1
|
Nguyen CD, Yoo J, Jeong SJ, Ha HA, Yang JH, Lee G, Shin JC, Kim JH. Melittin - the main component of bee venom: a promising therapeutic agent for neuroprotection through keap1/Nrf2/HO-1 pathway activation. Chin Med 2024; 19:166. [PMID: 39605070 PMCID: PMC11603938 DOI: 10.1186/s13020-024-01020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024] Open
Abstract
The Nuclear factor erythroid 2-related factor (Nrf2)/ Heme oxygenase-1 (HO-1) pathway, known for its significant role in regulating innate antioxidant defense mechanisms, is increasingly being recognized for its potential in neuroprotection studies. Derived from bee venom, melittin's neuroprotective effects have raised interest. This study confirmed that melittin specificity upregulated the weakened Nrf2/HO-1 signaling in mice brain. Interestingly, we also revealed melittin's efficient tactic, as it was suggested to first restore redox balance and then gradually stabilized other regulations of the mouse hippocampus. Using a neuro-stress-induced scopolamine model, chromatography and mass spectrometry analysis revealed that melittin crossed the compromised blood-brain barrier and accumulated in the hippocampus, which provided the chance to interact directly to weakened neurons. A wide range of improvements of melittin action were observed from various tests from behavior Morris water maze, Y maze test to immune florescent staining, western blots. As we need to find out what is the focus of melittin action, we conducted a careful observation in mice which showed that: the first signs of changes, in the hippocampus, within 5 h after melittin administration were the restoration of the Nrf2/HO-1 system and suppression of oxidative stress. After this event, from 7 to 12.5 h after administration, a diversity of conditions was all ameliorated: inflammation, apoptosis, neurotrophic factors, cholinergic function, and tissue ATP level. This chain reaction underscores that melittin focus was on redox balance's role, which revived multiple neuronal functions. Evidence of enhancement in the mouse hippocampus led to further exploration with hippocampal cell line HT22 model. Immunofluorescence analysis showed melittin-induced Nrf2 translocation to the nucleus, which would initiating the translation of antioxidant genes like HO-1. Pathway inhibitors pinpointed melittin's direct influence on the Nrf2/HO-1 pathway. 3D docking models and pull-down assays suggested melittin's direct interaction with Keap1, the regulator of the Nrf2/HO-1 pathway. Overall, this study not only highlighted melittin specifically effect on Nrf2/HO-1, thus rebalancing cellular redox, and also showed that this is an effective multi-faceted therapeutic strategy against neurodegeneration.
Collapse
Affiliation(s)
- Cong Duc Nguyen
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea
| | - Jaehee Yoo
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea
| | - Sang Jun Jeong
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea
| | - Hai-Anh Ha
- Faculty of Pharmacy, College of Medicine and Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea
| | - Gihyun Lee
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea
| | - Jeong Cheol Shin
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea.
- Department of Acupuncture and Moxibustion Medicine, Dongshin University Gwangju Korean Medicine Hospital, 141, Wolsan-ro, Nam-gu, Gwangju City 61619, Republic of Korea , 141 Wolsan-Ro Nam-Gu, Gwangju, 61619, Republic of Korea.
| | - Jae-Hong Kim
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea.
- Department of Acupuncture and Moxibustion Medicine, Dongshin University Gwangju Korean Medicine Hospital, 141, Wolsan-ro, Nam-gu, Gwangju City 61619, Republic of Korea , 141 Wolsan-Ro Nam-Gu, Gwangju, 61619, Republic of Korea.
| |
Collapse
|
2
|
Arif M, Rauf K, Rehman NU, Tokhi A, Ikram M, Sewell RD. 6-Methoxyflavone and Donepezil Behavioral Plus Neurochemical Correlates in Reversing Chronic Ethanol and Withdrawal Induced Cognitive Impairment. Drug Des Devel Ther 2022; 16:1573-1593. [PMID: 35665194 PMCID: PMC9160976 DOI: 10.2147/dddt.s360677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
- Correspondence: Khalid Rauf, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan, Tel +923459824468, Email
| | - Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
| | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
| | - Robert D Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| |
Collapse
|
3
|
Song T, Wu H, Li R, Xu H, Rao X, Gao L, Zou Y, Lei H. Repeated fluoxetine treatment induces long-lasting neurotrophic changes in the medial prefrontal cortex of adult rats. Behav Brain Res 2019; 365:114-124. [PMID: 30849415 DOI: 10.1016/j.bbr.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 01/23/2023]
Abstract
Fluoxetine (Flx), a selective serotonin reuptake inhibitor, is extensively used to treat mood and anxiety disorders. Previous animal studies have shown that early-life exposure to Flx results in long-lasting behavioral alterations and neuroplasticity in the hippocampus and cortex, which may persist into adulthood. It remains unclear whether repeated Flx treatment in normal adult animals can induce lasting neuroplasticity and behavioral alterations persisting long beyond the treatment period. In this study, young adult rats (about 9 weeks old) were treated with Flx (10 mg/kg body weight, twice daily) for 15 consecutive days, and the effects of Flx on medial prefrontal cortex (mPFC) neuroplasticity and mPFC-related behaviors were assessed 20 days after the last injection. It was observed that the mPFC of Flx-treated rats had significant increases in the number of 5-bromodeoxyuridine-positive (BrdU+) cells, dendritic complexity/spine density in layer II/III pyramidal neurons, and brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) expression levels, as well as a significant decrease in the number of parvalbumin-positive (PV+) interneurons. The Flx-treated rats exhibited higher motivation to explore new environments, evidenced by a significantly increased number of entries into the novel arm in the Y-maze test. However, they did not show any significant changes in the anhedonia and anxiety levels measured by sucrose preference and elevated plus maze tests respectively. In conclusion, repeated Flx treatment, with the paradigm used, induces long-lasting neuroplastic changes in the mPFC of normal adult rats; such changes and related behavioral manifestations may persist up to 20 days after the last dose.
Collapse
Affiliation(s)
- Tao Song
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Hao Wu
- Department of Radiology, Institute of Surgery Research, the Third Affiliated Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Ronghui Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Hui Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xiaoping Rao
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Lifeng Gao
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China; Department of Medical Imaging, School of Medicine, Jianghan University, Wuhan 430056, PR China
| | - Yijuan Zou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Hao Lei
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
4
|
Pradhan G, Melugin PR, Wu F, Fang HM, Weber R, Kroener S. Calcium chloride mimics the effects of acamprosate on cognitive deficits in chronic alcohol-exposed mice. Psychopharmacology (Berl) 2018; 235:2027-2040. [PMID: 29679288 PMCID: PMC10766324 DOI: 10.1007/s00213-018-4900-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
RATIONALE Acamprosate (calcium-bis N-acetylhomotaurinate) is the leading medication approved for the maintenance of abstinence, shown to reduce craving and relapse in animal models and human alcoholics. Acamprosate can improve executive functions that are impaired by chronic intermittent ethanol (CIE) exposure. Recent work has suggested that acamprosate's effects on relapse prevention are due to its calcium component, which raises the question whether its pro-cognitive effects are similarly mediated by calcium. OBJECTIVES This study examined the effects of acamprosate on alcohol-induced behavioral deficits and compared them with the effects of the sodium salt version of N-acetylhomotaurinate or calcium chloride, respectively. METHODS We exposed mice to alcohol via three cycles of CIE and measured changes in alcohol consumption in a limited-access paradigm. We then compared the effects of acamprosate and calcium chloride (applied subchronically for 3 days during withdrawal) in a battery of cognitive tasks that have been shown to be affected by chronic alcohol exposure. RESULTS CIE-treated animals showed deficits in attentional set-shifting and deficits in novel object recognition. Alcohol-treated animals showed no impairments in social novelty detection and interaction, or delayed spontaneous alternation. Both acamprosate and calcium chloride ameliorated alcohol-induced cognitive deficits to comparable extents. In contrast, the sodium salt version of N-acetylhomotaurinate did not reverse the cognitive deficits. CONCLUSIONS These results add evidence to the notion that acamprosate produces its anti-relapse effects through its calcium moiety. Our results also suggest that improved regulation of drug intake by acamprosate after withdrawal might at least in part be related to improved cognitive function.
Collapse
Affiliation(s)
- Grishma Pradhan
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA
| | - Patrick R Melugin
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA
| | - Fei Wu
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Hannah M Fang
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA
| | - Rachel Weber
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA.
| |
Collapse
|
5
|
Evaluation of the safety of conventional lighting replacement by artificial daylight. J Microsc Ultrastruct 2017; 5:206-215. [PMID: 30023256 PMCID: PMC6025781 DOI: 10.1016/j.jmau.2017.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/14/2017] [Indexed: 01/05/2023] Open
Abstract
Background Short morning exposure to high illuminance visible electromagnetic radiations termed as artificial daylight is beneficial for the mental health of people living in geographical areas with important seasonal changes in daylight illuminance. However, the commercial success of high illuminance light sources has raised the question of the safety of long hour exposure. Methods We have investigated the effect of the replacement of natural daylight by artificial daylight in Swiss mice raised under natural lighting conditions. Mice were monitored for neurotoxicity and general health changes. They were submitted to a battery of conventional tests for mood, motor and cognitive functions' assessment on exposure day (ED) 14 and ED20. Following sacrifice on ED21 due to marked signs of neurotoxicity, the expression of markers of inflammation and apoptosis was assessed in the entorhinal cortex and neurons were estimated in the hippocampal formation. Results Signs of severe cognitive and motor impairments, mood disorders, and hepatotoxicity were observed in animals exposed to artificial daylight on ED20, unlike on ED14 and unlike groups exposed to natural daylight or conventional lighting. Activated microglia and astrocytes were observed in the entorhinal cortex, as well as dead and dying neurons. Neuronal counts revealed massive neuronal loss in the hippocampal formation. Conclusions These results suggest that long hour exposure to high illuminance visible electromagnetic radiations induced severe alterations in brain function and general health in mice partly mediated by damages to the neocortex-entorhinal cortex-hippocampus axis. These findings raise caution over long hour use of high illuminance artificial light.
Collapse
|
6
|
Kealy J, Bennett R, Woods B, Lowry JP. Real-time changes in hippocampal energy demands during a spatial working memory task. Behav Brain Res 2017; 326:59-68. [PMID: 28249730 DOI: 10.1016/j.bbr.2017.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022]
Abstract
Activity-dependent changes in hippocampal energy consumption have largely been determined using microdialysis. However, real-time recordings of brain energy consumption can be more accurately achieved using amperometric sensors, allowing for sensitive real-time monitoring of concentration changes. Here, we test the theory that systemic pre-treatment with glucose in rats prevents activity-dependent decreases in hippocampal glucose levels and thus enhances their performance in a spontaneous alternation task. Male Sprague Dawley rats were implanted into the hippocampus with either: 1) microdialysis probe; or 2) an oxygen sensor and glucose biosensor co-implanted together. Animals were pre-treated with either saline or glucose (250mg/kg) 30min prior to performing a single 20-min spontaneous alternation task in a +-maze. There were no significant differences found between either treatment group in terms of spontaneous alternation performance. Additionally, there was a significant difference found between treatment groups on hippocampal glucose levels measured using microdialysis (a decrease associated with glucose pre-treatment in control animals) but not amperometry. There were significant increases in hippocampal oxygen during +-maze exploration. Combining the findings from both methods, it appears that hippocampal activity in the spontaneous alternation task does not cause an increase in glucose consumption, despite an increase in regional cerebral blood flow (using oxygen supply as an index of blood flow) and, as such, pre-treatment with glucose does not enhance spontaneous alternation performance.
Collapse
Affiliation(s)
- John Kealy
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Rachel Bennett
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Barbara Woods
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - John P Lowry
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
7
|
Momeni S, Segerström L, Roman E. Supplier-dependent differences in intermittent voluntary alcohol intake and response to naltrexone in Wistar rats. Front Neurosci 2015; 9:424. [PMID: 26594143 PMCID: PMC4633506 DOI: 10.3389/fnins.2015.00424] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/20/2015] [Indexed: 11/13/2022] Open
Abstract
Alcohol use disorder (AUD) is a worldwide public health problem and a polygenetic disorder displaying substantial individual variation. This work aimed to study individual differences in behavior and its association to voluntary alcohol intake and subsequent response to naltrexone in a seamless heterogenic group of animals. Thus, by this approach the aim was to more accurately recapitulate the existing heterogeneity within the human population. Male Wistar rats from three different suppliers (Harlan Laboratories B.V., RccHan™:WI; Taconic Farms A/S, HanTac:WH; and Charles River GmbH, Crl:WI) were used to create a heterogenic group for studies of individual differences in behavior, associations to intermittent voluntary alcohol intake and subsequent response to naltrexone. The rats were tested in the open field prior to the Y-maze and then given voluntary intermittent access to alcohol or water in the home cage for 6 weeks, where after, naltrexone in three different doses or saline was administered in a Latin square design over 4 weeks and alcohol intake and preference was measured. However, supplier-dependent differences and concomitant skew subgroup formations, primarily in open field behavior and intermittent alcohol intake, resulted in a shifted focus to instead study voluntary alcohol intake and preference, and the ensuing response to naltrexone in Wistar rats from three different suppliers. The results showed that outbred Wistar rats are diverse with regard to voluntary alcohol intake and preference in a supplier-dependent manner; higher in RccHan™:WI relative to HanTac:WH and Crl:WI. The results also revealed supplier-dependent differences in the effect of naltrexone that were dose- and time-dependent; evident differences in high-drinking RccHan™:WI rats relative to HanTac:WH and Crl:WI rats. Overall these findings render RccHan™:WI rats more suitable for studies of individual differences in voluntary alcohol intake and response to naltrexone and further highlight the inherent heterogeneity of the Wistar strain. The overall results put focus on the importance of thoroughly considering the animals used to aid in study design and for comparison of reported results.
Collapse
Affiliation(s)
- Shima Momeni
- Department of Pharmaceutical Biosciences, Neuropharmacology, Addiction and Behavior, Uppsala University Uppsala, Sweden
| | - Lova Segerström
- Department of Pharmaceutical Biosciences, Neuropharmacology, Addiction and Behavior, Uppsala University Uppsala, Sweden
| | - Erika Roman
- Department of Pharmaceutical Biosciences, Neuropharmacology, Addiction and Behavior, Uppsala University Uppsala, Sweden
| |
Collapse
|
8
|
Pickering C, Alsiö J, Morud J, Ericson M, Robbins TW, Söderpalm B. Ethanol impairment of spontaneous alternation behaviour and associated changes in medial prefrontal glutamatergic gene expression precede putative markers of dependence. Pharmacol Biochem Behav 2015; 132:63-70. [DOI: 10.1016/j.pbb.2015.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/17/2015] [Accepted: 02/21/2015] [Indexed: 12/21/2022]
|
9
|
Pickering C, Ericson M, Söderpalm B. Chronic phencyclidine increases synapsin-1 and synaptic adaptation proteins in the medial prefrontal cortex. ISRN PSYCHIATRY 2013; 2013:620361. [PMID: 23738220 PMCID: PMC3658391 DOI: 10.1155/2013/620361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/13/2013] [Indexed: 12/03/2022]
Abstract
Phencyclidine (PCP) mimics many aspects of schizophrenia, yet the underlying mechanism of neurochemical adaptation for PCP is unknown. We therefore used proteomics to study changes in the medial prefrontal cortex in animals with PCP-induced behavioural deficits. Male Wistar rats were injected with saline or 5 mg/kg phencyclidine for 5 days followed by two days of washout. Spontaneous alternation behaviour was tested in a Y-maze and then proteins were extracted from the medial prefrontal cortex. 2D-DIGE analysis followed by spot picking and protein identification with mass spectrometry then provided a list of differentially expressed proteins. Treatment with 5 mg/kg phencyclidine decreased the percentage of correct alternations in the Y-maze compared to saline-treated controls. Proteomics analysis of the medial prefrontal cortex found upregulation of 6 proteins (synapsin-1, Dpysl3, Aco2, Fscn1, Tuba1c, and Mapk1) and downregulation of 11 (Bin1, Dpysl2, Sugt1, ApoE, Psme1, ERp29, Pgam1, Uchl1, Ndufv2, Pcmt1, and Vdac1). A trend to upregulation was observed for Gnb4 and Capza2, while downregulation trends were noted for alpha-enolase and Fh. Many of the hits in this study concur with recent postmortem data from schizophrenic patients and this further validates the use of phencyclidine in preclinical translational research.
Collapse
Affiliation(s)
- Chris Pickering
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, P.O. Box 410, 405 30 Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, P.O. Box 410, 405 30 Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, P.O. Box 410, 405 30 Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|