1
|
Li X, Chen L, Li D, You M, Li Y, Yan L, Yan J, Gou W, Chang D, Ma X, Bai S, Peng Y. Integrated comparative physiological and transcriptomic analyses of Elymus sibiricus L. reveal the similarities and differences in the molecular mechanisms in response to drought and cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109459. [PMID: 39736257 DOI: 10.1016/j.plaphy.2024.109459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/01/2025]
Abstract
Drought and cold crucially affect plant growth and distribution. Plants have evolved complex molecular mechanisms to adapt to such adverse environmental conditions. This study examines two Elymus sibiricus (Es) germplasms differing in resilience to these stresses. Analyzing physiological responses and gene expression changes under drought and cold, it reveals the similarities and differences in their molecular mechanisms that underlie these responses. The results indicate that both drought stress and cold stress severely damage the integrity of the cell membrane in Es. Notably, under cold stress, the accumulation of osmotic regulation substances in Es is more significant, which may be related to the regulation of carbohydrate metabolism (CM)-related genes in cold environments. Furthermore, the response to oxidative stress triggered by cold stress in Es is partially inhibited. The enrichment analysis showed that the DEGs responsive to drought stress in Es were mainly related to the pathway of photosynthesis, whereas the DEGs responsive to cold stress were more associated with the protein processing in endoplasmic reticulum (PPER), highlighting distinct molecular responses. In addition, we discovered that the abscisic acid (ABA) signaling transduction plays a dominant role in mediating the drought resistance mechanism of Es. We have identified 86 key candidate genes related to photosynthesis, Phst, CM, and PPER, including 5 genes that can respond to both drought and cold stress. This study provides a foundation for the molecular mechanisms underlying cold and drought resistance in Es, with insight into its future genetic improvement for stress resistance.
Collapse
Affiliation(s)
- Xinrui Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Lili Chen
- Sichuan Provincial Work Station of Grassland, Sichuan Provincial Bureau of Forestry and Grassland, Chengdu, 610081, China
| | - Daxu Li
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Minghong You
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Yingzhu Li
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Lijun Yan
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Jiajun Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenlong Gou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Dan Chang
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiqie Bai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
OSADA H. Chemical biology research in RIKEN NPDepo aimed at agricultural applications. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:8-31. [PMID: 39805590 PMCID: PMC11808203 DOI: 10.2183/pjab.101.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/23/2024] [Indexed: 01/16/2025]
Abstract
This review outlines research on chemical biology using mainly microbial metabolites for agricultural applications. We established the RIKEN Natural Products Depository (NPDepo), housing many microbial metabolites, to support academic researchers who focus on drug discovery. We studied methods to stimulate secondary metabolism in microorganisms to collect various microbial products. The switch of secondary metabolism in microorganisms changes depending on the culture conditions. We discovered compounds that activate biosynthetic gene clusters in actinomycetes and filamentous fungi. Using these compounds, we succeeded in inducing the production of active compounds. Two approaches for screening bioactive compounds are described. One is phenotypic screening to explore antifungal compounds assisted by artificial intelligence (AI). AI can distinguish the morphological changes induced by antifungal compounds in filamentous fungi. The other is the chemical array method for detecting interactions between compounds and target proteins. Our chemical biology approach yielded many new compounds as fungicide candidates.
Collapse
Affiliation(s)
- Hiroyuki OSADA
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| |
Collapse
|
3
|
Fu Q, Li H, Wang B, Chen W, Wu D, Gao C, Yu F. The RALF1 peptide-FERONIA complex phosphorylates the endosomal sorting protein FREE1 to attenuate abscisic acid signaling. PLANT PHYSIOLOGY 2024; 197:kiae625. [PMID: 39577463 DOI: 10.1093/plphys/kiae625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 11/24/2024]
Abstract
The receptor-like kinase FERONIA (FER), together with its ligand rapid alkalinization factor 1 (RALF1) peptide, plays a crucial role in regulating stress responses, including its involvement in modulating abscisic acid (ABA) signaling. FER has been shown to activate ABA insensitive 2 in the cytoplasm, leading to the suppression of ABA signaling. However, its regulation of nucleus events in the ABA response remains unclear. FREE1, identified as a plant-specific component of the endosomal sorting complex required for transport in eukaryotes, serves as an important negative regulator in ABA signaling. In this study, we elucidate that upon RALF1 treatment, FER phosphorylates FREE1, promoting the accumulation of FREE1 protein in the nucleus in Arabidopsis (Arabidopsis thaliana). Consequently, FREE1 suppresses ABA sensitivity by inhibiting the expression of ABA-response genes. Mutating the 6 identified phosphorylation sites on FREE1, mediated by FER, to nonphosphorylable residues results in reduced nucleus localization of FREE1 and increased hypersensitivity to ABA. Our data also show that these 6 phosphorylation sites are likely involved in regulating plant survival under salt stress. Collectively, our study not only unveils an additional function of FER in attenuating ABA signaling in the nucleus but also provides a possible insight into the role of the RALF1-FER-FREE1 module in coordinating plant growth and salt stress tolerance.
Collapse
Affiliation(s)
- Qiong Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bingqian Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Weijun Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Dousheng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
4
|
Wang L, Wang S, Su H, Cai H, Song Y, Gong X, Sun Z, Qu J, Zhang Y. Multi-omics profiling reveals elevated CO 2-enhanced tolerance of Trifolium repens L. to lead stress through environment-plant-microbiome interactions. ENVIRONMENT INTERNATIONAL 2024; 194:109150. [PMID: 39556957 DOI: 10.1016/j.envint.2024.109150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
The increasing atmospheric CO2 resulting from human activities over the past two centuries, which is projected to persist, has significant implications for plant physiology. However, our predictive understanding of how elevated CO2 (eCO2) modifies plant tolerance to metal stress remains limited. In this study, we collected roots and rhizosphere soils from Trifolium repens L. subjected to lead (Pb) stress under ambient and elevated CO2 conditions, generating transcriptomic data for roots, microbiota data for rhizospheres, and conducting comprehensive multi-omics analyses. Our findings show that eCO2 reduced the accumulation of Pb-induced reactive oxygen species (ROS) and promoted plant growth by 72% to 402%, as well as increases shoot Pb uptake by 79% compared to ambient CO2. Additionally, eCO2 triggers specific defense response in T. repens, elevating the threshold for stress response. We observed a adaptive reconfiguration of transcriptional network that enhances energy efficiency and optimizes photosynthetic product utilization. Notably, eCO2 induces salicylic acid biosynthesis and activates defense pathways related to redox balance and ROS scavenging processes, thereby enhancing abiotic stress resistance. Through weighted gene co-expression network analysis, our comprehensive investigation reveals a holistic regulatory network encompassing plant traits, gene expression patterns, and bacterial structure potentially linked to metal accumulation as well as tradeoffs between growth and defense in plants under elevated CO2. These insights shed light on the plant stress responses under elevated CO2 and while contributing to a broader comprehension of plant-environment interactions.
Collapse
Affiliation(s)
- Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Sui Wang
- National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China
| | - Haifeng Su
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hongguang Cai
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Yankun Song
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiang Gong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhihui Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Wang W, Wang X, Liu X, Wang Y, Li Y, Hussain S, Jing X, Chen S, Wang S. AtAUEs, a Small Family of ABA Up-Regulated EAR Motif-Containing Proteins Regulate ABA Responses in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3282. [PMID: 39683075 DOI: 10.3390/plants13233282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The abscisic acid (ABA) signaling pathway is crucial for regulating downstream ABA-responsive genes, which influence plant responses to ABA and abiotic stresses. However, many ABA-responsive genes remain poorly characterized. This study reports on the identification and characterization of ABA up-regulated EAR motif-containing proteins (AtAUEs), a novel family of EAR motif-containing proteins in Arabidopsis thaliana. From a previous transcriptome dataset, AtAUEs were identified as a family of unknown-function ABA-response genes with only five members, and the up-regulation of AtAUEs by ABA was further confirmed by quantitative RT-PCR (qRT PCR). All AtAUEs contain at least one LxLxL EAR motif and can repress reporter gene expression in Arabidopsis protoplasts. We generated CRISPR/Cas9 gene-edited ataue1, ataue2 and ataue3 single, ataue1 ataue2 (ataue12) double, and ataue1 ataue2 ataue3 (ataue123) triple mutants, as well as transgenic plants overexpressing AtAUE1, and examined their ABA sensitivity. We found that the single and double mutants displayed wild-type responses to ABA treatment, while the ataue123 triple mutants showed increased sensitivity in seed germination and cotyledon greening assays but decreased sensitivity to ABA treatment in root elongation assays. Conversely, the 35S:AtAUE1 showed decreased sensitivity in seed germination and cotyledon greening assays but increased sensitivity to ABA treatment in root elongation assays. The qRT PCR results show that the expression level of ABI5 was increased in the ataue123 mutants and decreased in the 35S:AtAUE1 plants. These findings suggest that AtAUEs function redundantly to regulate ABA responses in Arabidopsis, likely by modulating the expression of key regulatory genes in ABA-signaling pathway.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Xutong Wang
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Xiaoyu Liu
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Yating Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Saddam Hussain
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Xiaoxiao Jing
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Siyu Chen
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| |
Collapse
|
6
|
Zhang X, Zhang Z, Peng H, Wang Z, Li H, Duan Y, Chen S, Chen X, Dong J, Si W, Gu L. GPCR-like Protein ZmCOLD1 Regulate Plant Height in an ABA Manner. Int J Mol Sci 2024; 25:11755. [PMID: 39519308 PMCID: PMC11546568 DOI: 10.3390/ijms252111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are sensors for the G protein complex to sense changes in environmental factors and molecular switches for G protein complex signal transduction. In this study, the homologous gene of GPCR-like proteins was identified from maize and named as ZmCOLD1. Subcellular analysis showed that the ZmCOLD1 protein is localized to the cell membrane and endoplasmic reticulum. A CRISPR/Cas9 knock-out line of ZmCOLD1 was further created and its plant height was significantly lower than the wild-type maize at both the seedling and adult stages. Histological analysis showed that the increased cell number but significantly smaller cell size may result in dwarfing of zmcold1, indicating that the ZmCOLD1 gene could regulate plant height development by affecting the cell division process. Additionally, ZmCOLD1 was verified to interact with the maize Gα subunit, ZmCT2, though the central hydrophilic loop domain by in vivo and in vitro methods. Abscisic acid (ABA) sensitivity analysis by seed germination assays exhibited that zmcold1 were hypersensitive to ABA, indicating its important roles in ABA signaling. Finally, transcriptome analysis was performed to investigate the transcriptional change in zmcold1 mutant. Overall, ZmCOLD1 functions as a GPCR-like protein and an important regulator to plant height.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Weina Si
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (Z.Z.); (H.P.); (Z.W.); (H.L.); (Y.D.); (S.C.); (X.C.); (J.D.)
| | - Longjiang Gu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (Z.Z.); (H.P.); (Z.W.); (H.L.); (Y.D.); (S.C.); (X.C.); (J.D.)
| |
Collapse
|
7
|
Jiao C, Sun J. SlbHLH1 mediates ABA treatment-retarded chilling injury by repressing SlPP2C29 in tomato fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112086. [PMID: 38599246 DOI: 10.1016/j.plantsci.2024.112086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Low-temperature storage can facilitate to the preservation of postharvest fruits. However, tomato fruit are vulnerable to chilling injury (CI) throughout refrigerated storage, resulting in economic losses. Abscisic acid (ABA) treatment weakened the CI progression in tomato fruit. Protein phosphatase 2 C 29 (SlPP2C29) acted as the negative regulator in the ABA-enhanced chilling tolerance. The gene expression of SlPP2C29 and activity of PP2C were down regulated by ABA treatment. Furthermore, SlPP2C29 was shown to be the negative downstream messenger in the ABA-alleviated oxidative damage. Moreover, basic helix-loop-helix 1 (SlbHLH1) bound to the E-box element within SlPP2C29 promoter, and negatively modulated its expression. SlbHLH1 mediated the ABA-boosted chilling tolerance. It turned out that SlbHLH1 was the positive modulator involved in the ABA-inhibited SlPP2C29 expression and PP2C activity. SlbHLH1 was furtherly found to work as the positive regulator in the ABA-lowered oxidative damage. Thus, SlbHLH1 alleviated the CI severity by repressing SlPP2C29 under ABA treatment in tomato fruit.
Collapse
Affiliation(s)
- Caifeng Jiao
- School of Horticulture, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| |
Collapse
|
8
|
Chen C, Zhang Z, Lei YY, Chen WJ, Zhang ZH, Li XM, Dai HY. MdMYB44-like positively regulates salt and drought tolerance via the MdPYL8-MdPP2CA module in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:24-41. [PMID: 38102874 DOI: 10.1111/tpj.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
Abscisic acid (ABA) is involved in salt and drought stress responses, but the underlying molecular mechanism remains unclear. Here, we demonstrated that the overexpression of MdMYB44-like, an R2R3-MYB transcription factor, significantly increases the salt and drought tolerance of transgenic apples and Arabidopsis. MdMYB44-like inhibits the transcription of MdPP2CA, which encodes a type 2C protein phosphatase that acts as a negative regulator in the ABA response, thereby enhancing ABA signaling-mediated salt and drought tolerance. Furthermore, we found that MdMYB44-like and MdPYL8, an ABA receptor, form a protein complex that further enhances the transcriptional inhibition of the MdPP2CA promoter by MdMYB44-like. Significantly, we discovered that MdPP2CA can interfere with the physical association between MdMYB44-like and MdPYL8 in the presence of ABA, partially blocking the inhibitory effect of the MdMYB44-like-MdPYL8 complex on the MdPP2CA promoter. Thus, MdMYB44-like, MdPYL8, and MdPP2CA form a regulatory loop that tightly modulates ABA signaling homeostasis under salt and drought stress. Our data reveal that MdMYB44-like precisely modulates ABA-mediated salt and drought tolerance in apples through the MdPYL8-MdPP2CA module.
Collapse
Affiliation(s)
- Cui Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Zhen Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Ying-Ying Lei
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Wen-Jun Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Zhi-Hong Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Xiao-Ming Li
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Hong-Yan Dai
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| |
Collapse
|
9
|
Yang F, Zhao LL, Song LQ, Han Y, You CX, An JP. Apple E3 ligase MdPUB23 mediates ubiquitin-dependent degradation of MdABI5 to delay ABA-triggered leaf senescence. HORTICULTURE RESEARCH 2024; 11:uhae029. [PMID: 38585016 PMCID: PMC10995623 DOI: 10.1093/hr/uhae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/24/2024] [Indexed: 04/09/2024]
Abstract
ABSCISIC ACID-INSENSITIVE5 (ABI5) is a core regulatory factor that mediates the ABA signaling response and leaf senescence. However, the molecular mechanism underlying the synergistic regulation of leaf senescence by ABI5 with interacting partners and the homeostasis of ABI5 in the ABA signaling response remain to be further investigated. In this study, we found that the accelerated effect of MdABI5 on leaf senescence is partly dependent on MdbHLH93, an activator of leaf senescence in apple. MdABI5 directly interacted with MdbHLH93 and improved the transcriptional activation of the senescence-associated gene MdSAG18 by MdbHLH93. MdPUB23, a U-box E3 ubiquitin ligase, physically interacted with MdABI5 and delayed ABA-triggered leaf senescence. Genetic and biochemical analyses suggest that MdPUB23 inhibited MdABI5-promoted leaf premature senescence by targeting MdABI5 for ubiquitin-dependent degradation. In conclusion, our results verify that MdABI5 accelerates leaf senescence through the MdABI5-MdbHLH93-MdSAG18 regulatory module, and MdPUB23 is responsible for the dynamic regulation of ABA-triggered leaf senescence by modulating the homeostasis of MdABI5.
Collapse
Affiliation(s)
- Fei Yang
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ling-Ling Zhao
- Yantai Academy of Agricultural Sciences, Yan-Tai 265599, Shandong, China
| | - Lai-Qing Song
- Yantai Academy of Agricultural Sciences, Yan-Tai 265599, Shandong, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jian-Ping An
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
10
|
Sun M, Shen Y. Integrating the multiple functions of CHLH into chloroplast-derived signaling fundamental to plant development and adaptation as well as fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111892. [PMID: 37821024 DOI: 10.1016/j.plantsci.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chlorophyll (Chl)-mediated oxygenic photosynthesis sustains life on Earth. Greening leaves play fundamental roles in plant growth and crop yield, correlating with the idea that more Chls lead to better adaptation. However, they face significant challenges from various unfavorable environments. Chl biosynthesis hinges on the first committed step, which involves inserting Mg2+ into protoporphyrin. This step is facilitated by the H subunit of magnesium chelatase (CHLH) and features a conserved mechanism from cyanobacteria to plants. For better adaptation to fluctuating land environments, especially drought, CHLH evolves multiple biological functions, including Chl biosynthesis, retrograde signaling, and abscisic acid (ABA) responses. Additionally, it integrates into various chloroplast-derived signaling pathways, encompassing both retrograde signaling and hormonal signaling. The former comprises ROS (reactive oxygen species), heme, GUN (genomes uncoupled), MEcPP (methylerythritol cyclodiphosphate), β-CC (β-cyclocitral), and PAP (3'-phosphoadenosine-5'-phosphate). The latter involves phytohormones like ABA, ethylene, auxin, cytokinin, gibberellin, strigolactone, brassinolide, salicylic acid, and jasmonic acid. Together, these elements create a coordinated regulatory network tailored to plant development and adaptation. An intriguing example is how drought-mediated improvement of fruit quality provides insights into chloroplast-derived signaling, aiding the shift from vegetative to reproductive growth. In this context, we explore the integration of CHLH's multifaceted roles into chloroplast-derived signaling, which lays the foundation for plant development and adaptation, as well as fruit ripening and quality. In the future, manipulating chloroplast-derived signaling may offer a promising avenue to enhance crop yield and quality through the homeostasis, function, and regulation of Chls.
Collapse
Affiliation(s)
- Mimi Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China.
| |
Collapse
|
11
|
Li Y, Wang W, Zhang N, Cheng Y, Hussain S, Wang Y, Tian H, Hussain H, Lin R, Yuan Y, Wang C, Wang T, Wang S. Antagonistic Regulation of ABA Responses by Duplicated Tandemly Repeated DUF538 Protein Genes in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2989. [PMID: 37631202 PMCID: PMC10459309 DOI: 10.3390/plants12162989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The plant hormone ABA (abscisic acid) regulates plant responses to abiotic stresses by regulating the expression of ABA response genes. However, the functions of a large portion of ABA response genes have remained unclear. We report in this study the identification of ASDs (ABA-inducible signal peptide-containing DUF538 proteins), a subgroup of DUF538 proteins with a signal peptide, as the regulators of plant responses to ABA in Arabidopsis. ASDs are encoded by four closely related DUF538 genes, with ASD1/ASD2 and ASD3/ASD4 being two pairs of duplicated tandemly repeated genes. The quantitative RT-PCR (qRT-PCR) results showed that the expression levels of ASDs increased significantly in response to ABA as well as NaCl and mannitol treatments, with the exception that the expression level of ASD2 remained largely unchanged in response to NaCl treatment. The results of Arabidopsis protoplast transient transfection assays showed that ASDs were localized on the plasma membrane and in the cytosol and nucleus. When recruited to the promoter of the reporter gene via a fused GD domain, ASDs were able to slightly repress the expression of the co-transfected reporter gene. Seed germination and cotyledon greening assays showed that ABA sensitivity was increased in the transgenic plants that were over-expressing ASD1 or ASD3 but decreased in the transgenic plants that were over-expressing ASD2 or ASD4. On the other hand, ABA sensitivity was increased in the CRISPR/Cas9 gene-edited asd2 single mutants but decreased in the asd3 single mutants. A transcriptome analysis showed that differentially expressed genes in the 35S:ASD2 transgenic plant seedlings were enriched in several different processes, including in plant growth and development, the secondary metabolism, and plant hormone signaling. In summary, our results show that ASDs are ABA response genes and that ASDs are involved in the regulation of plant responses to ABA in Arabidopsis; however, ASD1/ASD3 and ASD2/ASD4 have opposite functions.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Saddam Hussain
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Hadia Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Yuan Yuan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Chen Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| |
Collapse
|
12
|
Li M, Wu T, Wang S, Duan T, Huang S, Xie Y. The Modulation of Sucrose Nonfermenting 1-Related Protein Kinase 2.6 State by Persulfidation and Phosphorylation: Insights from Molecular Dynamics Simulations. Int J Mol Sci 2023; 24:11512. [PMID: 37511271 PMCID: PMC10380758 DOI: 10.3390/ijms241411512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
SnRK2.6 (SUCROSE NONFERMENTING 1-RELATED PROTEIN KINASE2.6) has been characterized as a molecular switch for the intracellular abscisic acid (ABA) signal-transduction pathway. Normally, SnRK2.6 is kept in an "off" state, forming a binary complex with protein phosphatase type 2Cs (PP2Cs). Upon stressful conditions, SnRK2.6 turns into an "on" state by its release from PP2Cs and then phosphorylation at Ser175. However, how the "on" and "off" states for SnRK2.6 are fine-tuned, thereby controlling the initiation and braking processes of ABA signaling, is still largely unclear. SnRK2.6 activity was tightly regulated through protein post-translational modifications (PTM), such as persulfidation and phosphorylation. Taking advantage of molecular dynamics simulations, our results showed that Cys131/137 persulfidation on SnRK2.6 induces destabilized binding and weakened interactions between SnRK2.6 and HAB1 (HYPERSENSITIVE TO ABA1), an important PP2C family protein. This unfavorable effect on the association of the SnRK2.6-HAB1 complex suggests that persulfidation functions are a positive regulator of ABA signaling initiation. In addition, Ser267 phosphorylation in persulfidated SnRK2.6 renders a stable physical association between SnRK2.6 and HAB1, a key characterization for SnRK2.6 inhibition. Rather than Ser175, HAB1 cannot dephosphorylate Ser267 in SnRK2.6, which implies that the retained phosphorylation status of Ser267 could ensure that the activated SnRK2.6 reforms the binary complex to cease ABA signaling. Taken together, our findings expand current knowledge concerning the regulation of persulfidation and phosphorylation on the state transition of SnRK2.6 and provide insights into the fine-tuned mechanism of ABA signaling.
Collapse
Affiliation(s)
- Miaomiao Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuhan Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianqi Duan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Siqi Huang
- Institute of Bast Fiber Crops (IBFC), Chinese Academy of Agricultural Sciences (CAAS), Changsha 410205, China
| | - Yanjie Xie
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Bast Fiber Crops (IBFC), Chinese Academy of Agricultural Sciences (CAAS), Changsha 410205, China
| |
Collapse
|
13
|
Lu J, Zheng D, Li M, Fu M, Zhang X, Wan X, Zhang S, Chen Q. A hierarchical model of ABA-mediated signal transduction in tea plant revealed by systematic genome mining analysis and interaction validation. TREE PHYSIOLOGY 2023; 43:867-878. [PMID: 36694977 DOI: 10.1093/treephys/tpad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 05/13/2023]
Abstract
As a critical signaling molecule, ABA plays an important role in plant growth, development and stresses response. However, tea plant [Camellia sinensis (L.)], an important economical perennial woody plant, has not been systematically reported in response to ABA signal transduction in vivo. In this study, we mined and identified the gene structure of CsPYL/CsPP2C-A/CsSnRK gene families in the ABA signal transduction pathway through the genome-wide analysis of tea plants. Spatiotemporal expression and stress response (drought, salt, chilling) expression patterns were characterized. The results showed that most members of CsPYLs were conserved, and the gene structures of members of A-type CsPP2Cs were highly similar, whereas the gene structure of CsSnRK2s was highly variable. The transcription levels of different family members were differentially expressed with plant growth and development, and their response to stress signal patterns was highly correlated. The expression patterns of CsPYL/CsPP2C-A/CsSnRK2 gene family members in different tissues of tea plant cuttings after exogenous ABA treatment were detected by qRT-PCR, and the hierarchical model of ABA signaling was constructed by correlation analysis to preliminarily obtain three potential ABA-dependent signaling transduction pathways. Subsequently, the protein interaction of the CsPYL4/7-CsPP2C-A2-CsSnRK2.8 signaling pathway was verified by yeast two-hybrid and surface plasmon resonance experiments, indicating that there is specific selectivity in the ABA signaling pathway. Our results provided novel insights into the ABA-dependent signal transduction model in tea plant and information for future functional characterizations of stress tolerance genes in tea plant.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Dongqiao Zheng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mengshuang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036 , China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Shihua Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| |
Collapse
|
14
|
Tian R, Sun X, Liu C, Chu J, Zhao M, Zhang WH. A Medicago truncatula lncRNA MtCIR1 negatively regulates response to salt stress. PLANTA 2023; 257:32. [PMID: 36602592 DOI: 10.1007/s00425-022-04064-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
A lncRNA MtCIR1 negatively regulates the response to salt stress in Medicago truncatula seed germination by modulating seedling growth and ABA metabolism and signaling by enhancing Na+ accumulation. Increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in the regulation of plant tolerance to varying abiotic stresses. A large number of lncRNAs that are responsive to abiotic stress have been identified in plants; however, the mechanisms underlying the regulation of plant responses to abiotic stress by lncRNAs are largely unclear. Here, we functionally characterized a salt stress-responsive lncRNA derived from the leguminous model plant M. truncatula, referred to as MtCIR1, by expressing MtCIR1 in Arabidopsis thaliana in which no such homologous sequence was observed. Expression of MtCIR1 rendered seed germination more sensitive to salt stress by enhanced accumulation of abscisic acid (ABA) due to suppressing the expression of the ABA catabolic enzyme CYP707A2. Expression of MtCIR1 also suppressed the expression of genes associated with ABA receptors and signaling. The ABA-responsive gene AtPGIP2 that was involved in degradation of cell wall during seed germination was up-regulated by expressing MtCIR1. On the other hand, expression of MtCIR1 in Arabidopsis thaliana enhanced foliar Na+ accumulation by down-regulating genes encoding Na+ transporters, thus rendering the transgenic plants more sensitive to salt stress. These results demonstrate that the M. truncatula lncRNA MtCIR1 negatively regulates salt stress response by targeting ABA metabolism and signaling during seed germination and foliar Na+ accumulation by affecting Na+ transport under salt stress during seedling growth. These novel findings would advance our knowledge on the regulatory roles of lncRNAs in response of plants to salt stress.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaohan Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Cuimei Liu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Mingui Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
15
|
Peng R, Sun S, Li N, Kong L, Chen Z, Wang P, Xu L, Wang H, Geng X. Physiological and transcriptome profiling revealed defense networks during Cladosporium fulvum and tomato interaction at the early stage. FRONTIERS IN PLANT SCIENCE 2022; 13:1085395. [PMID: 36561446 PMCID: PMC9763619 DOI: 10.3389/fpls.2022.1085395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Tomato leaf mold caused by Cladosporium fulvum (C. fulvum) is a serious fungal disease which results in huge yield losses in tomato cultivation worldwide. In our study, we discovered that ROS (reactive oxygen species) burst was triggered by C. fulvum treatment in tomato leaves. RNA-sequencing was used to identify differentially expressed genes (DEGs) induced by C. fulvum inoculation at the early stage of invasion in susceptible tomato plants. Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to annotate functions of DEGs in tomato plants. Based on our comparative analysis, DEGs related to plant-pathogen interaction pathway, plant hormone signal transduction pathway and the plant phenylpropanoid pathway were further analyzed. Our results discovered that a number of core defense genes against fungal invasion were induced and plant hormone signal transduction pathways were impacted by C. fulvum inoculation. Further, our results showed that SA (salicylic acid) and ABA (abscisic acid) contents were accumulated while JA (jasmonic acid) content decreased after C. fulvum inoculation in comparison with control, and quantitative real-time PCR to detect the relative expression of genes involved in SA, ABA and JA signaling pathway further confirmed our results. Together, results will contribute to understanding the mechanisms of C. fulvum and tomato interaction in future.
Collapse
Affiliation(s)
- Rong Peng
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Sheng Sun
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Na Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingjuan Kong
- Vegetable Department, Shanghai Agricultural Technology Extension and Service Center, Shanghai, China
| | - Zhifeng Chen
- College of Biology and Agricultural Technology, Zunyi Normal University, Zunyi, China
| | - Peng Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lurong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hehe Wang
- Clemson University, Edisto Research and Education Center, Blackville, SC, United States
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
CRISPR/Cas9 Gene Editing of NtAITRs, a Family of Transcription Repressor Genes, Leads to Enhanced Drought Tolerance in Tobacco. Int J Mol Sci 2022; 23:ijms232315268. [PMID: 36499605 PMCID: PMC9737578 DOI: 10.3390/ijms232315268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Tobacco is a cash crop throughout the world, and its growth and development are affected by abiotic stresses including drought stress; therefore, drought-tolerant breeding may help to improve tobacco yield and quality under drought stress conditions. Considering that the plant hormone ABA (abscisic acid) is able to regulate plant responses to abiotic stresses via activating ABA response genes, the characterization of ABA response genes may enable the identification of genes that can be used for molecular breeding to improve drought tolerance in tobacco. We report here the identification of NtAITRs (Nicotiana tabacum ABA-induced transcription repressors) as a family of novel regulators of drought tolerance in tobacco. Bioinformatics analysis shows that there are a total of eight NtAITR genes in tobacco, and all the NtAITRs have a partially conserved LxLxL motif at their C-terminus. RT-PCR results show that the expression levels of at least some NtAITRs were increased in response to ABA and drought treatments, and NtAITRs, when recruited to the Gal4 promoter via a fused GD (Gal4 DNA-binding domain), were able to repress transcription activator LD-VP activated expression of the LexA-Gal4-GUS reporter gene. Roles of NtAITRs in regulating drought tolerance in tobacco were analyzed by generating CRISPR/Cas9 gene-edited mutants. A total of three Cas9-free ntaitr12356 quintuple mutants were obtained, and drought treatment assays show that drought tolerance was increased in the ntaitr12356 quintuple mutants. On the other hand, results of seed germination and seedling greening assays show that ABA sensitivity was increased in the ntaitr12356 quintuple mutants, and the expression levels of some ABA signaling key regulator genes were altered in the ntaitr12356-c3 mutant. Taken together, our results suggest that NtAITRs are ABA-responsive genes, and that NtAITRs function as transcription repressors and negatively regulate drought tolerance in tobacco, possibly by affecting plant ABA response via affecting the expression of ABA signaling key regulator genes.
Collapse
|
17
|
Li Y, Yang Z, Zhang Y, Guo J, Liu L, Wang C, Wang B, Han G. The roles of HD-ZIP proteins in plant abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1027071. [PMID: 36311122 PMCID: PMC9598875 DOI: 10.3389/fpls.2022.1027071] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 05/31/2023]
Abstract
Homeodomain leucine zipper (HD-ZIP) proteins are plant-specific transcription factors that contain a homeodomain (HD) and a leucine zipper (LZ) domain. The highly conserved HD binds specifically to DNA and the LZ mediates homodimer or heterodimer formation. HD-ZIP transcription factors control plant growth, development, and responses to abiotic stress by regulating downstream target genes and hormone regulatory pathways. HD-ZIP proteins are divided into four subclasses (I-IV) according to their sequence conservation and function. The genome-wide identification and expression profile analysis of HD-ZIP proteins in model plants such as Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) have improved our understanding of the functions of the different subclasses. In this review, we mainly summarize and discuss the roles of HD-ZIP proteins in plant response to abiotic stresses such as drought, salinity, low temperature, and harmful metals. HD-ZIP proteins mainly mediate plant stress tolerance by regulating the expression of downstream stress-related genes through abscisic acid (ABA) mediated signaling pathways, and also by regulating plant growth and development. This review provides a basis for understanding the roles of HD-ZIP proteins and potential targets for breeding abiotic stress tolerance in plants.
Collapse
|
18
|
Wang Y, Li Y, Tian H, Wang W, Wang X, Hussain S, Yuan Y, Lin R, Hussain H, Wang T, Wang S. AtS40-1, a group I DUF584 protein positively regulates ABA response and salt tolerance in Arabidopsis. Gene 2022; 846:146846. [PMID: 36044943 DOI: 10.1016/j.gene.2022.146846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/06/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
Abiotic stresses such as salt and drought affect plants growth and development, whereas the plant hormone ABA is able to regulate plant responses to abiotic stresses by regulating downstream gene expression. Therefore characterization of unknown function ABA responsive genes is able to identify novel regulators of plant abiotic stress responses. We report here the characterization of AtS40-1, a Group I DUF584 protein in the regulation of ABA and salt responses in Arabidopsis. RT-PCR results show that the expression of AtS40-1 was dramatically induced by ABA, but only slightly increase, if any, was observed for other three Group I DUF584 genes including AtS40-1L, AtS40-2 and AtS40-3. Transfection assays in Arabidopsis protoplasts show that all the four Group I DUF584 proteins were predominately localized in nucleus and were able to repress the expression of the co-transfected reporter gene. The roles of AtS40-1 in regulating plant response to ABA and abiotic stress responses were analyzed, by using transgenic plants and inactivation mutants. The results show that the ABA responses were increased in the 35S:AtS40-1 transgenic plants, but decreased in the ats40-1 mutants. Similar to AtS40-1, the results indicate that AtS40-1L, the most closely related DUF584 protein to AtS40-1, positively regulates ABA responses in Arabidopsis. However, further decreased ABA responses were not observed in the ats40-1 ats40-1l double mutants. On the other hand, salt tolerance was increased in the transgenic plants overexpressing AtS40-1 or AtS40-1L, but decreased in the ats40-1 and ats40-1l mutants. Quantitative RT-PCR results show that the ABA induced expression of the ABA signaling regulator genes ABI3, ABI4 and ABA responsive gene RAB18 was decreased, where as ABA signaling gene ABI1 was increased in the ats40-1 mutants. These results suggest that AtS40-1 regulates ABA and salt responses in Arabidopsis, possibly by affecting ABA induced expression of some ABA signaling regulator genes.
Collapse
Affiliation(s)
- Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China
| | - Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Xutong Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China
| | - Yuan Yuan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China
| | - Hadia Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 China; Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China.
| |
Collapse
|
19
|
AtEAU1 and AtEAU2, Two EAR Motif-Containing ABA Up-Regulated Novel Transcription Repressors Regulate ABA Response in Arabidopsis. Int J Mol Sci 2022; 23:ijms23169053. [PMID: 36012319 PMCID: PMC9409118 DOI: 10.3390/ijms23169053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
EAR (Ethylene-responsive element binding factor-associated Amphiphilic Repression) motif-containing transcription repressors have been shown to regulate plant growth and development, and plant responses to plant hormones and environmental stresses including biotic and abiotic stresses. However, the functions of most EAR-motif-containing proteins remain largely uncharacterized. The plant hormone abscisic acid (ABA) also plays important roles in regulating plant responses to abiotic stresses via activation/repression of ABA-responsive genes. We report here the identification and functional characterization of two ABA-responsive EAR motif-containing protein genes, AtEAU1 (Arabidopsis thaliana EAR motif-containing ABAUp-regulated 1) and AtEAU2. Quantitative RT-PCR results show that the expressions of AtEAU1 and AtEAU2 were increased by ABA treatment, and were decreased in the ABA biosynthesis mutant aba1-5. Assays in transfected Arabidopsis protoplasts show that both AtEAU1 and AtEAU2 were specifically localized in the nucleus, and when recruited to the promoter region of the reporter gene by a fused DNA binding domain, repressed reporter gene expression. By using T-DNA insertion mutants and a gene-edited transgene-free mutant generated by CRISPR/Cas9 gene editing, we performed ABA sensitivity assays, and found that ABA sensitivity in the both ateau1 and ateau2 single mutants was increased in seedling greening assays. ABA sensitivity in the ateau1 ateau2 double mutants was also increased, but was largely similar to the ateau1 single mutants. On the other hand, all the mutants showed a wild type response to ABA in root elongation assays. Quantitative RT-PCR results show that the expression level of PYL4, an ABA receptor gene was increased, whereas that of ABI2, a PP2C gene was decreased in the ateau1 and ateau1 single, and the ateau1 ateau2 double mutants. In summary, our results suggest that AtEAU1 and AtEAU2 are ABA-response genes, and AtEAU1 and AtEAU2 are novel EAR motif-containing transcription repressors that negatively regulate ABA responses in Arabidopsis, likely by regulating the expression of some ABA signaling key regulator genes.
Collapse
|
20
|
Liu Y, Chen S, Wei P, Guo S, Wu J. A briefly overview of the research progress for the abscisic acid analogues. Front Chem 2022; 10:967404. [PMID: 35936098 PMCID: PMC9355028 DOI: 10.3389/fchem.2022.967404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Abscisic acid (ABA) is an important plant endogenous hormone that participates in the regulation of various physiological processes in plants, including the occurrence and development of somatic embryos, seeddevelopment and dormancy. ABA is called “plant stress resistance factor”, while with the limitation of the rapid metabolic inactivation and photoisomerization inactivation of ABA for its large-scale use. Understanding the function and role of ABA in plants is of great significance to promote its application. For decades, scientists have conducted in-depth research on its mechanism of action and signaling pathways, a series of progress were achieved, and hundreds of ABA analogues (similar in structure or function) have been synthesized to develop highly active plant growth regulators and tools to elucidate ABA perception. In this review, we summarize a variety of ABA analogues, especially the ABA receptor analogues, and explore the mechanisms of ABA action and catabolism, which will facilitate the development of novel ABA analogues with high biological activities.
Collapse
|
21
|
The R2R3 MYB Transcription Factor MYB71 Regulates Abscisic Acid Response in Arabidopsis. PLANTS 2022; 11:plants11101369. [PMID: 35631794 PMCID: PMC9143609 DOI: 10.3390/plants11101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Abscisic acid (ABA) regulates plant responses to abiotic stresses via regulating the expression of downstream genes, yet the functions of many ABA responsive genes remain unknown. We report here the characterization of MYB71, a R2R3 MYB transcription factor in regulating ABA responses in Arabidopsis. RT-PCR results show that the expression level of MYB71 was increased in response to ABA treatment. Arabidopsis protoplasts transfection results show that MYB71 was specifically localized in nucleus and it activated the Gal4:GUS reporter gene when recruited to the Gal4 promoter by a fused DNA binding domain GD. Roles of MYB71 in regulating plant response to ABA were analyzed by generating Arabidopsis transgenic plants overexpression MYB71 and gene edited mutants of MYB71. The results show that ABA sensitivity was increased in the transgenic plants overexpression MYB71, but decreased in the MYB71 mutants. By using a DEX inducible system, we further identified genes are likely regulated by MYB71, and found that they are enriched in biological process to environmental stimuli including abiotic stresses, suggesting that MYB71 may regulate plant response to abiotic stresses. Taken together, our results suggest that MYB71 is an ABA responsive gene, and MYB71 functions as a transcription activator and it positively regulates ABA response in Arabidopsis.
Collapse
|
22
|
Regulatory Role of Circadian Clocks on ABA Production and Signaling, Stomatal Responses, and Water-Use Efficiency under Water-Deficit Conditions. Cells 2022; 11:cells11071154. [PMID: 35406719 PMCID: PMC8997731 DOI: 10.3390/cells11071154] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Plants deploy molecular, physiological, and anatomical adaptations to cope with long-term water-deficit exposure, and some of these processes are controlled by circadian clocks. Circadian clocks are endogenous timekeepers that autonomously modulate biological systems over the course of the day–night cycle. Plants’ responses to water deficiency vary with the time of the day. Opening and closing of stomata, which control water loss from plants, have diurnal responses based on the humidity level in the rhizosphere and the air surrounding the leaves. Abscisic acid (ABA), the main phytohormone modulating the stomatal response to water availability, is regulated by circadian clocks. The molecular mechanism of the plant’s circadian clock for regulating stress responses is composed not only of transcriptional but also posttranscriptional regulatory networks. Despite the importance of regulatory impact of circadian clock systems on ABA production and signaling, which is reflected in stomatal responses and as a consequence influences the drought tolerance response of the plants, the interrelationship between circadian clock, ABA homeostasis, and signaling and water-deficit responses has to date not been clearly described. In this review, we hypothesized that the circadian clock through ABA directs plants to modulate their responses and feedback mechanisms to ensure survival and to enhance their fitness under drought conditions. Different regulatory pathways and challenges in circadian-based rhythms and the possible adaptive advantage through them are also discussed.
Collapse
|
23
|
An JP, Xu RR, Liu X, Su L, Yang K, Wang XF, Wang GL, You CX. Abscisic acid insensitive 4 interacts with ICE1 and JAZ proteins to regulate ABA signaling-mediated cold tolerance in apple. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:980-997. [PMID: 34555166 DOI: 10.1093/jxb/erab433] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid is involved in the regulation of cold stress response, but its molecular mechanism remains to be elucidated. In this study, we demonstrated that the APETALA2/ethylene responsive factor (AP2/ERF) family protein MdABI4 positively regulates abscisic acid-mediated cold tolerance in apple. We found that MdABI4 interacts with MdICE1, a key regulatory protein involved in the cold stress response, and enhances the transcriptional regulatory function of MdICE1 on its downstream target gene MdCBF1, thus improving abscisic acid-mediated cold tolerance. The jasmonate-ZIM domain (JAZ) proteins MdJAZ1 and MdJAZ2 negatively modulate MdABI4-improved cold tolerance in apple by interacting with the MdABI4 protein. Further investigation showed that MdJAZ1 and MdJAZ2 interfere with the interaction between the MdABI4 and MdICE1 proteins. Together, our data revealed that MdABI4 integrates jasmonic acid and abscisic acid signals to precisely modulate cold tolerance in apple through the JAZ-ABI4-ICE1-CBF regulatory cascade. These findings provide insights into the crosstalk between jasmonic acid and abscisic acid signals in response to cold stress.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Rui-Rui Xu
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong, College of Biological and Agricultural Engineering, Weifang University, Weifang, Shandong, China
| | - Xin Liu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Ling Su
- Shandong Academy of Grape, Jinan, Shandong, China
| | - Kuo Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
24
|
Involvement of ABA Responsive SVB Genes in the Regulation of Trichome Formation in Arabidopsis. Int J Mol Sci 2021; 22:ijms22136790. [PMID: 34202673 PMCID: PMC8268597 DOI: 10.3390/ijms22136790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 01/19/2023] Open
Abstract
Trichome formation in Arabidopsis is regulated by several key regulators, and plants hormones such as gibberellin, salicylic acid, jasmonic acid and cytokinins have been shown to regulate trichome formation by affecting the transcription or activities of the key regulators. We report here the identification of two abscisic acid (ABA) responsive genes, SMALLER TRICHOMES WITH VARIABLE BRANCHES (SVB) and SVB2 as trichome formation regulator genes in Arabidopsis. The expression levels of SVB and SVB2 were increased in response to ABA treatment, their expression levels were reduced in the ABA biosynthesis mutant aba1-5, and they have similar expression pattern. In addition to the trichome defects reported previously for the svb single mutant, we found that even though the trichome numbers were largely unaffected in both the svb and svb2 single mutants generate by using CRISPR/Cas9 gene editing, the trichome numbers were greatly reduced in the svb svb2 double mutants. On the other hand, trichome numbers were increased in SVB or SVB2 overexpression plants. RT-PCR results show that the expression of the trichome formation key regulator gene ENHANCER OF GLABRA3 (EGL3) was affected in the svb svb2 double mutants. Our results suggest that SVB and SVB2 are ABA responsive genes, and SVB and SVB2 function redundantly to regulate trichome formation in Arabidopsis.
Collapse
|
25
|
TMK1-based auxin signaling regulates abscisic acid responses via phosphorylating ABI1/2 in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2102544118. [PMID: 34099554 DOI: 10.1073/pnas.2102544118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Differential concentrations of phytohormone trigger distinct outputs, which provides a mechanism for the plasticity of plant development and an adaptation strategy among plants to changing environments. However, the underlying mechanisms of the differential responses remain unclear. Here we report that a high concentration of auxin, distinct from the effect of low auxin concentration, enhances abscisic acid (ABA) responses in Arabidopsis thaliana, which partially relies on TRANS-MEMBERANE KINASE 1 (TMK1), a key regulator in auxin signaling. We show that high auxin and TMK1 play essential and positive roles in ABA signaling through regulating ABA INSENSITIVE 1 and 2 (ABI1/2), two negative regulators of the ABA pathway. TMK1 inhibits the phosphatase activity of ABI2 by direct phosphorylation of threonine 321 (T321), a conserved phosphorylation site in ABI2 proteins, whose phosphorylation status is important for both auxin and ABA responses. This TMK1-dependent auxin signaling in the regulation of ABA responses provides a possible mechanism underlying the high auxin responses in plants and an alternative mechanism involved in the coordination between auxin and ABA signaling.
Collapse
|
26
|
Chen S, Zhang N, Zhou G, Hussain S, Ahmed S, Tian H, Wang S. Knockout of the entire family of AITR genes in Arabidopsis leads to enhanced drought and salinity tolerance without fitness costs. BMC PLANT BIOLOGY 2021; 21:137. [PMID: 33726681 PMCID: PMC7967987 DOI: 10.1186/s12870-021-02907-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/01/2021] [Indexed: 05/18/2023]
Abstract
BACKGORUND Environmental stresses including abiotic stresses and biotic stresses limit yield of plants. Stress-tolerant breeding is an efficient way to improve plant yield under stress conditions. Genome editing by CRISPR/Cas9 can be used in molecular breeding to improve agronomic traits in crops, but in most cases, with fitness costs. The plant hormone ABA regulates plant responses to abiotic stresses via signaling transduction. We previously identified AITRs as a family of novel transcription factors that play a role in regulating plant responses to ABA and abiotic stresses. We found that abiotic stress tolerance was increased in the single, double and triple aitr mutants. However, it is unclear if the increased abiotic stress tolerance in the mutants may have fitness costs. RESULTS We report here the characterization of AITRs as suitable candidate genes for CRISPR/Cas9 editing to improve plant stress tolerance. By using CRISPR/Cas9 to target AITR3 and AITR4 simultaneously in the aitr256 triple and aitr1256 quadruple mutants respectively, we generated Cas9-free aitr23456 quintuple and aitr123456 sextuple mutants. We found that reduced sensitivities to ABA and enhanced tolerance to drought and salt were observed in these mutants. Most importantly, plant growth and development was not affected even in the aitr123456 sextuple mutants, in whom the entire AITR family genes have been knocked out, and the aitr123456 sextuple mutants also showed a wild type response to the pathogen infection. CONCLUSIONS Our results suggest that knockout of the AITR family genes in Arabidopsis enhanced abiotic stress tolerance without fitness costs. Considering that knock-out a few AITRs will lead to enhanced abiotic stress tolerance, that AITRs are widely distributed in angiosperms with multiple encoding genes, AITRs may be targeted for molecular breeding to improve abiotic stress tolerance in plants including crops.
Collapse
Affiliation(s)
- Siyu Chen
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, 276000, Linyi, China
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Sajjad Ahmed
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China.
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, 276000, Linyi, China.
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, 130024, Changchun, China.
| |
Collapse
|
27
|
Yao T, Zhang J, Xie M, Yuan G, Tschaplinski TJ, Muchero W, Chen JG. Transcriptional Regulation of Drought Response in Arabidopsis and Woody Plants. FRONTIERS IN PLANT SCIENCE 2021; 11:572137. [PMID: 33488639 PMCID: PMC7820124 DOI: 10.3389/fpls.2020.572137] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/25/2020] [Indexed: 05/24/2023]
Abstract
Within the context of global warming, long-living plants such as perennial woody species endure adverse conditions. Among all of the abiotic stresses, drought stress is one of the most detrimental stresses that inhibit plant growth and productivity. Plants have evolved multiple mechanisms to respond to drought stress, among which transcriptional regulation is one of the key mechanisms. In this review, we summarize recent progress on the regulation of drought response by transcription factor (TF) families, which include abscisic acid (ABA)-dependent ABA-responsive element/ABRE-binding factors (ABRE/ABF), WRKY, and Nuclear Factor Y families, as well as ABA-independent AP2/ERF and NAC families, in the model plant Arabidopsis. We also review what is known in woody species, particularly Populus, due to its importance and relevance in economic and ecological processes. We discuss opportunities for a deeper understanding of drought response in woody plants with the development of high-throughput omics analyses and advanced genome editing techniques.
Collapse
Affiliation(s)
- Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Meng Xie
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
28
|
Wang T, Xun H, Wang W, Ding X, Tian H, Hussain S, Dong Q, Li Y, Cheng Y, Wang C, Lin R, Li G, Qian X, Pang J, Feng X, Dong Y, Liu B, Wang S. Mutation of GmAITR Genes by CRISPR/Cas9 Genome Editing Results in Enhanced Salinity Stress Tolerance in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:779598. [PMID: 34899806 PMCID: PMC8660858 DOI: 10.3389/fpls.2021.779598] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/05/2021] [Indexed: 05/02/2023]
Abstract
Breeding of stress-tolerant plants is able to improve crop yield under stress conditions, whereas CRISPR/Cas9 genome editing has been shown to be an efficient way for molecular breeding to improve agronomic traits including stress tolerance in crops. However, genes can be targeted for genome editing to enhance crop abiotic stress tolerance remained largely unidentified. We have previously identified abscisic acid (ABA)-induced transcription repressors (AITRs) as a novel family of transcription factors that are involved in the regulation of ABA signaling, and we found that knockout of the entire family of AITR genes in Arabidopsis enhanced drought and salinity tolerance without fitness costs. Considering that AITRs are conserved in angiosperms, AITRs in crops may be targeted for genome editing to improve abiotic stress tolerance. We report here that mutation of GmAITR genes by CRISPR/Cas9 genome editing leads to enhanced salinity tolerance in soybean. By using quantitative RT-PCR analysis, we found that the expression levels of GmAITRs were increased in response to ABA and salt treatments. Transfection assays in soybean protoplasts show that GmAITRs are nucleus proteins, and have transcriptional repression activities. By using CRISPR/Cas9 to target the six GmAITRs simultaneously, we successfully generated Cas9-free gmaitr36 double and gmaitr23456 quintuple mutants. We found that ABA sensitivity in these mutants was increased. Consistent with this, ABA responses of some ABA signaling key regulator genes in the gmaitr mutants were altered. In both seed germination and seedling growth assays, the gmaitr mutants showed enhanced salt tolerance. Most importantly, enhanced salinity tolerance in the mutant plants was also observed in the field experiments. These results suggest that mutation of GmAITR genes by CRISPR/Cas9 is an efficient way to improve salinity tolerance in soybean.
Collapse
Affiliation(s)
- Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
- National Engineering Research Center for Soybean, Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Wei Wang
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| | - Xiaoyang Ding
- National Engineering Research Center for Soybean, Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Chen Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Guimin Li
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| | - Xueyan Qian
- National Engineering Research Center for Soybean, Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jinsong Pang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yingshan Dong
- National Engineering Research Center for Soybean, Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
- *Correspondence: Shucai Wang,
| |
Collapse
|
29
|
Jung C, Nguyen NH, Cheong JJ. Transcriptional Regulation of Protein Phosphatase 2C Genes to Modulate Abscisic Acid Signaling. Int J Mol Sci 2020; 21:ijms21249517. [PMID: 33327661 PMCID: PMC7765119 DOI: 10.3390/ijms21249517] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 01/04/2023] Open
Abstract
The plant hormone abscisic acid (ABA) triggers cellular tolerance responses to osmotic stress caused by drought and salinity. ABA controls the turgor pressure of guard cells in the plant epidermis, leading to stomatal closure to minimize water loss. However, stomatal apertures open to uptake CO2 for photosynthesis even under stress conditions. ABA modulates its signaling pathway via negative feedback regulation to maintain plant homeostasis. In the nuclei of guard cells, the clade A type 2C protein phosphatases (PP2Cs) counteract SnRK2 kinases by physical interaction, and thereby inhibit activation of the transcription factors that mediate ABA-responsive gene expression. Under osmotic stress conditions, PP2Cs bind to soluble ABA receptors to capture ABA and release active SnRK2s. Thus, PP2Cs function as a switch at the center of the ABA signaling network. ABA induces the expression of genes encoding repressors or activators of PP2C gene transcription. These regulators mediate the conversion of PP2C chromatins from a repressive to an active state for gene transcription. The stress-induced chromatin remodeling states of ABA-responsive genes could be memorized and transmitted to plant progeny; i.e., transgenerational epigenetic inheritance. This review focuses on the mechanism by which PP2C gene transcription modulates ABA signaling.
Collapse
Affiliation(s)
- Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology, Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam;
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-4888; Fax: +82-2-873-5260
| |
Collapse
|
30
|
Hewage KAH, Yang J, Wang D, Hao G, Yang G, Zhu J. Chemical Manipulation of Abscisic Acid Signaling: A New Approach to Abiotic and Biotic Stress Management in Agriculture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001265. [PMID: 32999840 PMCID: PMC7509701 DOI: 10.1002/advs.202001265] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/11/2020] [Indexed: 05/02/2023]
Abstract
The phytohormone abscisic acid (ABA) is the best-known stress signaling molecule in plants. ABA protects sessile land plants from biotic and abiotic stresses. The conserved pyrabactin resistance/pyrabactin resistance-like/regulatory component of ABA receptors (PYR/PYL/RCAR) perceives ABA and triggers a cascade of signaling events. A thorough knowledge of the sequential steps of ABA signaling will be necessary for the development of chemicals that control plant stress responses. The core components of the ABA signaling pathway have been identified with adequate characterization. The information available concerning ABA biosynthesis, transport, perception, and metabolism has enabled detailed functional studies on how the protective ability of ABA in plants might be modified to increase plant resistance to stress. Some of the significant contributions to chemical manipulation include ABA biosynthesis inhibitors, and ABA receptor agonists and antagonists. Chemical manipulation of key control points in ABA signaling is important for abiotic and biotic stress management in agriculture. However, a comprehensive review of the current knowledge of chemical manipulation of ABA signaling is lacking. Here, a thorough analysis of recent reports on small-molecule modulation of ABA signaling is provided. The challenges and prospects in the chemical manipulation of ABA signaling for the development of ABA-based agrochemicals are also discussed.
Collapse
Affiliation(s)
- Kamalani Achala H. Hewage
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
| | - Jing‐Fang Yang
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
| | - Di Wang
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
| | - Ge‐Fei Hao
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
| | - Guang‐Fu Yang
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
- Collaborative Innovation Center of Chemical Science and EngineeringTianjin300072P. R. China
| | - Jian‐Kang Zhu
- Shanghai Center for Plant Stress Biologyand CAS Center of Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai20032P. R. China
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
31
|
Alazem M, Lin NS. Interplay between ABA signaling and RNA silencing in plant viral resistance. Curr Opin Virol 2020; 42:1-7. [PMID: 32222536 DOI: 10.1016/j.coviro.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022]
Abstract
Abscisic acid (ABA) regulates plant responses to different stimuli including viral infections through two different defense mechanisms; the antiviral RNA silencing pathway and callose accumulation. In some pathosystems, induction of these defense mechanisms is stronger in plants with resistance (R)-genes than in more susceptible plants. Mutants in several RNA silencing genes are hypersensitive to ABA, which suggests that these genes exert a regulatory feedback loop on ABA signaling. This scenario suggests that the RNA silencing pathway can target genes involved in the ABA pathway to control ABA production/signaling since prolonged production of this stress hormone arrests plant growth and development. Mutations in the ABA or salicylic acid pathways do not completely repress RNA silencing genes, indicating that RNA silencing represents a regulatory hub through which different pathways exert some of their functions, and thus the regulation of RNA silencing could be subject to hormone balancing in plants.
Collapse
Affiliation(s)
- Mazen Alazem
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
32
|
Li Y, Wang Y, Tan S, Li Z, Yuan Z, Glanc M, Domjan D, Wang K, Xuan W, Guo Y, Gong Z, Friml J, Zhang J. Root Growth Adaptation is Mediated by PYLs ABA Receptor-PP2A Protein Phosphatase Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901455. [PMID: 32042554 PMCID: PMC7001640 DOI: 10.1002/advs.201901455] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/23/2019] [Indexed: 05/20/2023]
Abstract
Plant root architecture dynamically adapts to various environmental conditions, such as salt-containing soil. The phytohormone abscisic acid (ABA) is involved among others also in these developmental adaptations, but the underlying molecular mechanism remains elusive. Here, a novel branch of the ABA signaling pathway in Arabidopsis involving PYR/PYL/RCAR (abbreviated as PYLs) receptor-protein phosphatase 2A (PP2A) complex that acts in parallel to the canonical PYLs-protein phosphatase 2C (PP2C) mechanism is identified. The PYLs-PP2A signaling modulates root gravitropism and lateral root formation through regulating phytohormone auxin transport. In optimal conditions, PYLs ABA receptor interacts with the catalytic subunits of PP2A, increasing their phosphatase activity and thus counteracting PINOID (PID) kinase-mediated phosphorylation of PIN-FORMED (PIN) auxin transporters. By contrast, in salt and osmotic stress conditions, ABA binds to PYLs, inhibiting the PP2A activity, which leads to increased PIN phosphorylation and consequently modulated directional auxin transport leading to adapted root architecture. This work reveals an adaptive mechanism that may flexibly adjust plant root growth to withstand saline and osmotic stresses. It occurs via the cross-talk between the stress hormone ABA and the versatile developmental regulator auxin.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Yaping Wang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Shutang Tan
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Zhen Li
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Zhi Yuan
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Matouš Glanc
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - David Domjan
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Kai Wang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower‐Middle Reaches of the Yangtze RiverNanjing Agricultural UniversityNanjing210095China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Jiří Friml
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Jing Zhang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| |
Collapse
|
33
|
Kumar M, Kesawat MS, Ali A, Lee SC, Gill SS, Kim HU. Integration of Abscisic Acid Signaling with Other Signaling Pathways in Plant Stress Responses and Development. PLANTS (BASEL, SWITZERLAND) 2019; 8:E592. [PMID: 31835863 PMCID: PMC6963649 DOI: 10.3390/plants8120592] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022]
Abstract
Plants are immobile and, to overcome harsh environmental conditions such as drought, salt, and cold, they have evolved complex signaling pathways. Abscisic acid (ABA), an isoprenoid phytohormone, is a critical signaling mediator that regulates diverse biological processes in various organisms. Significant progress has been made in the determination and characterization of key ABA-mediated molecular factors involved in different stress responses, including stomatal closure and developmental processes, such as seed germination and bud dormancy. Since ABA signaling is a complex signaling network that integrates with other signaling pathways, the dissection of its intricate regulatory network is necessary to understand the function of essential regulatory genes involved in ABA signaling. In the present review, we focus on two aspects of ABA signaling. First, we examine the perception of the stress signal (abiotic and biotic) and the response network of ABA signaling components that transduce the signal to the downstream pathway to respond to stress tolerance, regulation of stomata, and ABA signaling component ubiquitination. Second, ABA signaling in plant development processes, such as lateral root growth regulation, seed germination, and flowering time regulation is investigated. Examining such diverse signal integration dynamics could enhance our understanding of the underlying genetic, biochemical, and molecular mechanisms of ABA signaling networks in plants.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea
| | | | - Asjad Ali
- Southern Cross Plant Science, Southern Cross University, East Lismore NSW 2480, Australia;
| | | | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, MD University, Rohtak 124001, India;
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea
| |
Collapse
|
34
|
Al-Hijab L, Gregg A, Davies R, Macdonald H, Ladomery M, Wilson I. Abscisic acid induced a negative geotropic response in dark-incubated Chlamydomonas reinhardtii. Sci Rep 2019; 9:12063. [PMID: 31427663 PMCID: PMC6700132 DOI: 10.1038/s41598-019-48632-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/06/2019] [Indexed: 12/27/2022] Open
Abstract
The phytohormone abscisic acid (ABA) plays a role in stresses that alter plant water status and may also regulate root gravitropism and hydrotropism. ABA also exists in the aquatic algal progenitors of land plants, but other than its involvement in stress responses, its physiological role in these microorganisms remains elusive. We show that exogenous ABA significantly altered the HCO3- uptake of Chamydomonas reinhardtii in a light-intensity-dependent manner. In high light ABA enhanced HCO3- uptake, while under low light uptake was diminished. In the dark, ABA induced a negative geotropic movement of the algae to an extent dependent on the time of sampling during the light/dark cycle. The algae also showed a differential, light-dependent directional taxis response to a fixed ABA source, moving horizontally towards the source in the light and away in the dark. We conclude that light and ABA signal competitively in order for algae to position themselves in the water column to minimise photo-oxidative stress and optimise photosynthetic efficiency. We suggest that the development of this response mechanism in motile algae may have been an important step in the evolution of terrestrial plants and that its retention therein strongly implicates ABA in the regulation of their relevant tropisms.
Collapse
Affiliation(s)
- Layla Al-Hijab
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Adam Gregg
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Rhiannon Davies
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Heather Macdonald
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Michael Ladomery
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Ian Wilson
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom.
| |
Collapse
|
35
|
Huang L, Chen L, Wang L, Yang Y, Rao Y, Ren D, Dai L, Gao Y, Zou W, Lu X, Zhang G, Zhu L, Hu J, Chen G, Shen L, Dong G, Gao Z, Guo L, Qian Q, Zeng D. A Nck-associated protein 1-like protein affects drought sensitivity by its involvement in leaf epidermal development and stomatal closure in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:884-897. [PMID: 30771248 PMCID: PMC6849750 DOI: 10.1111/tpj.14288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 05/05/2023]
Abstract
Water deficit is a major environmental threat affecting crop yields worldwide. In this study, a drought stress-sensitive mutant drought sensitive 8 (ds8) was identified in rice (Oryza sativa L.). The DS8 gene was cloned using a map-based approach. Further analysis revealed that DS8 encoded a Nck-associated protein 1 (NAP1)-like protein, a component of the SCAR/WAVE complex, which played a vital role in actin filament nucleation activity. The mutant exhibited changes in leaf cuticle development. Functional analysis revealed that the mutation of DS8 increased stomatal density and impaired stomatal closure activity. The distorted actin filaments in the mutant led to a defect in abscisic acid (ABA)-mediated stomatal closure and increased ABA accumulation. All these resulted in excessive water loss in ds8 leaves. Notably, antisense transgenic lines also exhibited increased drought sensitivity, along with impaired stomatal closure and elevated ABA levels. These findings suggest that DS8 affects drought sensitivity by influencing actin filament activity.
Collapse
Affiliation(s)
- Lichao Huang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Long Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Lan Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Yaolong Yang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Yuchun Rao
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhua321004China
| | - Deyong Ren
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Liping Dai
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Yihong Gao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Weiwei Zou
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Xueli Lu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Guangheng Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Li Zhu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Jiang Hu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Guang Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Lan Shen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Guojun Dong
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Zhenyu Gao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Longbiao Guo
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Dali Zeng
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| |
Collapse
|
36
|
Chen S, Zhang N, Zhang Q, Zhou G, Tian H, Hussain S, Ahmed S, Wang T, Wang S. Genome Editing to Integrate Seed Size and Abiotic Stress Tolerance Traits in Arabidopsis Reveals a Role for DPA4 and SOD7 in the Regulation of Inflorescence Architecture. Int J Mol Sci 2019; 20:ijms20112695. [PMID: 31159296 PMCID: PMC6600516 DOI: 10.3390/ijms20112695] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 01/21/2023] Open
Abstract
Both seed size and abiotic stress tolerance are important agronomic traits in crops. In Arabidopsis, two closely related transcription repressors DPA4 (Development-Related PcG Target in the APEX4)/NGAL3 and SOD7 (Suppressor of da1-1)/NGAL2 (NGATHA-like protein) function redundantly to regulate seed size, which was increased in the dpa4 sod7 double mutants. Whereas ABA-induced transcription repressors (AITRs) are involved in the regulation of ABA signaling and abiotic stress tolerance, Arabidopsis aitr2 aitr5 aitr6 (aitr256) triple mutant showed enhanced tolerance to drought and salt. Here we performed CRISPR/Cas9 genome editing to disrupt DPA4 and SOD7 in aitr256 mutant, trying to integrate seed size and abiotic stress tolerance traits in Arabidopsis, and also to examine whether DPA4 and SOD7 may regulate other aspects of plant growth and development. Indeed, seed size was increased in the dpa4 sod7 aitr256 quintuple mutants, and enhanced tolerance to drought was observed in the mutants. In addition, we found that shoot branching was affected in the dpa4 sod7 aitr256 mutants. The mutant plants failed to produce secondary branches, and flowers/siliques were distributed irregularly on the main stems of the plants. Floral organ number and fertility were also affected in the dpa4 sod7 aitr256 mutant plants. To examine if these phenotypes were dependent on loss-of-function of AITRs, dpa4 sod7 double mutants were generated in Col wild type background, and we found that the dpa4 sod7 mutant plants showed a phenotype similar to the dpa4 sod7 aitr256 quintuple mutants. Taken together, our results indicate that the integration of seed size and abiotic stress tolerance traits by CRISPR/Cas9 editing was successful, and our results also revealed a role of DPA4 and SOD7 in the regulation of inflorescence architecture in Arabidopsis.
Collapse
Affiliation(s)
- Siyu Chen
- College of Life Sciences, Linyi University, Linyi 276005, China.
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Qimeng Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Sajjad Ahmed
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Shucai Wang
- College of Life Sciences, Linyi University, Linyi 276005, China.
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
37
|
Xun H, Yang X, He H, Wang M, Guo P, Wang Y, Pang J, Dong Y, Feng X, Wang S, Liu B. Over-expression of GmKR3, a TIR-NBS-LRR type R gene, confers resistance to multiple viruses in soybean. PLANT MOLECULAR BIOLOGY 2019; 99:95-111. [PMID: 30535849 DOI: 10.1007/s11103-018-0804-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/28/2018] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE That overexpression of GmKR3 enhances innate virus resistance by stimulating. Soybean mosaic virus (SMV) is found in many soybean production areas, and SMV infection is one of the prevalent viral diseases that can cause significant yield losses in soybean. In plants, resistance (R) genes are involved in pathogen reorganization and innate immune response activation. Most R proteins have nucleotide-binding site and leucine-rich repeat (NBS-LRR) domains, and some of the NBS-LRR type R proteins in dicots have Toll/Interleukin-1 Receptor (TIR) motifs. We report here the analysis of the over-expression of GmKR3, a soybean TIR-NBS-LRR type R gene on virus resistance in soybean. When over-expressed in soybean, GmKR3 enhanced the plant's resistance to several strains of SMV, the closely related potyviruses bean common mosaic virus (BCMV) and watermelon mosaic virus (WMV), and the secovirus bean pod mottle virus (BPMV). Importantly, over-expression of GmKR3 did not affect plant growth and development, including yield and qualities of the seeds. HPLC analysis showed that abscisic acid (ABA) content increased in the 35S:GmKR3 transgenic plants, and in both wild-type and 35S:GmKR3 transgenic plants in response to virus inoculation. Consistent with this observation, we found that the expression of two ABA catabolism genes was down-regulated in 35S:GmKR3 transgenic plants. We also found that the expression of Gm04.3, an ABA responsive gene encoding BURP domain-containing protein, was up-regulated in 35S:GmKR3 transgenic plants. Taken together, our results suggest that overexpression of GmKR3 enhanced virus resistance in soybean, which was achieved at least in part via ABA signaling.
Collapse
Affiliation(s)
- Hongwei Xun
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiangdong Yang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Hongli He
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Meng Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ying Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jinsong Pang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
| | - Yingshan Dong
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
- College of Life Science, Linyi University, Linyi, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
38
|
Singh M, Mas P. A Functional Connection between the Circadian Clock and Hormonal Timing in Arabidopsis. Genes (Basel) 2018; 9:E567. [PMID: 30477118 PMCID: PMC6315462 DOI: 10.3390/genes9120567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023] Open
Abstract
The rotation of the Earth entails changes in environmental conditions that pervasively influence an organism's physiology and metabolism. An internal cellular mechanism known as the circadian clock acts as an internal timekeeper that is able to perceive the changes in environmental cues to generate 24-h rhythms in synchronization with daily and seasonal fluctuations. In plants, the circadian clock function is particularly important and regulates nearly every aspect of plant growth and development as well as proper responses to stresses. The circadian clock does not function in isolation but rather interconnects with an intricate network of different pathways, including those of phytohormones. Here, we describe the interplay of the circadian clock with a subset of hormones in Arabidopsis. The molecular components directly connecting the circadian and hormone pathways are described, highlighting the biological significance of such connections in the control of growth, development, fitness, and survival. We focus on the overlapping as well as contrasting circadian and hormonal functions that together provide a glimpse on how the Arabidopsis circadian system regulates hormone function in response to endogenous and exogenous cues. Examples of feedback regulation from hormone signaling to the clock are also discussed.
Collapse
Affiliation(s)
- Manjul Singh
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Paloma Mas
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain.
| |
Collapse
|
39
|
Arias CL, Pavlovic T, Torcolese G, Badia MB, Gismondi M, Maurino VG, Andreo CS, Drincovich MF, Gerrard Wheeler MC, Saigo M. NADP-Dependent Malic Enzyme 1 Participates in the Abscisic Acid Response in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1637. [PMID: 30459802 PMCID: PMC6232891 DOI: 10.3389/fpls.2018.01637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/22/2018] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana possesses three cytosolic (NADP-ME1-3) and one plastidic (NADP-ME4) NADP-dependent malic enzymes. NADP-ME2 and -ME4 show constitutive expression, in contrast to NADP-ME1 and -ME3, which are restricted to particular tissues. Here, we show that NADP-ME1 transcript and protein were almost undetectable during normal vegetative growth, but gradually increased and reached levels higher than those of the other isoforms in the latest stages of seed development. Accordingly, in knockout nadp-me1 mature seeds the total NADP-ME activity was significantly lower than in wild type mature seeds. The phenotypic analysis of nadp-me1 plants indicated alterations of seed viability and germination. Besides, the treatment with abscisic acid (ABA), NaCl and mannitol specifically induced the accumulation of NADP-ME1 in seedlings. In line with this, nadp-me1 plants show a weaker response of primary and lateral root length and stomatal opening to the presence of ABA. The results suggest that NADP-ME1 plays a specialized role, linked to ABA signaling during the seed development as well as in the response to water deficit stress.
Collapse
Affiliation(s)
- Cintia L. Arias
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Tatiana Pavlovic
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Giuliana Torcolese
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariana B. Badia
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Mauro Gismondi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Verónica G. Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Carlos S. Andreo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - María F. Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariel C. Gerrard Wheeler
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariana Saigo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
40
|
Adams S, Grundy J, Veflingstad SR, Dyer NP, Hannah MA, Ott S, Carré IA. Circadian control of abscisic acid biosynthesis and signalling pathways revealed by genome-wide analysis of LHY binding targets. THE NEW PHYTOLOGIST 2018; 220:893-907. [PMID: 30191576 DOI: 10.1111/nph.15415] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/23/2018] [Indexed: 05/02/2023]
Abstract
The LATE ELONGATED HYPOCOTYL (LHY) transcription factor functions as part of the oscillatory mechanism of the Arabidopsis circadian clock. This paper reports the genome-wide analysis of its binding targets and reveals a role in the control of abscisic acid (ABA) biosynthesis and downstream responses. LHY directly repressed expression of 9-cis-epoxycarotenoid dioxygenase enzymes, which catalyse the rate-limiting step of ABA biosynthesis. This suggested a mechanism for the circadian control of ABA accumulation in wild-type plants. Consistent with this hypothesis, ABA accumulated rhythmically in wild-type plants, peaking in the evening. LHY-overexpressing plants had reduced levels of ABA under drought stress, whereas loss-of-function mutants exhibited an altered rhythm of ABA accumulation. LHY also bound the promoter of multiple components of ABA signalling pathways, suggesting that it may also act to regulate responses downstream of the hormone. LHY promoted expression of ABA-responsive genes responsible for increased tolerance to drought and osmotic stress but alleviated the inhibitory effect of ABA on seed germination and plant growth. This study reveals a complex interaction between the circadian clock and ABA pathways, which is likely to make an important contribution to plant performance under drought and osmotic stress conditions.
Collapse
Affiliation(s)
- Sally Adams
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Jack Grundy
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Bayer CropScience NV, Technologiepark 38, 9052, Ghent, Belgium
| | - Siren R Veflingstad
- Systems Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
- Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK
| | - Nigel P Dyer
- Systems Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Sascha Ott
- Systems Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
| | - Isabelle A Carré
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
41
|
Lymperopoulos P, Msanne J, Rabara R. Phytochrome and Phytohormones: Working in Tandem for Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2018; 9:1037. [PMID: 30100912 PMCID: PMC6072860 DOI: 10.3389/fpls.2018.01037] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/26/2018] [Indexed: 05/07/2023]
Abstract
Being sessile organisms, plants need to continually adapt and modulate their rate of growth and development in accordance with the changing environmental conditions, a phenomenon referred to as plasticity. Plasticity in plants is a highly complex process that involves a well-coordinated interaction between different signaling pathways, the spatiotemporal involvement of phytohormones and cues from the environment. Though research studies are being carried out over the years to understand how plants perceive the signals from changing environmental conditions and activate plasticity, such remain a mystery to be resolved. Among all environmental cues, the light seems to be the stand out factor influencing plant growth and development. During the course of evolution, plants have developed well-equipped signaling system that enables regulation of both quantitative and qualitative differences in the amount of perceived light. Light influences essential developmental switches in plants ranging from germination or transition to flowering, photomorphogenesis, as well as switches in response to shade avoidances and architectural changes occurring during phototropism. Abscisic acid (ABA) is controlling seed germination and is regulated by light. Furthermore, circadian clock adds another level of regulation to plant growth by integrating light signals with different hormonal pathways. MYB96 has been identified as a regulator of circadian gating of ABA-mediated responses in plants by binding to the TIMING OF CAB EXPRESSION 1(TOC1) promoter. This review will present a representative regulatory model, highlight the successes achieved in employing novel strategies to dissect the levels of interaction and provide perspective for future research on phytochrome-phytohormones relationships toward facilitating plant growth, development, and function under abiotic-biotic stresses.
Collapse
Affiliation(s)
| | - Joseph Msanne
- New Mexico Consortium, Los Alamos, NM, United States
| | - Roel Rabara
- New Mexico Consortium, Los Alamos, NM, United States
| |
Collapse
|
42
|
Genome-wide evolutionary characterization and expression analyses of major latex protein (MLP) family genes in Vitis vinifera. Mol Genet Genomics 2018; 293:1061-1075. [DOI: 10.1007/s00438-018-1440-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/19/2018] [Indexed: 12/17/2022]
|
43
|
Hou BZ, Xu C, Shen YY. A leu-rich repeat receptor-like protein kinase, FaRIPK1, interacts with the ABA receptor, FaABAR, to regulate fruit ripening in strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1569-1582. [PMID: 29281111 PMCID: PMC5888985 DOI: 10.1093/jxb/erx488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Strawberry (Fragaria×ananassa) is a model plant for studying non-climacteric fruit ripening regulated by abscisic acid (ABA); however, its exact molecular mechanisms are yet not fully understood. In this study, a predicted leu-rich repeat (LRR) receptor-like kinase in strawberry, red-initial protein kinase 1 (FaRIPK1), was screened and, using a yeast two-hybrid assay, was shown to interact with a putative ABA receptor, FaABAR. This association was confirmed by bimolecular fluorescence complementation and co-immunoprecipitation assays, and shown to occur in the nucleus. Expression analysis by real-time PCR showed that FaRIPK1 is expressed in roots, stems, leaves, flowers, and fruit, with a particularly high expression in white fruit at the onset of coloration. Down-regulation of FaRIPK1 expression in strawberry fruit, using Tobacco rattle virus-induced gene silencing, inhibited ripening, as evidenced by suppression of ripening-related physiological changes and reduced expression of several genes involved in softening, sugar content, pigmentation, and ABA biosynthesis and signaling. The yeast-expressed LRR and STK (serine/threonine protein kinase) domains of FaRIPK1 bound ABA and showed kinase activity, respectively. A fruit disc-incubation test revealed that FaRIPK1 expression was induced by ABA and ethylene. The synergistic action of FaRIPK1 with FaABAR in regulation of strawberry fruit ripening is discussed.
Collapse
Affiliation(s)
- Bing-Zhu Hou
- State Key Laboratory of Plant Physiology and Biochemistry, Beijing, P. R. China
- National Plant Gene Research Center, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, P. R. China
| | - Cheng Xu
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, P. R. China
| | - Yuan-Yue Shen
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, P. R. China
- Correspondence:
| |
Collapse
|
44
|
Timucin E, Sezerman OU. Thermostability of the PYL–PP2C Heterodimer Is Dependent on Magnesium: In Silico Insights into the Link between Heat Stress Response and Magnesium Deficiency in Plants. J Chem Inf Model 2018; 58:661-672. [DOI: 10.1021/acs.jcim.7b00655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Emel Timucin
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752, Istanbul Turkey
| | - Osman Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752, Istanbul Turkey
| |
Collapse
|
45
|
Tian H, Chen S, Yang W, Wang T, Zheng K, Wang Y, Cheng Y, Zhang N, Liu S, Li D, Liu B, Wang S. A novel family of transcription factors conserved in angiosperms is required for ABA signalling. PLANT, CELL & ENVIRONMENT 2017; 40:2958-2971. [PMID: 28857190 DOI: 10.1111/pce.13058] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 05/18/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a crucial role in regulating plant responses to environmental stresses. Interplay of several different proteins including the PYR/PYL/RCAR receptors, A-group PP2C protein phosphatases, SnRK2 protein kinases, and downstream transcription factors regulates ABA signalling. We report here the identification of a family of ABA-induced transcription repressors (AITRs) that act as feedback regulators in ABA signalling. We found that the expression of all the 6 Arabidopsis AITR genes was induced by exogenously ABA, and their expression levels were decreased in ABA biosynthesis mutant aba1-5. BLAST searches showed that AITRs are exclusively present in angiosperms. When recruited to the promoter region of a reporter gene by a fused DNA binding domain, all AITRs inhibited reporter gene expression in transfected protoplasts. In Arabidopsis, aitr mutants showed reduced sensitivity to ABA and to stresses such as salt and drought. Quantitative RT-PCR analysis demonstrated that the ABA-induced response of PP2C and some PYR/PYL/RCAR genes was reduced in AITR5 transgenic plants but increased in an aitr2 aitr5 aitr6 triple mutant. These results provide important new insights into the regulation of ABA signalling in plants, and such information may lead to the production of plants with enhanced resistance to environmental stresses.
Collapse
Affiliation(s)
- Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Siyu Chen
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wenting Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Shanda Liu
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Dongqiu Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
46
|
Zhou Q, Guo JJ, He CT, Shen C, Huang YY, Chen JX, Guo JH, Yuan JG, Yang ZY. Comparative Transcriptome Analysis between Low- and High-Cadmium-Accumulating Genotypes of Pakchoi (Brassica chinensis L.) in Response to Cadmium Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6485-94. [PMID: 27228483 DOI: 10.1021/acs.est.5b06326] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To reduce cadmium (Cd) pollution of food chains, screening and breeding of low-Cd-accumulating cultivars are the focus of much study. Two previously identified genotypes, a low-Cd-accumulating genotype (LAJK) and a high-Cd-accumulating genotype (HAJS) of pakchoi (Brassica chinesis L.), were stressed by Cd (12.5 μM) for 0 h (T0), 3 h (T3) and 24 h (T24). By comparative transcriptome analysis for root tissue, 3005 and 4343 differentially expressed genes (DEGs) were identified in LAJK at T3 (vs T0) and T24 (vs T3), respectively, whereas 8677 and 5081 DEGs were detected in HAJS. Gene expression pattern analysis suggested a delay of Cd responded transcriptional changes in LAJK compared to HAJS. DEG functional enrichments proposed genotype-specific biological processes coped with Cd stress. Cell wall biosynthesis and glutathione (GSH) metabolism were found to involve in Cd resistance in HAJS, whereas DNA repair and abscisic acid (ABA) signal transduction pathways played important roles in LAJK. Furthermore, the genes participating in Cd efflux such as PDR8 were overexpressed in LAJK, whereas those responsible for Cd transport such as YSL1 were more enhanced in HAJS, exhibiting different Cd transport processes between two genotypes. These novel findings should be useful for molecular assisted screening and breeding of low-Cd-accumulating genotypes for pakchoi.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University , Xingang Xi Road 135, Guangzhou 510275, China
| | - Jing-Jie Guo
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University , Xingang Xi Road 135, Guangzhou 510275, China
| | - Chun-Tao He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University , Xingang Xi Road 135, Guangzhou 510275, China
| | - Chuang Shen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University , Xingang Xi Road 135, Guangzhou 510275, China
| | - Ying-Ying Huang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University , Xingang Xi Road 135, Guangzhou 510275, China
| | - Jing-Xin Chen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University , Xingang Xi Road 135, Guangzhou 510275, China
| | - Jian-Hua Guo
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University , Xingang Xi Road 135, Guangzhou 510275, China
| | - Jian-Gang Yuan
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University , Xingang Xi Road 135, Guangzhou 510275, China
| | - Zhong-Yi Yang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University , Xingang Xi Road 135, Guangzhou 510275, China
| |
Collapse
|
47
|
Abscisic acid influx into human nucleated cells occurs through the anion exchanger AE2. Int J Biochem Cell Biol 2016; 75:99-103. [PMID: 27015766 DOI: 10.1016/j.biocel.2016.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/09/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022]
Abstract
Abscisic acid (ABA) is a hormone conserved from cyanobacteria to higher plants, where it regulates responses to environmental stimuli. ABA also plays a role in mammalian physiology, pointedly in inflammatory responses and in glycemic control. As the animal ABA receptor is on the intracellular side of the plasma membrane, a transporter is required for the hormone's action. Here we demonstrate that ABA transport in human nucleated cells occurs via the anion exchanger AE2. Together with the recent demonstration that ABA influx into human erythrocytes occurs via Band 3, this result identifies the AE family members as the mammalian ABA transporters.
Collapse
|
48
|
Tian H, Guo H, Dai X, Cheng Y, Zheng K, Wang X, Wang S. An ABA down-regulated bHLH transcription repressor gene, bHLH129 regulates root elongation and ABA response when overexpressed in Arabidopsis. Sci Rep 2015; 5:17587. [PMID: 26625868 PMCID: PMC4667245 DOI: 10.1038/srep17587] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/02/2015] [Indexed: 11/15/2022] Open
Abstract
Plant hormone abscisic acid (ABA) plays a crucial role in modulating plant responses to environmental stresses. Basic helix-loop-helix (bHLH) transcription factors are one of the largest transcription factor families that regulate multiple aspects of plant growth and development, as well as of plant metabolism in Arabidopsis. Several bHLH transcription factors have been shown to be involved in the regulation of ABA signaling. We report here the characterization of bHLH129, a bHLH transcription factor in Arabidopsis. We found that the expression level of bHLH129 was reduced in response to exogenously applied ABA, and elevated in the ABA biosynthesis mutant aba1-5. Florescence observation of transgenic plants expressing bHLH129-GFP showed that bHLH129 was localized in the nucleus, and transient expression of bHLH129 in protoplasts inhibited reporter gene expression. When expressed in Arabidopsis under the control of the 35S promoter, bHLH129 promoted root elongation, and the transgenic plants were less sensitivity to ABA in root elongation assays. Quantitative RT-PCR results showed that ABA response of several genes involved in ABA signaling, including ABI1, SnRK2.2, SnRK2.3 and SnRK2.6 were altered in the transgenic plants overexpressing bHLH129. Taken together, our study suggests that bHLH129 is a transcription repressor that negatively regulates ABA response in Arabidopsis.
Collapse
Affiliation(s)
- Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Hongyan Guo
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xuemei Dai
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiaoping Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
49
|
Vigliarolo T, Guida L, Millo E, Fresia C, Turco E, De Flora A, Zocchi E. Abscisic acid transport in human erythrocytes. J Biol Chem 2015; 290:13042-52. [PMID: 25847240 DOI: 10.1074/jbc.m114.629501] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Indexed: 11/06/2022] Open
Abstract
Abscisic acid (ABA) is a plant hormone involved in the response to environmental stress. Recently, ABA has been shown to be present and active also in mammals, where it stimulates the functional activity of innate immune cells, of mesenchymal and hemopoietic stem cells, and insulin-releasing pancreatic β-cells. LANCL2, the ABA receptor in mammalian cells, is a peripheral membrane protein that localizes at the intracellular side of the plasma membrane. Here we investigated the mechanism enabling ABA transport across the plasmamembrane of human red blood cells (RBC). Both influx and efflux of [(3)H]ABA occur across intact RBC, as detected by radiometric and chromatographic methods. ABA binds specifically to Band 3 (the RBC anion transporter), as determined by labeling of RBC membranes with biotinylated ABA. Proteoliposomes reconstituted with human purified Band 3 transport [(3)H]ABA and [(35)S]sulfate, and ABA transport is sensitive to the specific Band 3 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Once inside RBC, ABA stimulates ATP release through the LANCL2-mediated activation of adenylate cyclase. As ATP released from RBC is known to exert a vasodilator response, these results suggest a role for plasma ABA in the regulation of vascular tone.
Collapse
Affiliation(s)
- Tiziana Vigliarolo
- From the Department of Experimental Medicine, Section of Biochemistry, and
| | - Lucrezia Guida
- From the Department of Experimental Medicine, Section of Biochemistry, and
| | - Enrico Millo
- the Center of Excellence for Biomedical Research, University of Genova, Genova 16132, Italy and
| | - Chiara Fresia
- From the Department of Experimental Medicine, Section of Biochemistry, and
| | - Emilia Turco
- the Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Antonio De Flora
- From the Department of Experimental Medicine, Section of Biochemistry, and
| | - Elena Zocchi
- From the Department of Experimental Medicine, Section of Biochemistry, and
| |
Collapse
|
50
|
Zhang H, Cui F, Wu Y, Lou L, Liu L, Tian M, Ning Y, Shu K, Tang S, Xie Q. The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. THE PLANT CELL 2015; 27:214-27. [PMID: 25616872 PMCID: PMC4330582 DOI: 10.1105/tpc.114.134163] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/17/2014] [Accepted: 01/06/2015] [Indexed: 05/18/2023]
Abstract
The plant hormone abscisic acid (ABA) regulates many aspects of plant development and the stress response. The intracellular E3 ligase SDIR1 (SALT- AND DROUGHT-INDUCED REALLY INTERESTING NEW GENE FINGER1) plays a key role in ABA signaling, regulating ABA-related seed germination and the stress response. In this study, we found that SDIR1 is localized on the endoplasmic reticulum membrane in Arabidopsis thaliana. Using cell biology, molecular biology, and biochemistry approaches, we demonstrated that SDIR1 interacts with and ubiquitinates its substrate, SDIRIP1 (SDIR1-INTERACTING PROTEIN1), to modulate SDIRIP1 stability through the 26S proteasome pathway. SDIRIP1 acts genetically downstream of SDIR1 in ABA and salt stress signaling. In detail, SDIRIP1 selectively regulates the expression of the downstream basic region/leucine zipper motif transcription factor gene ABA-INSENSITIVE5, rather than ABA-RESPONSIVE ELEMENTS BINDING FACTOR3 (ABF3) or ABF4, to regulate ABA-mediated seed germination and the plant salt response. Overall, the SDIR1/SDIRIP1 complex plays a vital role in ABA signaling through the ubiquitination pathway.
Collapse
Affiliation(s)
- Huawei Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Cui
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijuan Lou
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijing Liu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Miaomiao Tian
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuese Ning
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Shu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|