systemically.
Collapse
Affiliation(s)
| | | | | | | | - Luana Cristina Camargo
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (M.V.T.Q.); (G.d.A.M.G.); (G.B.P.); (A.C.B.d.S.); (M.R.M.)
| | | |
Collapse
|
2
|
Bachetti T, Zanni ED, Adamo A, Rosamilia F, Sechi MM, Solla P, Bozzo M, Ceccherini I, Sechi G. Beneficial Effect of Phenytoin and Carbamazepine on GFAP Gene Expression and Mutant GFAP Folding in a Cellular Model of Alexander's Disease. Front Pharmacol 2021; 12:723218. [PMID: 34950024 PMCID: PMC8688807 DOI: 10.3389/fphar.2021.723218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
Alexander’s disease (AxD) is a rare, usually relentlessly progressive disorder of astroglial cells in the central nervous system related to mutations in the gene encoding the type III intermediate filament protein, glial fibrillary acidic protein (GFAP). The pathophysiology of AxD is only partially understood. Available data indicate that an excessive GFAP gene expression may play a role. In particular, a “threshold hypothesis” has been reported, suggesting that mutant GFAP representing about 20% of the total cellular GFAP should be sufficient to cause disease. Thus, strategies based on reducing cellular mutant GFAP protein levels and/or activating biological processes involved in the correct protein folding could be effective in counteracting the toxic effect of misfolded GFAP. Considering that clomipramine (CLM), which has been selected by a wide small molecules screening as the greatest inhibitory potential drug against GFAP expression, is contraindicated because of its proconvulsant activity in the infantile form of AxD, which is also characterized by the occurrence of epileptic seizures, two powerful antiepileptic agents, carbamazepine (CBZ) and phenytoin (PHT), which share specific stereochemical features in common with CLM, were taken into consideration in a reliable in vitro model of AxD. In the present work, we document for the first time that CBZ and PHT have a definite inhibitory effect on pathological GFAP cellular expression and folding. Moreover, we confirm previous results of a similar beneficial effect of CLM. In addition, we have demonstrated that CBZ and CLM play a refolding effect on mutant GFAP proteins, likely ascribed at the induction of CRYAB expression, resulting in the decrease of mutant GFAP aggregates formation. As CBZ and PHT are currently approved for use in humans, their documented effects on pathological GFAP cellular expression and folding may indicate a potential therapeutic role as disease-modifying agents of these drugs in the clinical management of AxD, particularly in AxD patients with focal epilepsy with and without secondary generalization.
Collapse
Affiliation(s)
- Tiziana Bachetti
- UOSD Laboratorio di Genetica e Genomica delle Malattie Rare, IRCCS Gaslini, Genova, Italy.,Laboratorio di Neurobiologia dello Sviluppo, DISTAV, Università di Genova, Genova, Italy
| | - Eleonora Di Zanni
- UOSD Laboratorio di Genetica e Genomica delle Malattie Rare, IRCCS Gaslini, Genova, Italy
| | - Annalisa Adamo
- UOSD Laboratorio di Genetica e Genomica delle Malattie Rare, IRCCS Gaslini, Genova, Italy
| | - Francesca Rosamilia
- Dipartimento di Scienze della Salute, DISSAL, Università di Genova, Genova, Italy
| | - M Margherita Sechi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Paolo Solla
- Department of Medical, Surgical and Experimental Sciences (G.P.S.; P.S.), University of Sassari, Sassari, Italy
| | - Matteo Bozzo
- Laboratorio di Neurobiologia dello Sviluppo, DISTAV, Università di Genova, Genova, Italy
| | - Isabella Ceccherini
- UOSD Laboratorio di Genetica e Genomica delle Malattie Rare, IRCCS Gaslini, Genova, Italy
| | - GianPietro Sechi
- Department of Medical, Surgical and Experimental Sciences (G.P.S.; P.S.), University of Sassari, Sassari, Italy
| |
Collapse
|
3
|
de Curtis M, Rossetti AO, Verde DV, van Vliet EA, Ekdahl CT. Brain pathology in focal status epilepticus: evidence from experimental models. Neurosci Biobehav Rev 2021; 131:834-846. [PMID: 34517036 DOI: 10.1016/j.neubiorev.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/01/2022]
Abstract
Status Epilepticus (SE) is often a neurological emergency characterized by abnormally sustained, longer than habitual seizures. The new ILAE classification reports that SE "…can have long-term consequences including neuronal death, neuronal injury…depending on the type and duration of seizures". While it is accepted that generalized convulsive SE exerts detrimental effects on the brain, it is not clear if other forms of SE, such as focal non-convulsive SE, leads to brain pathology and contributes to long-term deficits in patients. With the available clinical and experimental data, it is hard to discriminate the specific action of the underlying SE etiologies from that exerted by epileptiform activity. This information is highly relevant in the clinic for better treatment stratification, which may include both medical and surgical intervention for seizure control. Here we review experimental studies of focal SE, with an emphasis on focal non-convulsive SE. We present a repertoire of brain pathologies observed in the most commonly used animal models and attempt to establish a link between experimental findings and human condition(s). The extensive literature on focal SE animal models suggest that the current approaches have significant limitations in terms of translatability of the findings to the clinic. We highlight the need for a more stringent description of SE features and brain pathology in experimental studies in animal models, to improve the accuracy in predicting clinical translation.
Collapse
Affiliation(s)
- Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto NeurologicoCarlo Besta, Milano, Italy.
| | - Andrea O Rossetti
- Department of Clinical Neuroscience, University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Diogo Vila Verde
- Epilepsy Unit, Fondazione IRCCS Istituto NeurologicoCarlo Besta, Milano, Italy
| | - Erwin A van Vliet
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, P.O. Box 94246, 1090 GE, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Christine T Ekdahl
- Division of Clinical Neurophysiology, Lund University, Sweden; Lund Epilepsy Center, Dept Clinical Sciences, Lund University, Sweden
| |
Collapse
|
4
|
Sari S, Barut B, Marcinkowska M, Sabuncuoğlu S, Avci A, Koçak Aslan E, Özel A, Siwek A. Potential of nafimidone derivatives against co-morbidities of epilepsy: In vitro, in vivo, and in silico investigations. Drug Dev Res 2021; 83:184-193. [PMID: 34291476 DOI: 10.1002/ddr.21858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 11/12/2022]
Abstract
Nafimidone is known for its clinical antiepileptic effects and alcohol derivatives of nafimidone were reported be potent anticonvulsants. These compounds are structurally similar to miconazole, which is known to inhibit cholinesterases, protect neurons, and ameliorate cognitive decline. Herein, we aimed to reveal the potential of three nafimidone alcohol esters (5 g, 5i, and 5 k), which were previously reported for their anticonvulsant effects, against co-morbidities of epilepsy such as inflammatory and neuropathic pain, cognitive and behavioral deficits, and neuron death, and understand their roles in related pathways such as γ-butyric acid type A (GABAA ) receptor and cholinesterases using in vitro, in vivo and in silico methods. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used for cytotoxicity evaluation, hippocampal slice culture assay for neuroprotection, formalin test for acute and inflammatory pain, sciatic ligation for neuropathic pain, Morris water maze and open field locomotor tasks for cognitive and behavioral deficits, radioligand binding for GABAA receptor affinity, spectrophotometric methods for cholinesterase inhibition in vitro, and molecular docking in silico. The compounds were non-toxic to fibroblast cells. 5 k was neuroprotective against kainic acid-induced neuron death. 5i reduced pain response of mice in both the acute and the inflammatory phases. 5i improved survival upon status epilepticus. The compounds showed no affinity to GABAA receptor but inhibited acetylcholinesterase, 5 k also inhibited butyrylcholinesterase. The compounds were predicted to interact mainly with the peripheric anionic site of cholinesterase enzymes. The title compounds showed neuroprotective, analgesic, and cholinesterase inhibitory effects, thus they bear promise against certain co-morbidities of epilepsy with neurological insults.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Burak Barut
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Monika Marcinkowska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ahmet Avci
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ebru Koçak Aslan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Arzu Özel
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey.,Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| | - Agata Siwek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
van Tuijl JH, van Raak EPM, van Oostenbrugge RJ, Aldenkamp AP, Rouhl RPW. Treatment with Diazepam in Acute Stroke Prevents Poststroke Seizures: A Substudy of the EGASIS Trial. Cerebrovasc Dis 2021; 50:216-221. [PMID: 33465768 DOI: 10.1159/000512799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/29/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The frequency of seizures after stroke is high, with a severe impact on the quality of life. However, little is known about their prevention. Therefore, we investigated whether early administration of diazepam prevents the development of seizures in acute stroke patients. METHODS We performed a substudy of the EGASIS trial, a multicenter double-blind, randomized trial in which acute stroke patients were treated with diazepam or placebo for 3 days. Follow-up was after 2 weeks and 3 months. The occurrence of seizures was registered prospectively as one of the prespecified secondary outcomes. RESULTS 784 EGASIS patients were eligible for this substudy (389 treated with diazepam [49.6%] and 395 treated with placebo [50.4%]). Seizures were reported in 19 patients (2.4% of the total patient group). Seizures occurred less frequently in patients treated with diazepam (1.5 vs. 3.3% in the placebo group); however, this difference was only statistically significant in patients with a cortical anterior circulation infarction (0.9% in the diazepam group vs. 4.6% in the placebo group, incidence rate ratio 0.20, 95% CI: 0.05-0.78, p = 0.02, NNT = 27). CONCLUSION We found that a 3-day treatment with diazepam after acute cortical anterior circulation stroke prevents the occurrence of seizures in the first 3 months following stroke.
Collapse
Affiliation(s)
- Julia H van Tuijl
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Neurology, Elisabeth TweeSteden Hospital, Tilburg, The Netherlands
| | - Elisabeth P M van Raak
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Robert J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.,School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Albert P Aldenkamp
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.,School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Academic Center for Epileptology Kempenhaeghe and Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rob P W Rouhl
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands, .,School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands, .,Academic Center for Epileptology Kempenhaeghe and Maastricht University Medical Center, Maastricht, The Netherlands,
| |
Collapse
|
6
|
Evaluation of fosphenytoin, levetiracetam, and propofol as treatments for nerve agent-induced seizures in pediatric and adult rats. Neurotoxicology 2020; 79:58-66. [PMID: 32220603 DOI: 10.1016/j.neuro.2020.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 10/24/2022]
Abstract
Multiple recent instances of nerve agent (NA) exposure in civilian populations have occurred, resulting in a variety of negative effects and lethality in both adult and pediatric populations. Seizures are a prominent effect of NAs that can result in neurological damage and contribute to their lethality. Current anticonvulsant treatments for NAs are approved for adults, but no approved pediatric treatments exist. Further, the vast majority of NA-related research in animals has been conducted in adult male subjects. There is a need for research that includes female and pediatric populations in testing. In this project, adult and pediatric male and female rats were challenged with sarin or VX and then treated with fosphenytoin, levetiracetam, or propofol. In this study, fosphenytoin and levetiracetam failed to terminate seizure activity when animals were treated 5 min after seizure onset. Propofol was effective, exhibiting high efficacy and potency for terminating seizure activity quickly in pediatric and adult animals, suggesting it may be an effective anticonvulsant for NA-induced seizures in pediatric populations.
Collapse
|
7
|
Elsherbiny NM, Abdel-Mottaleb Y, Elkazaz AY, Atef H, Lashine RM, Youssef AM, Ezzat W, El-Ghaiesh SH, Elshaer RE, El-Shafey M, Zaitone SA. Carbamazepine Alleviates Retinal and Optic Nerve Neural Degeneration in Diabetic Mice via Nerve Growth Factor-Induced PI3K/Akt/mTOR Activation. Front Neurosci 2019; 13:1089. [PMID: 31736682 PMCID: PMC6838003 DOI: 10.3389/fnins.2019.01089] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
Aim: Diabetic retinopathy causes loss of vision in adults at working-age. Few therapeutic options are available for treatment of diabetic retinopathy. Carbamazepine (CARB), a widely used antiepileptic drug, was recently accounted for its neuroprotective effect. Nerve growth factor (NGF) activates various cascades among which, PI3K/Akt/mTOR pathway has a vital action in NGF-mediated neuronal differentiation and survival. This study evaluated the effect of CARB in the treatment of diabetic retina and unveiled some of the underlying molecular mechanisms. Main Methods: Alloxan diabetes model was induced in 36 albino well-acclimatized mice. After establishment of the diabetic model in 9 weeks, mice were assigned to treatment groups: (1) saline, (2) alloxan-diabetic, (3 and 4) alloxan+CARB (25 or 50 mg per kg p.o) for 4 weeks. After completion of the therapeutic period, mice were sacrificed and eyeballs were enucleated. Retinal levels of NGF and PI3K/Akt were assessed using real-time polymerase chain reaction. Further, total and phosphorylated TrKA, PI3K, Akt, mTOR as well as Caspase-3 were measured by Western blot analysis. Key Findings: Histopathological examination demonstrated that CARB attenuated vacuolization and restored normal thickness and organization of retinal cell layers. In addition, CARB increased pTrKA/TrKA ratio and ameliorated diabetes-induced reduction of NGF mRNA and immunostaining in retina. Additionally, it augmented the mRNA expression of PI3K and Akt, as well as the protein level of the phosphorylated PI3/Akt/mTOR. Significance: Results highlighted, for the first time, the neuronal protective effect for CARB in diabetic retina, which is mediated, at least in part, by activation of the NGF/PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Nehal M. Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Yousra Abdel-Mottaleb
- Department of Pharmacology and Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Amany Y. Elkazaz
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Portsaid University, Port Said, Egypt
| | - Hoda Atef
- Department of Histology and Cytology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rehab M. Lashine
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amal M. Youssef
- Department of Physiology, Faculty of Medicine, Taibah University, Medina, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Wessam Ezzat
- Department of Physiology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Sabah H. El-Ghaiesh
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Rabie E. Elshaer
- Pathology Department, Faculty of Medicine (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed El-Shafey
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Physiological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
8
|
Abstract
BACKGROUND Ketamine is an emerging third-line medication for refractory status epilepticus, a medical and neurological emergency requiring prompt and appropriate treatment. Owing to its pharmacological properties, ketamine represents a practical alternative to conventional anaesthetics. OBJECTIVE The objective of this study was to assess the efficacy and safety of ketamine to treat refractory status epilepticus in paediatric and adult populations. METHODS We conducted a literature search using the PubMed database, Cochrane Database of Systematic Reviews and ClinicalTrials.gov website. RESULTS We found no results from randomised controlled trials. The literature included 27 case reports accounting for 30 individuals and 14 case series, six of which included children. Overall, 248 individuals (29 children) with a median age of 43.5 years (range 2 months to 67 years) were treated in 12 case series whose sample size ranged from 5 to 67 patients (median 11). Regardless of the status epilepticus type, ketamine was twice as effective if administered early, with an efficacy rate as high as 64% in refractory status epilepticus lasting 3 days and dropping to 32% when the mean refractory status epilepticus duration was 26.5 days. Ketamine doses were extremely heterogeneous and did not appear to be an independent prognostic factor. Endotracheal intubation, a negative prognostic factor for status epilepticus, was unnecessary in 12 individuals (10 children), seven of whom were treated with oral ketamine for non-convulsive status epilepticus. CONCLUSIONS Although ketamine has proven to be effective in treating refractory status epilepticus, available studies are hampered by methodological limitations that prevent any firm conclusion. Results from two ongoing studies (ClinicalTrials.gov identification number: NCT02431663 and NCT03115489) and further clinical trials will hopefully confirm the better efficacy and safety profile of ketamine compared with conventional anaesthetics as third-line therapy in refractory status epilepticus, both in paediatric and adult populations.
Collapse
Affiliation(s)
- Anna Rosati
- Neuroscience Department, Children's Hospital Anna Meyer, University of Florence, Viale Pieraccini 24, 50139, Florence, Italy
| | | | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Anna Meyer, University of Florence, Viale Pieraccini 24, 50139, Florence, Italy.
| |
Collapse
|
9
|
Nagib MM, Tadros MG, Al-Khalek HAA, Rahmo RM, Sabri NA, Khalifa AE, Masoud SI. Molecular mechanisms of neuroprotective effect of adjuvant therapy with phenytoin in pentylenetetrazole-induced seizures: Impact on Sirt1/NRF2 signaling pathways. Neurotoxicology 2018; 68:47-65. [PMID: 30017425 DOI: 10.1016/j.neuro.2018.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/22/2018] [Accepted: 07/07/2018] [Indexed: 02/05/2023]
Abstract
Current anticonvulsant therapies are principally aimed at suppressing neuronal hyperexcitability to prevent or control the incidence of seizures. However, the role of oxidative stress processes in seizures led to the proposition that antioxidant compounds may be considered as promising candidates for limiting the progression of epilepsy. Accordingly, the aim of this study is to determine if coenzyme Q10 (CoQ10) and alpha-tocopherol (α-Toc) have a neuroprotective effect in rats against the observed oxidative stress and inflammation during seizures induced by pentylenetetrazole (PTZ) in rats, and to study their interactions with the conventional antiseizure drug phenytoin (PHT), either alone or in combination. Overall, the data revealed that α-Toc and CoQ10 supplementation can ameliorate PTZ-induced seizures and recommended that nuclear factor erythroid 2-related factor 2 (NRF2) and silencing information regulator 1 (Sirt1) signaling pathways may exemplify strategic molecular targets for seizure therapies. The results of the present study provide novel mechanistic insights regarding the protective effects of antioxidants and suggest an efficient therapeutic strategy to attenuate seizures. Additionally, concurrent supplementation of CoQ10 and α-Toc may be more effective than either antioxidant alone in decreasing inflammation and oxidative stress in both cortical and hippocampal tissues. Also, CoQ10 and α-Toc effectively reverse the PHT-mediated alterations in the brain antioxidant status when compared to PHT only.
Collapse
Affiliation(s)
- Marwa M Nagib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hadwa Ali Abd Al-Khalek
- Department of Histology and Cell biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Rania M Rahmo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nagwa Ali Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amani E Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University seconded to 57357 Children Cancer Hospital as the Scientific Consultant for Pharmacy Affairs, Cairo, Egypt
| | - Somaia I Masoud
- Former Head of Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Hernández-López F, Rodríguez-Landa J, Puga-Olguín A, Germán-Ponciano L, Rivadeneyra-Domínguez E, Bernal-Morales B. Analysis of activity and motor coordination in rats undergoing stereotactic surgery and implantation of a cannula into the dorsal hippocampus. NEUROLOGÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.nrleng.2016.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
Análisis de la actividad y coordinación motora en ratas con cirugía estereotáxica e implante de cánula en el hipocampo dorsal. Neurologia 2017; 32:579-586. [DOI: 10.1016/j.nrl.2016.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 02/25/2016] [Accepted: 03/08/2016] [Indexed: 11/18/2022] Open
|
12
|
Erfanparast A, Tamaddonfard E, Henareh-Chareh F. Intra-hippocampal microinjection of oxytocin produced antiepileptic effect on the pentylenetetrazol-induced epilepsy in rats. Pharmacol Rep 2017; 69:757-763. [DOI: 10.1016/j.pharep.2017.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/11/2017] [Accepted: 03/08/2017] [Indexed: 11/28/2022]
|
13
|
Wu T, Ido K, Osada Y, Kotani S, Tamaoka A, Hanada T. The neuroprotective effect of perampanel in lithium-pilocarpine rat seizure model. Epilepsy Res 2017. [PMID: 28624183 DOI: 10.1016/j.eplepsyres.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Status epilepticus (SE) causes irreversible neurodegeneration if not terminated quickly. Perampanel (PER), a potent AMPA receptor antagonist, has previously been shown to terminate seizures in the lithium-pilocarpine SE model. In the present study, we assessed whether PER would also prevent neuronal damage in this model. METHODS SE was induced in rats using lithium chloride and pilocarpine. Initiation of SE was defined as continuous seizures that exhibited as rearing accompanied by bilateral forelimb clonus (Racine score 4). Either PER (0.6, 2, or 6mg/kg) or diazepam (DZP, 10mg/kg) was administered intravenously 30min after SE initiation. Histopathological samples from treated and seizure-naive rats were taken one week after treatment and then stained with an anti-neuronal nuclei (NeuN) antibody. The sections were analyzed by using a pixel-counting algorithm to quantify the amount of staining in the CA1 subregion of the hippocampus, piriform cortex (Pir), and mediodorsal thalamic nucleus (MD). RESULTS DZP administration did not suppress seizures or the degeneration of neurons in the examined areas. Seizures were terminated in 100% of rats treated with 6mg/kg PER (n=8) and in 47% (7/15) of rats treated with 2mg/kg PER, and neurons in the analyzed areas of these animals were preserved to the level seen in naive rats. In the eight animals in which 2mg/kg PER did not terminate the seizures, neuronal loss was partially attenuated in CA1 and Pir, and neurons were fully preserved in MD. Treatment with 0.6mg/kg PER did not terminate the seizures or significantly preserve neurons. The anti-seizure effect of PER correlated well with the degree of neuroprotection in each analyzed area. CONCLUSIONS PER exhibited a strong neuroprotective effect in a drug-refractory SE model, and this effect was correlated with its attenuation of seizure.
Collapse
Affiliation(s)
- Ting Wu
- Neurology, Tsukuba Research Department, Discovery, Medicine Creation, Neurology Business Group, Eisai Co., Ltd., Japan; Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan.
| | - Katsutoshi Ido
- Neurology, Tsukuba Research Department, Discovery, Medicine Creation, Neurology Business Group, Eisai Co., Ltd., Japan
| | - Yoshihide Osada
- Neurology, Tsukuba Research Department, Discovery, Medicine Creation, Neurology Business Group, Eisai Co., Ltd., Japan
| | - Sadaharu Kotani
- Neurology, Tsukuba Research Department, Discovery, Medicine Creation, Neurology Business Group, Eisai Co., Ltd., Japan
| | - Akira Tamaoka
- Institute of Clinical Medicine, Department of Neurology, University of Tsukuba, Japan
| | - Takahisa Hanada
- Neurology, Tsukuba Research Department, Discovery, Medicine Creation, Neurology Business Group, Eisai Co., Ltd., Japan
| |
Collapse
|
14
|
Clossen BL, Reddy DS. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1519-1538. [PMID: 28179120 PMCID: PMC5474195 DOI: 10.1016/j.bbadis.2017.02.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 11/16/2022]
Abstract
This article describes the recent advances in epileptogenesis and novel therapeutic approaches for the prevention of epilepsy, with a special emphasis on the pharmacological basis of disease-modification of epileptogenesis for curing epilepsy. Here we assess animal studies and human clinical trials of epilepsy spanning 1982-2016. Epilepsy arises from a number of neuronal factors that trigger epileptogenesis, which is the process by which a brain shifts from a normal physiologic state to an epileptic condition. The events precipitating these changes can be of diverse origin, including traumatic brain injury, cerebrovascular damage, infections, chemical neurotoxicity, and emergency seizure conditions such as status epilepticus. Expectedly, the molecular and system mechanisms responsible for epileptogenesis are not well defined or understood. To date, there is no approved therapy for the prevention of epilepsy. Epigenetic dysregulation, neuroinflammation, and neurodegeneration appear to trigger epileptogenesis. Targeted drugs are being identified that can truly prevent the development of epilepsy in at-risk people. The promising agents include rapamycin, COX-2 inhibitors, TRK inhibitors, epigenetic modulators, JAK-STAT inhibitors, and neurosteroids. Recent evidence suggests that neurosteroids may play a role in modulating epileptogenesis. A number of promising drugs are under investigation for the prevention or modification of epileptogenesis to halt the development of epilepsy. Some drugs in development appear rational for preventing epilepsy because they target the initial trigger or related signaling pathways as the brain becomes progressively more prone to seizures. Additional research into the target validity and clinical investigation is essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Bryan L Clossen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
15
|
Propylparaben applied after pilocarpine-induced status epilepticus modifies hippocampal excitability and glutamate release in rats. Neurotoxicology 2017; 59:110-120. [DOI: 10.1016/j.neuro.2017.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 01/06/2017] [Accepted: 01/31/2017] [Indexed: 11/19/2022]
|
16
|
Kaproń B, Łuszczki J, Paneth A, Wujec M, Siwek A, Karcz T, Mordyl B, Głuch-Lutwin M, Gryboś A, Nowak G, Pająk K, Jóźwiak K, Tomczykowski A, Plech T. Molecular mechanism of action and safety of 5-(3-chlorophenyl)-4-hexyl-2,4-dihydro-3 H-1,2,4-triazole-3-thione - a novel anticonvulsant drug candidate. Int J Med Sci 2017; 14:741-749. [PMID: 28824309 PMCID: PMC5562128 DOI: 10.7150/ijms.20001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/06/2017] [Indexed: 11/17/2022] Open
Abstract
Previously, it was found that 5-(3-chlorophenyl)-4-hexyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (TP-315) effectively protects mice from maximal electroshock-induced seizures. The aim of this study was to determine possible interactions between TP-315 and different molecular targets, i.e. GABAA receptors, voltage-gated sodium channels, and human neuronal α7 and α4β2 nicotinic acetylcholine receptors. The influence of TP-315 on the viability of human hepatic HepG2 cells was also established using PrestoBlue and ToxiLight assays. It was found that the anticonvulsant activity of TP-315 results (at least partially) from its influence on voltage-gated sodium channels (VGSCs). Moreover, the title compound slightly affected the viability of human hepatic cells.
Collapse
Affiliation(s)
- Barbara Kaproń
- Department of Organic Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Jarogniew Łuszczki
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, Lublin 20-090, Poland.,Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, Lublin 20-950, Poland
| | - Agata Paneth
- Department of Organic Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Barbara Mordyl
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Gryboś
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Karolina Pająk
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Adam Tomczykowski
- Department of Organic Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| |
Collapse
|
17
|
Gulec Suyen G, Isbil-Buyukcoskun N, Kahveci N, Sengun E, Ozluk K. Immediate and delayed treatment with gabapentin, carbamazepine and CNQX have almost similar impact on cognitive functions and behavior in the lithium-pilocarpine model in rats. Pharmacol Biochem Behav 2016; 148:128-35. [DOI: 10.1016/j.pbb.2016.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/15/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023]
|
18
|
Choi YS, Lee B, Hansen KF, Aten S, Horning P, Wheaton KL, Impey S, Hoyt KR, Obrietan K. Status epilepticus stimulates NDEL1 expression via the CREB/CRE pathway in the adult mouse brain. Neuroscience 2016; 331:1-12. [PMID: 27298008 DOI: 10.1016/j.neuroscience.2016.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 11/27/2022]
Abstract
Nuclear distribution element-like 1 (NDEL1/NUDEL) is a mammalian homolog of the Aspergillus nidulans nuclear distribution molecule NudE. NDEL1 plays a critical role in neuronal migration, neurite outgrowth and neuronal positioning during brain development; however within the adult central nervous system, limited information is available regarding NDEL1 expression and functions. Here, the goal was to examine inducible NDEL1 expression in the adult mouse forebrain. Immunolabeling revealed NDEL1 within the forebrain, including the cortex and hippocampus, as well as the midbrain and hypothalamus. Expression was principally localized to perikarya. Using a combination of immunolabeling and RNA seq profiling, we detected a marked and long-lasting upregulation of NDEL1 expression within the hippocampus following a pilocarpine-evoked repetitive seizure paradigm. Chromatin immunoprecipitation (ChIP) analysis identified a cAMP response element-binding protein (CREB) binding site within the CpG island proximal to the NDEL1 gene, and in vivo transgenic repression of CREB led to a marked downregulation of seizure-evoked NDEL1 expression. Together these data indicate that NDEL1 is inducibly expressed in the adult nervous system, and that signaling via the CREB/CRE transcriptional pathway is likely involved. The role of NDEL1 in neuronal migration and neurite outgrowth during development raises the interesting prospect that inducible NDEL1 in the mature nervous system could contribute to the well-characterized structural and functional plasticity resulting from repetitive seizure activity.
Collapse
Affiliation(s)
- Yun-Sik Choi
- Department of Pharmaceutical Science & Technology, Catholic University of Daegu, Gyeongbuk, Republic of Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, Seoul, Republic of Korea
| | - Katelin F Hansen
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Sydney Aten
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Paul Horning
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Kelin L Wheaton
- Division of Pharmacology, Ohio State University, Columbus, OH, USA
| | - Soren Impey
- Oregon Health and Science University, Portland, OR, USA
| | - Kari R Hoyt
- Division of Pharmacology, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
19
|
Barker-Haliski ML, Friedman D, French JA, White HS. Disease Modification in Epilepsy: From Animal Models to Clinical Applications. Drugs 2015; 75:749-67. [DOI: 10.1007/s40265-015-0395-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Cao Z, Zou X, Cui Y, Hulsizer S, Lein PJ, Wulff H, Pessah IN. Rapid throughput analysis demonstrates that chemicals with distinct seizurogenic mechanisms differentially alter Ca2+ dynamics in networks formed by hippocampal neurons in culture. Mol Pharmacol 2015; 87:595-605. [PMID: 25583085 PMCID: PMC4366799 DOI: 10.1124/mol.114.096701] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/12/2015] [Indexed: 12/20/2022] Open
Abstract
Primary cultured hippocampal neurons (HN) form functional networks displaying synchronous Ca(2+) oscillations (SCOs) whose patterns influence plasticity. Whether chemicals with distinct seizurogenic mechanisms differentially alter SCO patterns was investigated using mouse HN loaded with the Ca(2+) indicator fluo-4-AM. Intracellular Ca(2+) dynamics were recorded from 96 wells simultaneously in real-time using fluorescent imaging plate reader. Although quiescent at 4 days in vitro (DIV), HN acquired distinctive SCO patterns as they matured to form extensive dendritic networks by 16 DIV. Challenge with kainate, a kainate receptor (KAR) agonist, 4-aminopyridine (4-AP), a K(+) channel blocker, or pilocarpine, a muscarinic acetylcholine receptor agonist, caused distinct changes in SCO dynamics. Kainate at <1 µM produced a rapid rise in baseline Ca(2+) (Phase I response) associated with high-frequency and low-amplitude SCOs (Phase II response), whereas SCOs were completely repressed with >1 µM kainate. KAR competitive antagonist CNQX [6-cyano-7-nitroquinoxaline-2,3-dione] (1-10 µM) normalized Ca(2+) dynamics to the prekainate pattern. Pilocarpine lacked Phase I activity but caused a sevenfold prolongation of Phase II SCOs without altering either their frequency or amplitude, an effect normalized by atropine (0.3-1 µM). 4-AP (1-30 µM) elicited a delayed Phase I response associated with persistent high-frequency, low-amplitude SCOs, and these disturbances were mitigated by pretreatment with the KCa activator SKA-31 [naphtho[1,2-d]thiazol-2-ylamine]. Consistent with its antiepileptic and neuroprotective activities, nonselective voltage-gated Na(+) and Ca(2+) channel blocker lamotrigine partially resolved kainate- and pilocarpine-induced Ca(2+) dysregulation. This rapid throughput approach can discriminate among distinct seizurogenic mechanisms that alter Ca(2+) dynamics in neuronal networks and may be useful in screening antiepileptic drug candidates.
Collapse
Affiliation(s)
- Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Yanjun Cui
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Susan Hulsizer
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Pamela J Lein
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Heike Wulff
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| | - Isaac N Pessah
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, P.R. China (Z.C., X.Z., Y.C.); Department of Molecular Biosciences, School of Veterinary Medicine (Z.C., Y.C., S.H., P.J.L., I.N.P.) and Department of Pharmacology, School of Medicine (H.W.),University of California, Davis, California
| |
Collapse
|
21
|
Twele F, Bankstahl M, Klein S, Römermann K, Löscher W. The AMPA receptor antagonist NBQX exerts anti-seizure but not antiepileptogenic effects in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. Neuropharmacology 2015; 95:234-42. [PMID: 25839899 DOI: 10.1016/j.neuropharm.2015.03.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/26/2015] [Accepted: 03/19/2015] [Indexed: 01/05/2023]
Abstract
The AMPA receptor subtype of glutamate receptors, which mediates fast synaptic excitation, is of primary importance in initiating epileptiform discharges, so that AMPA receptor antagonists exert anti-seizure activity in diverse animal models of partial and generalized seizures. Recently, the first AMPA receptor antagonist, perampanel, was approved for use as adjunctive therapy for the treatment of resistant partial seizures in patients. Interestingly, the competitive AMPA receptor antagonist NBQX has recently been reported to prevent development of spontaneous recurrent seizures (SRS) in a neonatal seizure model in rats, indicating the AMPA antagonists may exert also antiepileptogenic effects. This prompted us to evaluate competitive (NBQX) and noncompetitive (perampanel) AMPA receptor antagonists in an adult mouse model of mesial temporal lobe epilepsy. In this model, SRS develop after status epilepticus (SE) induced by intrahippocampal injection of kainate. Focal electrographic seizures in this model are resistant to several major antiepileptic drugs. In line with previous studies, phenytoin was not capable of blocking such seizures in the present experiments, while they were markedly suppressed by NBQX and perampanel. However, perampanel was less tolerable than NBQX in epileptic mice, so that only NBQX was subsequently tested for antiepileptogenic potential. When mice were treated over three days after kainate-induced SE with NBQX (20 mg/kg t.i.d.), no effect on development or frequency of seizures was found in comparison to vehicle controls. These results suggest that AMPA receptor antagonists, while being effective in suppressing resistant focal seizures, are not exerting antiepileptogenic effects in an adult mouse model of partial epilepsy.
Collapse
Affiliation(s)
- Friederike Twele
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Sabine Klein
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
22
|
|
23
|
Suidan GL, Brill A, De Meyer SF, Voorhees JR, Cifuni SM, Cabral JE, Wagner DD. Endothelial Von Willebrand factor promotes blood-brain barrier flexibility and provides protection from hypoxia and seizures in mice. Arterioscler Thromb Vasc Biol 2013; 33:2112-20. [PMID: 23825365 DOI: 10.1161/atvbaha.113.301362] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Aberrant blood-brain barrier (BBB) permeability is a hallmark pathology of many central nervous system diseases. von Willebrand factor (VWF) is stored in endothelial Weibel-Palade bodies from where it is released on activation into plasma and basement membrane. The role of VWF in endothelial homeostasis is unclear. The goal of this study was to assess the role of VWF in disease models associated with increased BBB permeability. APPROACH AND RESULTS We did not find any differences in BBB permeability to Evans blue dye at baseline between wild-type and VWF(-/-) animals. We next used 2 models presenting with increased BBB permeability, hypoxia/reoxygenation and pilocarpine-induced status epilepticus, to assess the response of VWF(-/-) animals. In both models, VWF(-/-) mice maintained a tighter BBB than wild-type mice. VWF(-/-) mice fared worse in both conditions, with ≈ 100% of VWF(-/-) mice dying within 120 minutes after pilocarpine administration, whereas >80% of wild-type animals survived. Investigation into the status of tight junction proteins revealed that VWF(-/-) mice expressed more claudin-5 at baseline. In vitro work confirmed that the presence of subendothelial VWF is inhibitory to claudin-5 expression. CONCLUSIONS VWF deficiency confers partial preservation of BBB integrity after hypoxia/reoxygenation and seizures. Surprisingly, this decrease in BBB permeability did not result in protection of animals because they demonstrated more severe pathology in both models compared with wild-type animals. These data suggest that a rigid BBB is detrimental (to the organism) during certain disease states and that VWF release may provide desired flexibility under stress.
Collapse
|
24
|
Dorandeu F, Dhote F, Barbier L, Baccus B, Testylier G. Treatment of status epilepticus with ketamine, are we there yet? CNS Neurosci Ther 2013; 19:411-27. [PMID: 23601960 PMCID: PMC6493567 DOI: 10.1111/cns.12096] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/23/2013] [Accepted: 02/23/2013] [Indexed: 12/24/2022] Open
Abstract
Status epilepticus (SE), a neurological emergency both in adults and in children, could lead to brain damage and even death if untreated. Generalized convulsive SE (GCSE) is the most common and severe form, an example of which is that induced by organophosphorus nerve agents. First- and second-line pharmacotherapies are relatively consensual, but if seizures are still not controlled, there is currently no definitive data to guide the optimal choice of therapy. The medical community seems largely reluctant to use ketamine, a noncompetitive antagonist of the N-methyl-d-aspartate glutamate receptor. However, a review of the literature clearly shows that ketamine possesses, in preclinical studies, antiepileptic properties and provides neuroprotection. Clinical evidences are scarcer and more difficult to analyze, owing to a use in situations of polytherapy. In absence of existing or planned randomized clinical trials, the medical community should make up its mind from well-conducted preclinical studies performed on appropriate models. Although potentially active, ketamine has no real place for the treatment of isolated seizures, better accepted drugs being used. Its best usage should be during GCSE, but not waiting for SE to become totally refractory. Concerns about possible developmental neurotoxicity might limit its pediatric use for refractory SE.
Collapse
Affiliation(s)
- Frederic Dorandeu
- Département de Toxicologie et risques chimiques, Institut de Recherche Biomédicale des Armées - Centre de Recherches du Service de Santé des Armées (IRBA-CRSSA), La Tronche Cedex, France.
| | | | | | | | | |
Collapse
|
25
|
Schneider PG, Rodríguez de Lores Arnaiz G. Ketamine prevents seizures and reverses changes in muscarinic receptor induced by bicuculline in rats. Neurochem Int 2012; 62:258-64. [PMID: 23279735 DOI: 10.1016/j.neuint.2012.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/27/2012] [Accepted: 12/12/2012] [Indexed: 11/17/2022]
Abstract
The cholinergic system has been implicated in several experimental epilepsy models. In a previous study bicuculline (BIC), known to antagonize GABA-A postsynaptic receptor subtype, was administered to rats at subconvulsant (1mg/kg) and convulsant (7.5mg/kg) doses and quinuclidinyl benzilate ([(3)H]-QNB) binding to CNS membranes was determined. It was observed that ligand binding to cerebellum increases while it decreases in the case of hippocampus. Saturation binding curves showed that changes were due to the modification of receptor affinity for the ligand without alteration of binding site number. The purpose of this study was to assay muscarinic receptors employing other BIC dose (5mg/kg), which induces seizures and allows the analysis of a postseizure stage as well. To study further muscarinic receptor involvement in BIC induced seizures, KET was also employed since it is a well known anticonvulsant in some experimental models. The administration of BIC at 5mg/kg to rats produced a similar pattern of changes in [(3)H]-QNB binding to those recorded with 1.0 and 7.5mg/kg doses. Here again, changes were observed in receptor binding affinity without alteration in binding site number for cerebellum or hippocampus membranes. Pretreatment with KET (40 mg/kg) prevented BIC seizures and reverted [(3)H]-QNB binding changes induced by BIC administration. The single administration of KET invariably resulted in [(3)H]-QNB binding decrease to either cerebellar or hippocampal membranes. KET added in vitro decreased ligand binding likewise. Results of combined treatment with KET plus BIC are hardly attributable to the single reversion of BIC effect since KET alone invariably decreased ligand binding. It is suggested that besides alteration of cholinergic muscarinic receptor other(s) neurotransmitter system(s) may well also be involved.
Collapse
Affiliation(s)
- Patricia Graciela Schneider
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina.
| | | |
Collapse
|
26
|
White HS, Alex AB, Pollock A, Hen N, Shekh-Ahmad T, Wilcox KS, McDonough JH, Stables JP, Kaufmann D, Yagen B, Bialer M. A new derivative of valproic acid amide possesses a broad-spectrum antiseizure profile and unique activity against status epilepticus and organophosphate neuronal damage. Epilepsia 2011; 53:134-46. [PMID: 22150444 DOI: 10.1111/j.1528-1167.2011.03338.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE sec-Butyl-propylacetamide (SPD) is a one-carbon homolog of valnoctamide (VCD), a central nervous system (CNS)-active amide derivative of valproic acid (VPA) currently in phase II clinical trials. The study reported herein evaluated the anticonvulsant activity of SPD in a battery of rodent seizure and epilepsy models and assessed its efficacy in rat and guinea pig models of status epilepticus (SE) and neuroprotection in an organotypic hippocampal slice model of excitotoxic cell death. METHODS The anticonvulsant activity of SPD was evaluated in several rodent seizure and epilepsy models, including maximal electroshock (MES), 6-Hz psychomotor; subcutaneous (s.c.) metrazol-, s.c. picrotoxin, s.c. bicuculline, and audiogenic, corneal, and hippocampal kindled seizures following intraperitoneal administration. Results obtained with SPD are discussed in relationship to those obtained with VPA and VCD. SPD was also evaluated for its ability to block benzodiazepine-resistant SE induced by pilocarpine (rats) and soman (rats and guinea pigs) following intraperitoneal administration. SPD was tested for its ability to block excitotoxic cell death induced by the glutamate agonists N-methyl-D-aspartate (NMDA) and kainic acid (KA) using organotypic hippocampal slices and SE-induced hippocampal cell death using FluoroJade B staining. The cognitive function of SPD-treated rats that were protected against pilocarpine-induced convulsive SE was examined 10-14 days post-SE using the Morris water maze (MWM). The relationship between the pharmacokinetic profile of SPD and its efficacy against soman-induced SE was evaluated in two parallel studies following SPD (60 mg/kg, i.p.) administration in the soman SE rat model. KEY FINDINGS SPD was highly effective and displayed a wide protective index (PI = median neurotoxic dose/median effective dose [TD(50)/ED(50)]) in the standardized seizure and epilepsy models employed. The wide PI values of SPD demonstrate that it is effective at doses well below those that produce behavioral impairment. Unlike VCD, SPD also displayed anticonvulsant activity in the rat pilocarpine model of SE. Thirty minutes after the induction of SE, the calculated rat ED(50) for SPD against convulsive SE in this model was 84 mg/kg. SPD was not neuroprotective in the organotypic hippocampal slice preparation; however, it did display hippocampal neuroprotection in both SE models and cognitive sparing in the MWM, which was associated with its antiseizure effect against pilocarpine-induced SE. When administered 20 and 40 min after SE onset, SPD (100-174 mg/kg) produced long-lasting efficacy (e.g., 4-8 h) against soman-induced convulsive and electrographic SE in both rats and guinea pigs. SPD ED(50) values in guinea pigs were 67 and 92 mg/kg when administered at SE onset or 40 min after SE onset, respectively. Assuming linear pharmacokinetics (PK), the PK-PD (pharmacodynamic) results (rats) suggests that effective SPD plasma levels ranged between 8 and 40 mg/L (20 min after the onset of soman-induced seizures) and 12-50 mg/L (40 min after the onset of soman-induced seizures). The time to peak (t(max)) pharmacodynamic effect (PD-t(max)) occurred after the PK-t(max), suggesting that SPD undergoes slow distribution to extraplasmatic sites, which is likely responsible for antiseizure activity of SPD. SIGNIFICANCE The results demonstrate that SPD is a broad-spectrum antiseizure compound that blocks SE induced by pilocarpine and soman and affords in vivo neuroprotection that is associated with cognitive sparing. Its activity against SE is superior to that of diazepam in terms of rapid onset, potency, and its effect on animal mortality and functional improvement.
Collapse
Affiliation(s)
- H Steve White
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ghasemi M, Schachter SC. The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav 2011; 22:617-40. [PMID: 22056342 DOI: 10.1016/j.yebeh.2011.07.024] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/01/2011] [Accepted: 07/18/2011] [Indexed: 01/02/2023]
Abstract
A substantial amount of research has shown that N-methyl-D-aspartate receptors (NMDARs) may play a key role in the pathophysiology of several neurological diseases, including epilepsy. Animal models of epilepsy and clinical studies demonstrate that NMDAR activity and expression can be altered in association with epilepsy and particularly in some specific seizure types. NMDAR antagonists have been shown to have antiepileptic effects in both clinical and preclinical studies. There is some evidence that conventional antiepileptic drugs may also affect NMDAR function. In this review, we describe the evidence for the involvement of NMDARs in the pathophysiology of epilepsy and provide an overview of NMDAR antagonists that have been investigated in clinical trials and animal models of epilepsy.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
28
|
Perez-Mendes P, Blanco MM, Calcagnotto ME, Cinini SM, Bachiega J, Papoti D, Covolan L, Tannus A, Mello LE. Modeling epileptogenesis and temporal lobe epilepsy in a non-human primate. Epilepsy Res 2011; 96:45-57. [PMID: 21620680 DOI: 10.1016/j.eplepsyres.2011.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/29/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
Here we describe a new non-human primate model of temporal lobe epilepsy (TLE) to better investigate the cause/effect relationships of human TLE. Status epilepticus (SE) was induced in adult marmosets by pilocarpine injection (250mg/kg; i.p.). The animals were divided in 2 groups: acute (8h post-SE) and chronic (3 and 5 months post-SE). To manage the severity of SE, animals received diazepam 5min after the SE onset (acute group: 2.5 or 1.25mg/kg; i.p.; chronic group/; 1.25mg/kg; i.p). All animals were monitored by video and electrocorticography to assess SE and subsequent spontaneous recurrent seizures (SRS). To evaluate brain injury produced by SE or SRS we used argyrophil III, Nissl and neo-Timm staining techniques. Magnetic resonance image was also performed in the chronic group. We observed that pilocarpine was able to induce SE followed by SRS after a variable period of time. Prolonged SE episodes were associated with brain damage, mostly confined to the hippocampus and limbic structures. Similar to human TLE, anatomical disruption of dentate gyrus was observed after SRS. Our data suggest that pilocarpine marmoset model of epilepsy has great resemblance to human TLE, and could provide new tools to further evaluate the subtle changes associated with human epilepsy.
Collapse
Affiliation(s)
- P Perez-Mendes
- Departamento de Fisiologia, Universidade Federal de São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
François J, Germe K, Ferrandon A, Koning E, Nehlig A. Carisbamate has powerful disease-modifying effects in the lithium-pilocarpine model of temporal lobe epilepsy. Neuropharmacology 2011; 61:313-28. [PMID: 21539848 DOI: 10.1016/j.neuropharm.2011.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 11/30/2022]
Abstract
Lithium-pilocarpine, a relevant model of temporal lobe epilepsy was used to test the neuroprotective and antiepileptogenic effects of carisbamate. Status epilepticus (SE) was induced in adult rats by lithium and pilocarpine. Carisbamate (30, 60, 90, and 120 mg/kg) was injected at 1 and 9 h after SE onset and continued twice daily for 6 additional days. The reference groups received diazepam instead of carisbamate. Neuroprotection was assessed during the first 24 h of SE with Fluoro-Jade B and after 14 days with thionine staining. SE severity and epileptic outcome were assessed by video, and surface and depth electroencephalographic recordings. At the two highest doses, carisbamate treatment reduced SE severity; produced strong neuroprotection of hippocampus, ventral cortices, thalamus, and amygdala; prevented mossy fiber sprouting in the dentate gyrus of the hippocampus; and delayed or suppressed the occurrence of spontaneous motor seizures. Rats with no spontaneous motor seizures displayed spike-and-wave discharges that share all the characteristics of absence seizures. In conclusion, carisbamate is able to induce strong neuroprotection and affect the nature of epileptogenic events occurring during and after lithium-pilocarpine status epilepticus, reflecting marked insult- and disease-modifying effects.
Collapse
Affiliation(s)
- Jennifer François
- InsermU666, University Louis Pasteur; Faculty of Medicine, 11 rue Humann, 67085 Strasbourg Cedex, France.
| | | | | | | | | |
Collapse
|
30
|
Löscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev 2010; 62:668-700. [PMID: 21079040 PMCID: PMC3014230 DOI: 10.1124/pr.110.003046] [Citation(s) in RCA: 305] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diverse brain insults, including traumatic brain injury, stroke, infections, tumors, neurodegenerative diseases, and prolonged acute symptomatic seizures, such as complex febrile seizures or status epilepticus (SE), can induce "epileptogenesis," a process by which normal brain tissue is transformed into tissue capable of generating spontaneous recurrent seizures. Furthermore, epileptogenesis operates in cryptogenic causes of epilepsy. In view of the accumulating information about cellular and molecular mechanisms of epileptogenesis, it should be possible to intervene in this process before the onset of seizures and thereby either prevent the development of epilepsy in patients at risk or increase the potential for better long-term outcome, which constitutes a major clinical need. For identifying pharmacological interventions that prevent, interrupt or reverse the epileptogenic process in people at risk, two groups of animal models, kindling and SE-induced recurrent seizures, have been recommended as potentially useful tools. Furthermore, genetic rodent models of epileptogenesis are increasingly used in assessing antiepileptogenic treatments. Two approaches have been used in these different model categories: screening of clinically established antiepileptic drugs (AEDs) for antiepileptogenic or disease-modifying potential, and targeting the key causal mechanisms that underlie epileptogenesis. The first approach indicated that among various AEDs, topiramate, levetiracetam, carisbamate, and valproate may be the most promising. On the basis of these experimental findings, two ongoing clinical trials will address the antiepileptogenic potential of topiramate and levetiracetam in patients with traumatic brain injury, hopefully translating laboratory discoveries into successful therapies. The second approach has highlighted neurodegeneration, inflammation and up-regulation of immune responses, and neuronal hyperexcitability as potential targets for antiepileptogenesis or disease modification. This article reviews these areas of progress and discusses the challenges associated with discovery of antiepileptogenic therapies.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Bünteweg 17, Hannover, Germany.
| | | |
Collapse
|
31
|
Detrait E, Leclercq K, Löscher W, Potschka H, Niespodziany I, Hanon E, Kaminski R, Matagne A, Lamberty Y. Brivaracetam does not alter spatial learning and memory in both normal and amygdala-kindled rats. Epilepsy Res 2010; 91:74-83. [DOI: 10.1016/j.eplepsyres.2010.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 11/29/2022]
|
32
|
|