1
|
da Mata AMOF, Silva RRE, Braga AL, de Carvalho RM, de Oliveira Santos JV, de Alencar MVOB, Paz MCFJ, Ansari SA, Ansari IA, Islam MT, de Castro e Sousa JM, da Silva FCC, de Carvalho Melo Cavalcante AA, da Silva BB. Protective effects of ascorbic acid against anticancer drug-induced oxidative stress and genotoxic damage in Saccharomyces cerevisiae. 3 Biotech 2025; 15:118. [PMID: 40206055 PMCID: PMC11977090 DOI: 10.1007/s13205-025-04280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
The widely used dietary antioxidant ascorbic acid (AA) is evident to possess protective effects against many chronic diseases. This study aimed to evaluate the effects of AA on oxidative stress and genotoxic damage caused by 5-fluorouracil (5-FU), docetaxel (DOCE), and tamoxifen (TAMOX) in two proficient and four isogenic Saccharomyces cerevisiae strains. For this, we performed disc diffusion and comet alkaline assay using suitable standard drugs. The results suggest that 5-FU, DOCE, TAMOX, and their combinations induced significant oxidative damage (p < 0.001) in all S. cerevisiae strains. These anticancer drugs and their combinations also induced genotoxicity (p < 0.05) in the SODWT strain when compared to the negative control group. These drugs and their combinations augmented damage index (ID) and damage frequency (FD) in the comet assay. However, AA alone, as well as when co-treated with these anticancer drugs, significantly (p < 0.05) reduced the damaging effects (oxidative stress and genotoxicity) on all test strains. AA showed the highest damage modulation with TAMOX (ID = 51.4% and FD = 50%), followed by 5-FU + DOCE (ID = 43.5% and FD = 42.9%), DOCE (ID = 42.5% and FD = 39.1%), and 5-FU + TAMOX (ID = 37% and FD = 33.6%), respectively. Taken together, AA reduced oxidative stress caused by the inducer hydrogen peroxide and showed anti-genotoxic activities against 5-FU, DOCE, and TAMOX, and their combinations mediated genotoxic effects on S. cerevisiae strains. Further studies are necessary to understand the molecular interference of AA in cancer therapies.
Collapse
Affiliation(s)
- Ana Maria Oliveira Ferreira da Mata
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí-UFPI, Teresina, Piauí 64049-550 Brazil
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí 64049-550 Brazil
| | - Reyca Rodrigues e Silva
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí 64049-550 Brazil
| | - Antônio Lima Braga
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí 64049-550 Brazil
| | - Ricardo Melo de Carvalho
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí-UFPI, Teresina, Piauí 64049-550 Brazil
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí 64049-550 Brazil
| | - José Victor de Oliveira Santos
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí 64049-550 Brazil
| | - Marcus Vinícius Oliveira Barros de Alencar
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí-UFPI, Teresina, Piauí 64049-550 Brazil
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí 64049-550 Brazil
| | - Márcia Correia Fernanda Jardim Paz
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí-UFPI, Teresina, Piauí 64049-550 Brazil
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí 64049-550 Brazil
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy
| | - Muhammad Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna, 9208 Bangladesh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd, Gopalganj, 8100 Bangladesh
| | - João Marcelo de Castro e Sousa
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí-UFPI, Teresina, Piauí 64049-550 Brazil
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí 64049-550 Brazil
| | - Felipe Cavalcanti Carneiro da Silva
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí-UFPI, Teresina, Piauí 64049-550 Brazil
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí 64049-550 Brazil
| | - Ana Amélia de Carvalho Melo Cavalcante
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí-UFPI, Teresina, Piauí 64049-550 Brazil
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí 64049-550 Brazil
| | - Benedito Borges da Silva
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí-UFPI, Teresina, Piauí 64049-550 Brazil
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, Piauí 64049-550 Brazil
| |
Collapse
|
2
|
Wang JL, Chen YS, Huang KC, Yeh CH, Chen MCM, Wu LSH, Chiu YH. Resistant Starch-Encapsulated Probiotics Attenuate Colorectal Cancer Cachexia and 5-Fluorouracil-Induced Microbial Dysbiosis. Biomedicines 2024; 12:1450. [PMID: 39062024 PMCID: PMC11274618 DOI: 10.3390/biomedicines12071450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
5-Fluorouracil (5-FU) is commonly used as the primary chemotherapy for colorectal cancer (CRC). However, it can lead to unwanted chemoresistance. Resistant starch (RS), which functions similarly to fermentable dietary fiber, has the potential to reduce the risk of CRC. The effects of RS on improving CRC-associated cachectic symptoms and 5-FU chemotherapy-induced microbial dysbiosis remain unknown. Female BALB/cByJNarl mice were randomly divided into four groups: one tumor group (with CT26 colonic carcinoma but no treatment) and three CT26 colonic carcinoma-bearing groups that were administered 20 mg/kg 5-FU (T+5-FU group), a probiotic cocktail (4 × 108 CFUs) plus chemotherapy (T+5-FU+Pro), or resistant-starch-encapsulated probiotics plus chemotherapy (T+5-FU+RS-Pro). T+5-FU and T+5-FU+RS-Pro administration significantly suppressed tumor growth and activated apoptotic cell death in CT26-bearing mice. 5-FU-induced increases in inflammatory cytokines and NF-κB signaling were mitigated by the Pro or RS-Pro supplementation. A gut microbial composition comparison indicated that the abundance of intestinal bacteria in the T and T+5-FU groups decreased significantly, while the groups receiving Pro or RS-Pro maintained a greater abundance and healthy gut microbiota composition, suggesting that RS can reduce the microbial dysbiosis that occurs during 5-FU chemotherapy. The use of RS-Pro before chemotherapy should be considered for the regulation of chemotherapy-associated cachectic symptoms, inflammation, and chemotherapy-induced microbial dysbiosis.
Collapse
Affiliation(s)
- Jui-Ling Wang
- Animal Testing Division, National Laboratory Animal Center, National Applied Research Laboratories, Tainan 744, Taiwan;
| | - Yu-Siang Chen
- Department of Microbiology, Soochow University, Taipei 111, Taiwan;
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Kuo-Chin Huang
- Holistic Education Center, Mackay Medical College, New Taipei City 25245, Taiwan;
| | - Chin-Hsing Yeh
- Fecula Biotech Co., Ltd., Tainan 744, Taiwan; (C.-H.Y.); (M.C.-M.C.)
| | | | - Lawrence Shih-Hsin Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Yi-Han Chiu
- Department of Microbiology, Soochow University, Taipei 111, Taiwan;
| |
Collapse
|
3
|
Ladeira C, Araújo R, Ramalhete L, Teixeira H, Calado CRC. Blood molecular profile to predict genotoxicity from exposure to antineoplastic drugs. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503681. [PMID: 37770138 DOI: 10.1016/j.mrgentox.2023.503681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 10/03/2023]
Abstract
Genotoxicity is an important information that should be included in human biomonitoring programmes. However, the usually applied cytogenetic assays are laborious and time-consuming, reason why it is critical to develop rapid and economic new methods. The aim of this study was to evaluate if the molecular profile of frozen whole blood, acquired by Fourier Transform Infrared (FTIR) spectroscopy, allows to assess genotoxicity in occupational exposure to antineoplastic drugs, as obtained by the cytokinesis-block micronucleus assay. For that purpose, 92 samples of peripheral blood were studied: 46 samples from hospital professionals occupationally exposed to antineoplastic drugs and 46 samples from workers in academia without exposure (controls). It was first evaluated the metabolome from frozen whole blood by methanol precipitation of macromolecules as haemoglobin, followed by centrifugation. The metabolome molecular profile resulted in 3 ratios of spectral bands, significantly different between the exposed and non-exposed group (p < 0.01) and a spectral principal component-linear discriminant analysis (PCA-LDA) model enabling to predict genotoxicity from exposure with 73 % accuracy. After optimization of the dilution degree and solution used, it was possible to obtain a higher number of significant ratios of spectral bands, i.e., 10 ratios significantly different (p < 0.001), highlighting the high sensitivity and specificity of the method. Indeed, the PCA-LDA model, based on the molecular profile of whole blood, enabled to predict genotoxicity from the exposure with an accuracy, sensitivity, and specificity of 92 %, 93 % and 91 %, respectively. All these parameters were achieved based on 1 μL of frozen whole blood, in a high-throughput mode, i.e., based on the simultaneous analysis of 92 samples, in a simple and economic mode. In summary, it can be conclude that this method presents a very promising potential for high-dimension screening of exposure to genotoxic substances.
Collapse
Affiliation(s)
- Carina Ladeira
- H&TRC - Health & Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Instituto Politécnico de Lisboa, Avenida D. João II, lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Portugal.
| | - Rúben Araújo
- Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Portugal; ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emidio Navarro 1, 1959‑007 Lisboa, Portugal; NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Luís Ramalhete
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emidio Navarro 1, 1959‑007 Lisboa, Portugal; Blood and Transplantation Center of Lisbon, Instituto Português do Sangue e da Transplantação, Alameda das Linhas de Torres, n◦ 117, 1769-001 Lisbon, Portugal; NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Hélder Teixeira
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emidio Navarro 1, 1959‑007 Lisboa, Portugal
| | - Cecília R C Calado
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emidio Navarro 1, 1959‑007 Lisboa, Portugal; CIMOSM - Centro de Investigação em Modelação e Otimização de Sistemas Multifuncionais, ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emidio Navarro 1, 1959‑007 Lisboa, Portugal
| |
Collapse
|
4
|
Nisha Y, Dubashi B, Bobby Z, Sahoo JP, Kayal S, Ananthakrishnan R, Reddy VB, L C, Ganesan P. Negative impact on bone homeostasis in postmenopausal women with non-metastatic breast cancer during cytotoxic chemotherapy. J Bone Miner Metab 2023; 41:682-692. [PMID: 37410202 DOI: 10.1007/s00774-023-01444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION The burden and mechanisms of endocrine therapy-related bone loss are well known, while there are limited data on chemotherapy-induced bone resorption. The study aimed to evaluate the effect of cytotoxic chemotherapy on bone homeostasis among postmenopausal women with non-metastatic breast cancer. MATERIALS AND METHODS Early and locally advanced postmenopausal non-metastatic breast cancer patients aged 45 to 65 planned for three cycles of anthracycline and four cycles of taxane chemotherapy administered along with dexamethasone (cumulative dose-256 mg) as an antiemetic from June 2018 to December 2021 were included. Bone mineral density (BMD), bone turnover markers, calciotropic hormones, pro-inflammatory cytokines, oxidative stress, and total antioxidant levels (TAS) were measured. RESULTS We recruited 109 patients, with early 34 (31.2%) and locally advanced breast cancer 75 (68.8%) with median age 53 (45-65) years. There was a significant decrease in the % BMD at the lumbar spine, neck of the femur, and total hip post-chemotherapy. There was a significant increase in serum C-terminal telopeptide of type I collagen (CTX) and procollagen type I N-terminal propeptide (PINP) levels post-chemotherapy. PINP/CTX ratio significantly decreased post-chemotherapy. Serum 25-OH vitamin D was significantly reduced with a compensatory increase in plasma iPTH levels. The change in CTX, PINP/CTX ratio, 25-OH vitamin D, iPTH, and oxidative stress index was more pronounced during anthracycline as taxane chemotherapy. There were no significant changes in pro-inflammatory cytokine levels. CONCLUSION Chemotherapy and dexamethasone as antiemetic resulted in significant bone loss, as evidenced by bone turnover markers. Further studies are required to understand the mechanism of chemotherapy-induced bone loss and the need for bone-strengthening agents during chemotherapy.
Collapse
Affiliation(s)
- Yadav Nisha
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Biswajit Dubashi
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India.
| | - Zachariah Bobby
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Jaya Prakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Smita Kayal
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Ramesh Ananthakrishnan
- Department of Radiodiagnosis, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Vijay Bhaskar Reddy
- Department of Endocrinology, Vijay Diabetes, Thyroid and Endocrine Clinic, Saradambal Nagar, Puducherry, India
| | - Charles L
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Prasanth Ganesan
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| |
Collapse
|
5
|
Wang H, Wang ZL, Zhang S, Kong DJ, Yang RN, Cao L, Wang JX, Yoshida S, Song ZL, Liu T, Fan SL, Ren JS, Li JH, Shen ZY, Zheng H. Metronomic capecitabine inhibits liver transplant rejection in rats by triggering recipients' T cell ferroptosis. World J Gastroenterol 2023; 29:3084-3102. [PMID: 37346150 PMCID: PMC10280797 DOI: 10.3748/wjg.v29.i20.3084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/19/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Capecitabine (CAP) is a classic antimetabolic drug and has shown potential antirejection effects after liver transplantation (LT) in clinical studies. Our previous study showed that metronomic CAP can cause the programmed death of T cells by inducing oxidative stress in healthy mice. Ferroptosis, a newly defined non-apoptotic cell death that occurs in response to iron overload and lethal levels of lipid peroxidation, is an important mechanism by which CAP induces cell death. Therefore, ferroptosis may also play an important role in CAP-induced T cell death and play an immunosuppressive role in acute rejection after trans-plantation. AIM To investigate the functions and underlying mechanisms of antirejection effects of metronomic CAP. METHODS A rat LT model of acute rejection was established, and the effect of metronomic CAP on splenic hematopoietic function and acute graft rejection was evaluated 7 d after LT. In vitro, primary CD3+ T cells were sorted from rat spleens and human peripheral blood, and co-cultured with or without 5-fluorouracil (5-FU) (active agent of CAP). The levels of ferroptosis-related proteins, ferrous ion concentration, and oxidative stress-related indicators were observed. The changes in mito-chondrial structure were observed using electron microscopy. RESULTS With no significant myelotoxicity, metronomic CAP alleviated graft injury (Banff score 9 vs 7.333, P < 0.001), prolonged the survival time of the recipient rats (11.5 d vs 16 d, P < 0.01), and reduced the infiltration rate of CD3+ T cells in peripheral blood (6.859 vs 3.735, P < 0.001), liver graft (7.459 vs 3.432, P < 0.001), and spleen (26.92 vs 12.9, P < 0.001), thereby inhibiting acute rejection after LT. In vitro, 5-FU, an end product of CAP metabolism, induced the degradation of the ferritin heavy chain by upregulating nuclear receptor coactivator 4, which caused the accumulation of ferrous ions. It also inhibited nuclear erythroid 2 p45-related factor 2, heme oxygenase-1, and glutathione peroxidase 4, eventually leading to oxidative damage and ferroptosis of T cells. CONCLUSION Metronomic CAP can suppress acute allograft rejection in rats by triggering CD3+ T cell ferroptosis, which makes it an effective immunosuppressive agent after LT.
Collapse
Affiliation(s)
- Hao Wang
- The First Central Clinical School, Tianjin Medical University, Tianjin 300190, China
| | - Zheng-Lu Wang
- Department of Organ Transplant, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300190, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300190, China
| | - Sai Zhang
- School of Medicine, Nankai University, Tianjin 300190, China
| | - De-Jun Kong
- School of Medicine, Nankai University, Tianjin 300190, China
| | - Rui-Ning Yang
- The First Central Clinical School, Tianjin Medical University, Tianjin 300190, China
| | - Lei Cao
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jian-Xi Wang
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sei Yoshida
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300071, China
| | - Zhuo-Lun Song
- Department of Organ Transplant, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300190, China
| | - Tao Liu
- National Health Commission’s Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300071, China
| | - Shun-Li Fan
- Department of Organ Transplant, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300190, China
| | - Jia-Shu Ren
- The First Central Clinical School, Tianjin Medical University, Tianjin 300190, China
| | - Jiang-Hong Li
- The First Central Clinical School, Tianjin Medical University, Tianjin 300190, China
| | - Zhong-Yang Shen
- Department of Organ Transplant, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300190, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300190, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300071, China
- National Health Commission’s Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300071, China
| | - Hong Zheng
- Department of Organ Transplant, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300190, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300190, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300071, China
- National Health Commission’s Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300071, China
| |
Collapse
|
6
|
Zhang S, Wang Z, Fan S, Liu T, Yoshida S, Yang S, Liu L, Hou W, Cao L, Wang J, Song Z, Li S, Zhang S, Wang H, Li J, Zheng H, Shen Z. Capecitabine Can Induce T Cell Apoptosis: A Potential Immunosuppressive Agent With Anti-Cancer Effect. Front Immunol 2021; 12:737849. [PMID: 34557199 PMCID: PMC8452994 DOI: 10.3389/fimmu.2021.737849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Capecitabine (CAP) is now widely used in the comprehensive treatment of digestive system tumors. Some clinical observations have shown that CAP may have immunosuppressive effects, but there is still a lack of clear experimental verification. In this study, different doses of CAP were administered to normal mice by gavage. Our results confirmed that CAP did not cause myelosuppression in bone marrow tissue; CAP selectively reduced the proportion of T cells and the concentration of related pro-inflammatory cytokines, while it increased the concentration of anti-inflammatory cytokines. Thymidylate phosphorylase (TP) is the key enzyme for the transformation of CAP in vivo; this study confirmed that T cells express TP, but the bone marrow tissue lacks TP expression, which explains the selectivity in pharmacodynamic effects of CAP. In addition, it was confirmed that CAP can induce T cell apoptosis in vivo and in vitro. In vitro experiments showed that CAP-induced T cell apoptosis was related to TP expression, endoplasmic reticulum stress (ERS) induction, reactive oxygen species (ROS) production, and mitochondria-mediated apoptosis activation. Therefore, this study confirmed that the differential expression of TP in cells and tissues explains why CAP avoids the toxic effects of myelosuppression while inducing T cell apoptosis to exert the immunosuppressive effect. Therefore, CAP may become an immunosuppressive agent with a simultaneous anti-cancer effect, which is worthy of further studies.
Collapse
Affiliation(s)
- Sai Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Zhenglu Wang
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Shunli Fan
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Tao Liu
- National Health Commission’s Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Sei Yoshida
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- School of Medicine, Nankai University, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
| | - Lei Liu
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Wen Hou
- National Health Commission’s Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Lei Cao
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Jianxi Wang
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhuolun Song
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Shanni Li
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Sirui Zhang
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Hao Wang
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Jianghong Li
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Hong Zheng
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zhongyang Shen
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- National Health Commission’s Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Chen Y, Luo X, Zou Z, Liang Y. The Role of Reactive Oxygen Species in Tumor Treatment and its Impact on Bone Marrow Hematopoiesis. Curr Drug Targets 2021; 21:477-498. [PMID: 31736443 DOI: 10.2174/1389450120666191021110208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients' life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.
Collapse
Affiliation(s)
- Yongfeng Chen
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xingjing Luo
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Zhenyou Zou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Yong Liang
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
8
|
Ishibashi M, Ishii M, Yamamoto S, Mori Y, Shimizu S. Possible involvement of TRPM2 activation in 5-fluorouracil-induced myelosuppression in mice. Eur J Pharmacol 2021; 891:173671. [PMID: 33131720 DOI: 10.1016/j.ejphar.2020.173671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress-sensitive Ca2+-permeable channel. The activation of TRPM2 by H2O2 causes cell death in various types of cells. 5-Fluorouracil (5-FU) is an important anticancer drug, but myelosuppression is one of the most frequent adverse effects. The involvement of oxidative stress in 5-FU-induced myelosuppression has been reported, and bone marrow cells are known to express TRPM2. The aim of this study was to investigate whether TRPM2 is involved in 5-FU-induced myelosuppression. Enhancement of H2O2-induced intracellular Ca2+ concentration ([Ca2+]i) increase by 5-FU treatment was observed in human embryonic kidney 293 (HEK) cells stably expressing TRPM2 but not in HEK cells, indicating that 5-FU stimulates TRPM2 activation. In CD117 positive cells from wild type (WT) mouse bone marrow, 5-FU also enhanced the H2O2-induced [Ca2+]i increases, but not in cells from Trpm2 knockout (KO) mice. In the CFU-GM colony assay, the 5-FU-induced reduction of colony number was alleviated by Trpm2 deficiency. Moreover, the reduction of leukocytes in blood by administration with 5-FU in WT mice was also alleviated in Trpm2 KO mice. The activation of TRPM2 in bone marrow cells seems to be involved in 5-FU-induced myelosuppression.
Collapse
Affiliation(s)
- Masaaki Ishibashi
- Division of Physiology and Pathology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, 164-8530, Japan; Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Shinagawa, Tokyo, 142-8555, Japan
| | - Masakazu Ishii
- Division of Physiology and Pathology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, 164-8530, Japan; Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Shinagawa, Tokyo, 142-8555, Japan
| | - Shinichiro Yamamoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, 164-8530, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Shunichi Shimizu
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, 164-8530, Japan.
| |
Collapse
|
9
|
Smolková K, Mikó E, Kovács T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid Redox Signal 2020; 33:966-997. [PMID: 31989830 PMCID: PMC7533893 DOI: 10.1089/ars.2020.8024] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Nuclear factor erythroid 2 (NFE2)-related factor 2 (NFE2L2, or NRF2) is a transcription factor predominantly affecting the expression of antioxidant genes. NRF2 plays a significant role in the control of redox balance, which is crucial in cancer cells. NRF2 activation regulates numerous cancer hallmarks, including metabolism, cancer stem cell characteristics, tumor aggressiveness, invasion, and metastasis formation. We review the molecular characteristics of the NRF2 pathway and discuss its interactions with the cancer hallmarks previously listed. Recent Advances: The noncanonical activation of NRF2 was recently discovered, and members of this pathway are involved in carcinogenesis. Further, cancer-related changes (e.g., metabolic flexibility) that support cancer progression were found to be redox- and NRF2 dependent. Critical Issues: NRF2 undergoes Janus-faced behavior in cancers. The pro- or antineoplastic effects of NRF2 are context dependent and essentially based on the specific molecular characteristics of the cancer in question. Therefore, systematic investigation of NRF2 signaling is necessary to clarify its role in cancer etiology. The biggest challenge in the NRF2 field is to determine which cancers can be targeted for better clinical outcomes. Further, large-scale genomic and transcriptomic studies are missing to correlate the clinical outcome with the activity of the NRF2 system. Future Directions: To exploit NRF2 in a clinical setting in the future, the druggable members of the NRF2 pathway should be identified. In addition, it will be important to study how the modulation of the NRF2 system interferes with cytostatic drugs and their combinations.
Collapse
Affiliation(s)
- Katarína Smolková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alberto Leguina-Ruzzi
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Mohamed AS. Echinochrome Exhibits Antitumor Activity against Ehrlich Ascites Carcinoma in Swiss Albino Mice. Nutr Cancer 2020; 73:124-132. [PMID: 32151164 DOI: 10.1080/01635581.2020.1737152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background: Echinochrome (Ech) is a common pigment present in sea urchins, which has antioxidant, antimicrobial, antialgal, hypolipidemic and hypoglycemic activities.Purpose: The present investigation assessed the anticancer and antioxidant activities of Ech against the Ehrlich ascites carcinoma tumor model in mice.Methods: Forty female mice were divided into four groups (n = 10). All groups except the group I received EAC cells (5 × 106 cells/mouse i.p.). Group I, served as saline control (5 ml/kg 0.9% NaCl w/v p.o); group II served as EAC; groups III and IV received Ech (1 mg/kg body weight i.p.), and reference drug (5-Fu, 20 mg/kg body weight i.p.) respectively. Tumor markers, hematological parameters, liver functions, kidney functions and oxidative stress markers were analyzed in the present study.Results: A significant decrease (p < 0.05) were detected in the tumor volume, tumor cell counts, tumor cells viability, WBC count, MDA, urea, uric acid, AST, ALT, and ALP levels in Ech-treated mice. Furthermore, Ech-treated mice showed significant increases in RBCs count, Hb, Pt, GSH, CAT, and GST levels.Conclusion: The study results revealed that echinochrome suppresses tumor growth, decreases lipid peroxidation and improves the antioxidant status.
Collapse
|
11
|
Ganoderma lucidum Polysaccharide Enhanced the Antitumor Effects of 5-Fluorouracil against Gastric Cancer through Its Upregulation of NKG2D/MICA. INT J POLYM SCI 2019. [DOI: 10.1155/2019/4564213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
5-Fluorouracil (5-Fu) is one of the frequently used first-line cytotoxic drugs for chemotherapy against gastric cancer. Chemotherapy and immunotherapy are currently the main methods for treating gastric cancer. Immunotherapy can enhance the antitumor effect of chemotherapy drugs at the same time reducing its toxicity. The combination of these two therapies to treat cancer has become a mainstay and has received increasing attention in clinical practice. Ganoderma lucidum polysaccharide (GLP) is isolated from the Ganoderma lucidum fruiting body. Studies have shown that GLP has antitumor effects, where GLP does not directly kill tumors, rather exerting its antitumor function by stimulating immune cells including natural killer (NK) cells and T cells. In this study, the antitumor effect of GLP combined with 5-Fu was studied in vivo. At the same time, the associated mechanism of GLP combined with 5-Fu in gastric cancer cell lines BGC823 and SGC7901 was investigated in vitro. The results showed that GLP could stimulate the killing effect of NK-92 cells on gastric cancer cell lines BGC823 and SGC7901 and synergistically enhance the toxic effects of NK-92 cells on gastric cancer cell lines BGC823 and SGC7901. Moreover, GLP could further promote the activity of NK-92 cells by activating the NK cell activating receptor NKG2D and its downstream DAP10/PI3K/ERK signaling pathway.
Collapse
|
12
|
Chemotherapeutic agent 5-fluorouracil increases survival of SOD1 mouse model of ALS. PLoS One 2019; 14:e0210752. [PMID: 30640943 PMCID: PMC6331125 DOI: 10.1371/journal.pone.0210752] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal motor neuron disease with no cure. Currently there are only two ALS drugs approved by the FDA, both with a limited therapeutic effect. In the search for drug candidates for ALS, we studied the effect of known stem cell mobilizing agents (treatment) and antimetabolite 5-fluorouracil (5-FU) (anti-treatment) in SOD1G93A model of ALS. Surprisingly, we found that anti-cancer drug 5-FU increases lifespan, delays the disease onset and improves motor performance in ALS mice. Although we were not able to demonstrate the mechanistic basis of the beneficial 5-FU action in ALS mice, our findings suggest that 5-FU or similar drugs are possible drug candidates for the treatment of motor neuron diseases through drug repurposing.
Collapse
|
13
|
Sreekanth T, Nagajyothi P, Muthuraman P, Enkhtaivan G, Vattikuti S, Tettey C, Kim DH, Shim J, Yoo K. Ultra-sonication-assisted silver nanoparticles using Panax ginseng root extract and their anti-cancer and antiviral activities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 188:6-11. [DOI: 10.1016/j.jphotobiol.2018.08.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/13/2018] [Accepted: 08/13/2018] [Indexed: 12/25/2022]
|
14
|
Li X, Zhang Y, Hong Z, Gong S, Liu W, Zhou X, Sun Y, Qian J, Qu H. Transcriptome Profiling Analysis Reveals the Potential Mechanisms of Three Bioactive Ingredients of Fufang E'jiao Jiang During Chemotherapy-Induced Myelosuppression in Mice. Front Pharmacol 2018; 9:616. [PMID: 29950993 PMCID: PMC6008481 DOI: 10.3389/fphar.2018.00616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022] Open
Abstract
Although multiple bioactive components have been identified in Fufang E’jiao Jiang (FEJ), their hematopoietic effects and molecular mode of action in vivo are still not fully understood. In the current study, we analyzed the effects of martynoside, R-notoginsenoside R2 (R2), and 20S-ginsenoside Rg2 (Rg2) in a 5-fluorouracil-induced myelosuppression mouse model. Bone marrow nucleated cells (BMNCs) counts, hematopoietic progenitor cell colony-forming unit (CFU) assay, as well as flow cytometry analysis of Lin-/c-kit+/Sca-1+ hematopoietic stem cell (HSC) population were conducted, and bone marrow cells were subjected to RNA sequencing. The transcriptome data were processed based on the differentially expressed genes. The results of the analysis show that each of the three compounds stimulates BMNCs and HSC growth, as well as burst-forming unit-erythroid and colony-forming unit granulocyte-monocyte colony expansion. The most relevant transcriptional changes appeared to be involved in regulation of hematopoietic cell lineage, NF-κB and TNF-α signaling, inhibition of inflammation, and acceleration of hematopoietic cell recovery. Notably, the individual compounds shared similar but specified transcriptome profiles. Taken together, the hematopoietic effects for the three tested compounds of FEJ are confirmed in this myelosuppression mouse model. The transcriptome maps of these effects provide valuable information concerning their underlying mechanisms and provide a framework for the continued study of the complex mode of action of FEJ.
Collapse
Affiliation(s)
- Xue Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yan Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Zhuping Hong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shuqing Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wei Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiangshan Zhou
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Yangen Sun
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Ke M, Wang H, Zhou Y, Li J, Liu Y, Zhang M, Dou J, Xi T, Shen B, Zhou C. SEP enhanced the antitumor activity of 5-fluorouracil by up-regulating NKG2D/MICA and reversed immune suppression via inhibiting ROS and caspase-3 in mice. Oncotarget 2018; 7:49509-49526. [PMID: 27385218 PMCID: PMC5226525 DOI: 10.18632/oncotarget.10375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy and immunotherapy are the main remedies used in cancer treatment. Because immunotherapy can not only reduce the toxicity of chemotherapeutics but also enhance antitumor effects in vivo, combining these two therapies is a trend that continues to gain more attention in clinic. SEP, a polysaccharide isolated from Strongylocentrotus nudus egg, has been reported to display antitumor activity by stimulating immune cells, including NK and T cells, via TLR2 and TLR4. In the present study, the synergistic effect between SEP and 5-fluorouracil (5-FU), a traditional cytotoxic drug, in vitro and in vivo was investigated. The results obtained indicated that SEP alone stimulated NK-92 cytotoxicity and coordinated with 5-FU to augment the cytotoxicity of NK-92 cells against HepG-2 or A549 cells in vitro. SEP promoted NK-92 activity by stimulating NKG2D and its downstream DAP10/PI3K/Erk signaling pathway. Additionally, 5-FU could increase MICA expression on HepG-2 or A549 cells and prevent membrane MICA from shedding as soluble MICA, which were abrogated in the tumor cells transfected with ADAM 10 overexpression plasmid. Moreover, in H22- or Lewis lung cancer (LLC)-bearing mouse models, SEP reversed 5-FU-induced atrophy and apoptosis in both the spleen and bone marrow in vivo by suppressing ROS generation and caspase-3 activation. All of these results highlight the potential for the combination of SEP and 5-FU in cancer therapy in the future.
Collapse
Affiliation(s)
- Mengyun Ke
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.,Research Institute of Advanced Surgical Techniques and Engineering of Xi'an Jiaotong University, Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province, First Affiliated Hospital, Xi'an Jiaotong University, Shaanxi, Xi'an, 710061, PR China
| | - Hui Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Yiran Zhou
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai, 200025, PR China
| | - Jingwen Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Min Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Tao Xi
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Baiyong Shen
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai, 200025, PR China
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| |
Collapse
|
16
|
Kretzschmar C, Roolf C, Timmer K, Sekora A, Knübel G, Murua Escobar H, Fuellen G, Ibrahim SM, Tiedge M, Baltrusch S, Jaster R, Köhling R, Junghanss C. Polymorphisms of the murine mitochondrial ND4, CYTB and COX3 genes impact hematopoiesis during aging. Oncotarget 2018; 7:74460-74472. [PMID: 27626489 PMCID: PMC5342679 DOI: 10.18632/oncotarget.11952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 09/02/2016] [Indexed: 12/16/2022] Open
Abstract
During aging, mitochondrial DNA (mtDNA) can accumulate mutations leading to increasing levels of reactive oxygen species (ROS). Increased ROS were described to activate formerly quiescent hematopoietic stem cells (HSC). Mutations in mtDNA were shown to enhance the risk for myelodysplastic syndrome and leukemia. However, the complex relationship between mtDNA variations, ROS and aging of the hematopoietic system is not fully understood. Herein, three mouse strains with mtDNA polymorphisms in genes of respiratory chain complexes I (ND4), III (CYTB) and IV (COX3) were compared to a reference strain during aging. Analysis focused on ROS and ATP levels, bone marrow composition and blood counts. Additionally, hematopoietic restoration capacity following cytotoxic stress was tested. Mice with polymorphisms in ND4 and CYTB gene had significantly decreasing ROS levels in bone marrow cells during aging, without effecting ATP levels. In addition, the frequency of stem and progenitor cells increased during aging but the amount of lymphocytes in the peripheral blood decreased during aging. In summary, the presence of mtDNA polymorphisms affecting the respiratory chain complexes I, III and IV was associated with altered ROS levels as well as changes in BM and peripheral blood composition during aging.
Collapse
Affiliation(s)
- Christin Kretzschmar
- Department of Medicine III - Hematology/Oncology/Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Catrin Roolf
- Department of Medicine III - Hematology/Oncology/Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Katrin Timmer
- Department of Medicine III - Hematology/Oncology/Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Anett Sekora
- Department of Medicine III - Hematology/Oncology/Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Gudrun Knübel
- Department of Medicine III - Hematology/Oncology/Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Hugo Murua Escobar
- Department of Medicine III - Hematology/Oncology/Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Saleh M Ibrahim
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Markus Tiedge
- Institute of Medical Biochemistry and Molecular Biology, Rostock University Medical Center, Rostock, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, Rostock University Medical Center, Rostock, Germany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine III - Hematology/Oncology/Palliative Care, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
17
|
PAN-811 prevents chemotherapy-induced cognitive impairment and preserves neurogenesis in the hippocampus of adult rats. PLoS One 2018; 13:e0191866. [PMID: 29370277 PMCID: PMC5785016 DOI: 10.1371/journal.pone.0191866] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/13/2018] [Indexed: 12/29/2022] Open
Abstract
Chemotherapy-induced cognitive impairment (CICI) occurs in a substantial proportion of treated cancer patients, with no drug currently available for its therapy. This study investigated whether PAN-811, a ribonucleotide reductase inhibitor, can reduce cognitive impairment and related suppression of neurogenesis following chemotherapy in an animal model. Young adult rats in Chemo and Chemo+PAN-811 groups received 3 intraperitoneal (i.p.) injections of methotrexate (MTX) and 5-fluorouracil (5-FU), and those in Saline and Saline+PAN-811 groups received equal volumes of physiological saline at 10-day intervals. PAN-811 in saline was delivered through i.p. injection, 10 min following each saline (Saline+PAN-811 group) or MTX/5-FU (Chemo+PAN-811 group) treatment, while equal volumes of saline were delivered to Saline and Chemo groups. Over Days 31–66, rats were administered tests of spatial memory, nonmatching-to-sample rule learning, and discrimination learning, which are sensitive to dysfunction in hippocampus, frontal lobe and striatum, respectively. On Day 97, neurogenesis was immnunohistochemically evaluated by counting doublecortin-positive (DCX+) cells in the dentate gyrus (DG). The results demonstrated that the Chemo group was impaired on the three cognitive tasks, but co-administration of PAN-811 significantly reduced all MTX/5-FU-induced cognitive impairments. In addition, MTX/5-FU reduced DCX+ cells to 67% of that in Saline control rats, an effect that was completely blocked by PAN-811 co-administration. Overall, we present the first evidence that PAN-811 protects cognitive functions and preserves neurogenesis from deleterious effects of MTX/5-FU. The current findings provide a basis for rapid clinical translation to determine the effect of PAN-811 on CICI in human.
Collapse
|
18
|
Activation of Nrf2-ARE signaling mitigates cyclophosphamide-induced myelosuppression. Toxicol Lett 2016; 262:17-26. [PMID: 27633142 DOI: 10.1016/j.toxlet.2016.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/06/2016] [Accepted: 09/11/2016] [Indexed: 11/21/2022]
Abstract
Myelosuppression is the most common dose-limiting adverse effect of chemotherapies. In the present study, we investigated the involvement of nuclear erythroid 2-related factor 2 (Nrf2) in cyclophosphamide-induced myelosuppression in mice, and evaluated the potential of activating Nrf2 signaling as a preventive strategy. The whole blood from Nrf2-/- mice exhibited decreased antioxidant capacities, while the bone marrow cells, peripheral blood mononuclear cells and granulocytes from Nrf2-/- mice were more susceptible to acrolein-induced cytotoxicity than those from wild type mice. Single dosage of cyclophosphamide induced significantly severer acute myelosuppression in Nrf2-/- mice than in wild type mice. Furthermore, Nrf2-/- mice exhibited greater loss of peripheral blood nucleated cells and recovered slower from myelosuppression nadir upon multiple consecutive dosages of cyclophosphamide than wild type mice did. This was accompanied with decreased antioxidant and detoxifying gene expressions and impaired colony formation ability of Nrf2-/- bone marrow cells. More importantly, activation of Nrf2 signaling by CDDO-Me significantly alleviated cyclophosphamide-induced myelosuppression, while this alleviation was diminished in Nrf2-/- mice. In conclusion, the present study shows that Nrf2 plays a protective role in cyclophosphamide-induced myelosuppression and activation of Nrf2 is a promising strategy to prevent or treat chemotherapy-induced myelosuppression.
Collapse
|
19
|
Al-Asmari AK, Khan AQ, Al-Masri N. Mitigation of 5-fluorouracil-induced liver damage in rats by vitamin C via targeting redox-sensitive transcription factors. Hum Exp Toxicol 2016; 35:1203-1213. [PMID: 26921358 DOI: 10.1177/0960327115626583] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adverse complications associated with antineoplastic drug-based cancer therapy are the major clinical drawbacks. Oxidative stress and inflammation play a major role in the damage due to cancer therapy. In the current study, we investigated the modulatory effect of vitamin C (Vit. C) on liver toxicity induced by 5-fluorouracil (5-FU) in rats. Animals were divided into four groups. Animals in group I received vehicle. Oral gavage of Vit. C (500 mg kg-1 body weight (b.wt.)) was given to the animals in group III and group IV. 5-FU (150 mg kg-1 b.wt.) was injected intraperitoneally to the animals in group II and group III. Findings of the present study revealed that oral administration of Vit. C significantly ameliorated the level of lipid peroxidation and the activity of myeloperoxidase. Vit. C administration markedly reduced the activation of nuclear factor κB and expression of cyclooxygenase 2, whereas nuclear translocation of nuclear factor erythroid 2-related factor 2 was increased. Hepatic histopathological analyses further supported the protective effect of Vit. C. Findings of the current study demonstrate that the toxic free radicals and inflammatory mediators generated due to chemotherapy play a critical role in 5-FU-induced hepatic damage. Attenuating action of Vit. C may be due to the modulation of redox-sensitive transcription factors and associated target molecules.
Collapse
Affiliation(s)
- A K Al-Asmari
- 1 Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - A Q Khan
- 1 Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - N Al-Masri
- 2 Department of Hepatology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
In Vivo Chemoprotective Activity of Bovine Dialyzable Leukocyte Extract in Mouse Bone Marrow Cells against Damage Induced by 5-Fluorouracil. J Immunol Res 2016; 2016:6942321. [PMID: 27191003 PMCID: PMC4852122 DOI: 10.1155/2016/6942321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/27/2016] [Indexed: 01/06/2023] Open
Abstract
Chemotherapy treatments induce a number of side effects, such as leukopenia neutropenia, peripheral erythropenia, and thrombocytopenia, affecting the quality of life for cancer patients. 5-Fluorouracil (5-FU) is wieldy used as myeloablative model in mice. The bovine dialyzable leukocyte extract (bDLE) or IMMUNEPOTENT CRP® (ICRP) is an immunomodulatory compound that has antioxidants and anti-inflammatory effects. In order to investigate the chemoprotection effect of ICRP on bone marrow cells in 5-FU treated mice, total bone marrow (BM) cell count, bone marrow colony forming units-granulocyte/macrophage (CFU-GM), cell cycle, immunophenotypification, ROS/superoxide and Nrf2 by flow cytometry, and histological and hematological analyses were performed. Our results demonstrated that ICRP increased BM cell count and CFU-GM number, arrested BM cells in G0/G1 phase, increased the percentage of leukocyte, granulocytic, and erythroid populations, reduced ROS/superoxide formation and Nrf2 activation, and also improved hematological levels and weight gain in 5-FU treated mice. These results suggest that ICRP has a chemoprotective effect against 5-FU in BM cells that can be used in cancer patients.
Collapse
|
21
|
Song M, Baik HW, Hong SG, Sung MK. Wheat bran arabinoxylan supplementation alleviates 5-fluorouracil induced mucositis and myelosuppression in BALB/c mice. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
22
|
PAN-811 Blocks Chemotherapy Drug-Induced In Vitro Neurotoxicity, While Not Affecting Suppression of Cancer Cell Growth. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:9392404. [PMID: 26640619 PMCID: PMC4657105 DOI: 10.1155/2016/9392404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022]
Abstract
Chemotherapy often results in cognitive impairment, and no neuroprotective drug is now available. This study aimed to understand underlying neurotoxicological mechanisms of anticancer drugs and to evaluate neuroprotective effects of PAN-811. Primary neurons in different concentrations of antioxidants (AOs) were insulted for 3 days with methotrexate (MTX), 5-fluorouracil (5-FU), or cisplatin (CDDP) in the absence or presence of PAN-811·Cl·H2O. The effect of PAN-811 on the anticancer activity of tested drugs was also examined using mouse and human cancer cells (BNLT3 and H460) to assess any negative interference. Cell membrane integrity, survival, and death and intramitochondrial reactive oxygen species (ROS) were measured. All tested anticancer drugs elicited neurotoxicity only under low levels of AO and elicited a ROS increase. These results suggested that ROS mediates neurotoxicity of tested anticancer drugs. PAN-811 dose-dependently suppressed increased ROS and blocked the neurotoxicity when neurons were insulted with a tested anticancer drug. PAN-811 did not interfere with anticancer activity of anticancer drugs against BNLT3 cells. PAN-811 did not inhibit MTX-induced death of H460 cells but, interestingly, demonstrated a synergistic effect with 5-FU or CDDP in reducing cancer cell viability. Thus, PAN-811 can be a potent drug candidate for chemotherapy-induced cognitive impairment.
Collapse
|
23
|
Stojanovska V, Sakkal S, Nurgali K. Platinum-based chemotherapy: gastrointestinal immunomodulation and enteric nervous system toxicity. Am J Physiol Gastrointest Liver Physiol 2015; 308:G223-32. [PMID: 25501548 DOI: 10.1152/ajpgi.00212.2014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The efficacy of chemotherapeutic treatment of colorectal cancer is challenged by severe gastrointestinal side effects, which include nausea, vomiting, constipation, and diarrhea. These symptoms can persist long after the treatment has been ceased. An emerging concept is the ability of platinum-based drugs to stimulate immunity, which is in contrast to conventional chemotherapeutic agents that are immunosuppressive. Here, we review the immunomodulatory aspects of platinum-based anticancer chemotherapeutics and their impact on gastrointestinal innervation. Given the bidirectional communication between the enteric nervous system and gastrointestinal immune system; exploring the consequences of platinum-induced immunogenicity will facilitate better understanding of gut dysfunction caused by chemotherapeutic agents. We propose that the development of future successful chemotherapeutics should rely on targeting the mechanisms underlying long-term gastrointestinal side effects.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- College of Health and Biomedicine, Victoria University, Western Centre for Health, Research and Education, St Albans, Victoria, Australia
| | - Samy Sakkal
- College of Health and Biomedicine, Victoria University, Western Centre for Health, Research and Education, St Albans, Victoria, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University, Western Centre for Health, Research and Education, St Albans, Victoria, Australia
| |
Collapse
|
24
|
Wang S, Zheng G, Tian S, Zhang Y, Shen L, Pak Y, Shen Y, Qian J. Echinacoside improves hematopoietic function in 5-FU-induced myelosuppression mice. Life Sci 2015; 123:86-92. [PMID: 25623854 DOI: 10.1016/j.lfs.2015.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 11/21/2014] [Accepted: 01/06/2015] [Indexed: 11/16/2022]
Abstract
AIMS We aimed to investigate the effects of echinacoside (ECH) on hematopoietic function in 5-FU-induced bone marrow depression mice. MAIN METHODS In vitro, after stimulation with ECH, the proliferation ability of bone marrow (BM) cells and bone marrow stromal cells (BMSCs) derived from myelosuppression mice were assessed by CCK8 assay and morphology, respectively. In vivo, 5-FU-induced myelosuppression or control mice were intragastrically administrated with either ECH at 15 mg/kg or the equal volume of normal saline daily for 12 days before BM cells were isolated for colony-forming cell assay. Meanwhile, BMSCs were cultured for 4 weeks before cells were observed for growth pattern, cell culture supernatants were collected for GM-CSF secretion by ELISA, and RNA of the cells were extracted for EPO and GM-CSF RT-PCR. BM cells or BMSCs stimulated with ECH for 24 h or 48 h were collected for protein extraction and Western blotting. KEY FINDINGS ECH stimulated the growth of BM cells but not BMSCs derived from 5-FU treated mice. The intragastric administration of ECH in 5-FU treated mice could increase the number of total hematopoietic progenitor cells and GM progenitor cells to healthy control mice level, but not BFU progenitor cells. BMSCs from ECH treated myelosuppression mice grew more vigorously and expressed more GM-CSF, but not EPO. ECH activated the PI3K signaling pathway in 5-FU suppressed BM cells. SIGNIFICANCE ECH could improve the hematopoietic function of bone marrow in 5-FU-induced myelosuppression mice. ECH can be considered as an alternative effective therapy for patients during chemotherapy or HSC transplantation.
Collapse
Affiliation(s)
- Saisai Wang
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Department of Medical Microbiology and Parasitology, Research Center of Infection and Immunity, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Gang Zheng
- Department of Medical Microbiology and Parasitology, Research Center of Infection and Immunity, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shousheng Tian
- Engineering Technology Research Center of Glue of Traditional Medicine, Shandong Dongeejiao Co., Ltd, Shandong 252201, China
| | - Yan Zhang
- Engineering Technology Research Center of Glue of Traditional Medicine, Shandong Dongeejiao Co., Ltd, Shandong 252201, China
| | - Lijuan Shen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yongchol Pak
- Department of Medical Microbiology and Parasitology, Research Center of Infection and Immunity, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yong Shen
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Department of Medical Microbiology and Parasitology, Research Center of Infection and Immunity, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jing Qian
- Department of Medical Microbiology and Parasitology, Research Center of Infection and Immunity, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
25
|
Povinelli BJ, Srivastava P, Nemeth MJ. Related-to-receptor tyrosine kinase receptor regulates hematopoietic stem and progenitor sensitivity to myelosuppressive injury in mice. Exp Hematol 2014; 43:243-252.e1. [PMID: 25461251 DOI: 10.1016/j.exphem.2014.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/07/2014] [Accepted: 10/30/2014] [Indexed: 11/25/2022]
Abstract
Maintaining a careful balance between quiescence and proliferation of hematopoietic stem and progenitor cells (HSPCs) is necessary for lifelong blood formation. Previously, we demonstrated that the Wnt5a ligand inhibits HSPC proliferation through a functional interaction with a noncanonical Wnt ligand receptor termed 'related-to-receptor tyrosine kinase' (Ryk). Expression of Ryk on HSPCs in vivo is associated with a lower rate of proliferation, and, following treatment with fluorouracil (5-FU), the percentage of Ryk(+/high) HSPCs increased and the percentage of Ryk(-/low) HSPCs decreased. Based on these data, we hypothesized that one function of the Ryk receptor is to protect HSPCs from the effects of myeloablative agents. We found that Ryk expression on HSPCs is associated with lower rates of apoptosis following 5-FU and radiation. Transient inhibition of Ryk signaling in vivo resulted in increased hematopoietic-stem-cell proliferation and decreased hematopoietic-stem-cell function in bone marrow transplant assays. Furthermore, inhibition of Ryk signaling sensitized HSPCs to 5-FU treatment in association with increased levels of reactive oxygen species. Together, these results demonstrated an association between Ryk expression and survival of HSPCs following suppressive injury.
Collapse
Affiliation(s)
- Benjamin J Povinelli
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Pragya Srivastava
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Michael J Nemeth
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, United States; Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, United States.
| |
Collapse
|
26
|
Minegaki T, Kuwahara A, Yamamori M, Nakamura T, Okuno T, Miki I, Omatsu H, Tamura T, Hirai M, Azuma T, Sakaeda T, Nishiguchi K. Genetic polymorphisms in SLC23A2 as predictive biomarkers of severe acute toxicities after treatment with a definitive 5-fluorouracil/cisplatin-based chemoradiotherapy in Japanese patients with esophageal squamous cell carcinoma. Int J Med Sci 2014; 11:321-6. [PMID: 24578608 PMCID: PMC3936025 DOI: 10.7150/ijms.7654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/22/2014] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Definitive chemoradiotherapy (CRT) with 5-fluorouracil (5-FU) and cisplatin (CDDP) is one of the standard therapies for esophageal squamous cell carcinoma (ESCC); however, inter-individual variations in clinical outcomes have yet to be investigated. In the present study, single nucleotide polymorphisms (SNPs) in SLC23A2 gene were retrospectively evaluated in 49 Japanese patients with ESCC who were treated with a definitive 5-FU/CDDP-based CRT, and the predictive values for the clinical response, severe acute toxicities, and long-term survival were assessed. METHODS A course consisted of the continuous infusion of 5-FU at 400 mg/m(2)/day for days 1-5 and 8-12, the infusion of CDDP at 40 mg/m(2)/day on days 1 and 8, and radiation at 2 Gy/day on days 1 to 5, 8 to 12, and 15 to 19, with a second course being repeated after a 2-week interval. The SLC23A2 SNPs rs2681116, rs13037458, rs1715364, rs4987219, and rs1110277 were evaluated. RESULTS The rs2681116 and rs13037458 had a tendency to predict the clinical response (p=0.144 and 0.085, respectively) and long-term survival (p=0.142 and 0.056, respectively). The rs4987219 and rs1110277 correlated with severe acute leukopenia (p=0.025) and stomatitis (p=0.019), respectively. CONCLUSIONS Further investigations with a larger number of patients or an in vitro study are needed to confirm the predictive values of genetic polymorphisms in SLC23A2.
Collapse
Affiliation(s)
- Tetsuya Minegaki
- 1. Faculty of Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Akiko Kuwahara
- 2. Kobe University Graduate School of Medicine, Kobe 650-0017, Japan. ; 3. School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya 663-8179, Japan
| | - Motohiro Yamamori
- 2. Kobe University Graduate School of Medicine, Kobe 650-0017, Japan. ; 3. School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya 663-8179, Japan
| | - Tsutomu Nakamura
- 2. Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tatsuya Okuno
- 2. Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Ikuya Miki
- 2. Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hideaki Omatsu
- 2. Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takao Tamura
- 2. Kobe University Graduate School of Medicine, Kobe 650-0017, Japan. ; 4. Department of Medical Oncology, Nara Hospital, Kinki University Faculty of Medicine, Nara 630-0293, Japan
| | - Midori Hirai
- 2. Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takeshi Azuma
- 2. Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Toshiyuki Sakaeda
- 2. Kobe University Graduate School of Medicine, Kobe 650-0017, Japan. ; 5. Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kohshi Nishiguchi
- 1. Faculty of Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan. ; 2. Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
27
|
Li J, O W, Li W, Jiang ZG, Ghanbari HA. Oxidative stress and neurodegenerative disorders. Int J Mol Sci 2013; 14:24438-75. [PMID: 24351827 PMCID: PMC3876121 DOI: 10.3390/ijms141224438] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/27/2013] [Accepted: 12/06/2013] [Indexed: 12/14/2022] Open
Abstract
Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs.
Collapse
Affiliation(s)
- Jie Li
- Department of Geratology, First Hospital of Jilin University, Changchun, Jilin 130021, China; E-Mail:
| | - Wuliji O
- College of Pharmacology, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028000, China; E-Mail:
| | - Wei Li
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130021, China; E-Mail:
| | - Zhi-Gang Jiang
- Panacea Pharmaceuticals, Inc., Gaithersburg, MD 20877, USA; E-Mail:
| | | |
Collapse
|
28
|
Bradshaw TD, Junor M, Patanè A, Clarke P, Thomas NR, Li M, Mann S, Turyanska L. Apoferritin-encapsulated PbS quantum dots significantly inhibit growth of colorectal carcinoma cells. J Mater Chem B 2013; 1:6254-6260. [DOI: 10.1039/c3tb21197e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Raghu Nadhanan R, Abimosleh SM, Su YW, Scherer MA, Howarth GS, Xian CJ. Dietary emu oil supplementation suppresses 5-fluorouracil chemotherapy-induced inflammation, osteoclast formation, and bone loss. Am J Physiol Endocrinol Metab 2012; 302:E1440-E1449. [PMID: 22436700 DOI: 10.1152/ajpendo.00587.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer chemotherapy can cause osteopenia or osteoporosis, and yet the underlying mechanisms remain unclear, and currently, no preventative treatments are available. This study investigated damaging effects of 5-fluorouracil (5-FU) on histological, cellular, and molecular changes in the tibial metaphysis and potential protective benefits of emu oil (EO), which is known to possess a potent anti-inflammatory property. Female dark agouti rats were gavaged orally with EO or water (1 ml·day(-1)·rat(-1)) for 1 wk before a single ip injection of 5-FU (150 mg/kg) or saline (Sal) was given. The treatment groups were H(2)O + Sal, H(2)O + 5-FU, EO + 5-FU, and EO + Sal. Oral gavage was given throughout the whole period up to 1 day before euthanasia (days 3, 4, and 5 post-5-FU). Histological analysis showed that H(2)O + 5-FU significantly reduced heights of primary spongiosa on days 3 and 5 and trabecular bone volume of secondary spongiosa on days 3 and 4. It reduced density of osteoblasts slightly and caused an increase in the density of osteoclasts on trabecular bone surface on day 4. EO supplementation prevented reduction of osteoblasts and induction of osteoclasts and bone loss caused by 5-FU. Gene expression studies confirmed an inhibitory effect of EO on osteoclasts since it suppressed 5-FU-induced expression of proinflammatory and osteoclastogenic cytokine TNFα, osteoclast marker receptor activator of nuclear factor-κB, and osteoclast-associated receptor. Therefore, this study demonstrated that EO can counter 5-FU chemotherapy-induced inflammation in bone, preserve osteoblasts, suppress osteoclast formation, and potentially be useful in preventing 5-FU chemotherapy-induced bone loss.
Collapse
Affiliation(s)
- Rethi Raghu Nadhanan
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia
| | | | | | | | | | | |
Collapse
|