1
|
Divya K, Thangaraj M, Krishna Radhika N. CRISPR/Cas9: an advanced platform for root and tuber crops improvement. Front Genome Ed 2024; 5:1242510. [PMID: 38312197 PMCID: PMC10836405 DOI: 10.3389/fgeed.2023.1242510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
Root and tuber crops (RTCs), which include cassava, potato, sweet potato, and yams, principally function as staple crops for a considerable fraction of the world population, in addition to their diverse applications in nutrition, industry, and bioenergy sectors. Even then, RTCs are an underutilized group considering their potential as industrial raw material. Complexities in conventional RTC improvement programs curb the extensive exploitation of the potentials of this group of crop species for food, energy production, value addition, and sustainable development. Now, with the advent of whole-genome sequencing, sufficient sequence data are available for cassava, sweet potato, and potato. These genomic resources provide enormous scope for the improvement of tuber crops, to make them better suited for agronomic and industrial applications. There has been remarkable progress in RTC improvement through the deployment of new strategies like gene editing over the last decade. This review brings out the major areas where CRISPR/Cas technology has improved tuber crops. Strategies for genetic transformation of RTCs with CRISPR/Cas9 constructs and regeneration of edited lines and the bottlenecks encountered in their establishment are also discussed. Certain attributes of tuber crops requiring focus in future research along with putative editing targets are also indicated. Altogether, this review provides a comprehensive account of developments achieved, future lines of research, bottlenecks, and major experimental concerns regarding the establishment of CRISPR/Cas9-based gene editing in RTCs.
Collapse
Affiliation(s)
- K Divya
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | | | - N Krishna Radhika
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| |
Collapse
|
2
|
Ngatsi PZ, Ndongo B, Ambang Z, Eke P, Kuate WNT, Dida SLL, Manga JN, Djiéto-Lordon C. Response of cassava ( Manihot esculenta Crantz) genotypes to natural infestation by scale insect pest Stictococcus vayssierei Richard (Hemiptera: Stictococcidae). CURRENT RESEARCH IN INSECT SCIENCE 2024; 5:100071. [PMID: 38317863 PMCID: PMC10840324 DOI: 10.1016/j.cris.2024.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Cassava is mostly grown for its starchy roots, which ensure food security. However, it is heavily attacked by the African root and tuber scale (ARTS) Stictococcus vayssierei in Central Africa. This pest is a severe constraint to the production of cassava, food and income security for smallholder farmers. Crop resistance development through the selection of varieties with resistant traits against targeted pests is a promising approach to pest control. This study investigated cassava genotypes' response to natural infestation and determined their resistance levels against S. vayssierei. Six cassava genotypes (two local and four improved) were planted in a completely randomized block design with four replicates. Agronomic parameters and ARTS density were evaluated at 3, 6, 9 and 12 months after planting (MAP). Biochemical content was determined on the pith and cortex of 12 MAP aged tuberous roots. As a result, the improved Excel variety recorded the highest scale density per plant with 102.83 ± 4.14 ARTS/P at 9 MAP. At 12 MAP, high activity of total cyanide (69.18 ± 0.88 and 69.16 ± 1.44 mg/kg) and phenylalanine ammonia-lyase (0.142 ± 0.020 and 0.145 ± 0.010 ΔA/min/mg) were observed in the cortex of the tuberous roots of the improved varieties TMS 96/0023 and TMS 92/0057 which were colonized by the lowest ARTS density. The local variety (Douma) had a high content of total phenols (44.87 ± 1.15 µg/g) in the pith. It also produced the highest yield (23.8 ± 2.9 t ha-1). Varieties TMS 96/0023, TMS 92/0057 and Douma may be the most suitable varieties for the control of ARTS stress.
Collapse
Affiliation(s)
- Patrice Zemko Ngatsi
- Department of Plant Biology, Laboratory of Biotechnologies and Environment, Phytopathology and Plant Protection Unit, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Bekolo Ndongo
- Department of Plant Biology, Laboratory of Biotechnologies and Environment, Phytopathology and Plant Protection Unit, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Zachée Ambang
- Department of Plant Biology, Laboratory of Biotechnologies and Environment, Phytopathology and Plant Protection Unit, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Pierre Eke
- Department of Biochemistry, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
- Department of Crop Production Technology, College of Technology, University of Bamenda, Cameroon
| | - William Norbert Tueguem Kuate
- Department of Plant Biology, Laboratory of Biotechnologies and Environment, Phytopathology and Plant Protection Unit, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Sylvere Landry Lontsi Dida
- Department of Plant Biology, Laboratory of Biotechnologies and Environment, Phytopathology and Plant Protection Unit, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Jude Ndjaga Manga
- Department of Plant Biology, Laboratory of Biotechnologies and Environment, Phytopathology and Plant Protection Unit, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Champlain Djiéto-Lordon
- Department of Animal Biology and Physiology, Laboratory of Zoology, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| |
Collapse
|
3
|
Tuo D, Yao Y, Yan P, Chen X, Qu F, Xue W, Liu J, Kong H, Guo J, Cui H, Dai Z, Shen W. Development of cassava common mosaic virus-based vector for protein expression and gene editing in cassava. PLANT METHODS 2023; 19:78. [PMID: 37537660 PMCID: PMC10399001 DOI: 10.1186/s13007-023-01055-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/15/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Plant virus vectors designed for virus-mediated protein overexpression (VOX), virus-induced gene silencing (VIGS), and genome editing (VIGE) provide rapid and cost-effective tools for functional genomics studies, biotechnology applications and genome modification in plants. We previously reported that a cassava common mosaic virus (CsCMV, genus Potexvirus)-based VIGS vector was used for rapid gene function analysis in cassava. However, there are no VOX and VIGE vectors available in cassava. RESULTS In this study, we developed an efficient VOX vector (CsCMV2-NC) for cassava by modifying the CsCMV-based VIGS vector. Specifically, the length of the duplicated putative subgenomic promoter (SGP1) of the CsCMV CP gene was increased to improve heterologous protein expression in cassava plants. The modified CsCMV2-NC-based VOX vector was engineered to express genes encoding green fluorescent protein (GFP), bacterial phytoene synthase (crtB), and Xanthomonas axonopodis pv. manihotis (Xam) type III effector XopAO1 for viral infection tracking, carotenoid biofortification and Xam virulence effector identification in cassava. In addition, we used CsCMV2-NC to deliver single guide RNAs (gMePDS1/2) targeting two loci of the cassava phytoene desaturase gene (MePDS) in Cas9-overexpressing transgenic cassava lines. The CsCMV-gMePDS1/2 efficiently induced deletion mutations of the targeted MePDS with the albino phenotypes in systemically infected cassava leaves. CONCLUSIONS Our results provide a useful tool for rapid and efficient heterologous protein expression and guide RNA delivery in cassava. This expands the potential applications of CsCMV-based vector in gene function studies, biotechnology research, and precision breeding for cassava.
Collapse
Affiliation(s)
- Decai Tuo
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Yuan Yao
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Pu Yan
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Xin Chen
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Feihong Qu
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Weiqian Xue
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Jinping Liu
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Hua Kong
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Jianchun Guo
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Hongguang Cui
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Zhaoji Dai
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Wentao Shen
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China.
| |
Collapse
|
4
|
Sharma KK, Palakolanu SR, Bhattacharya J, Shankhapal AR, Bhatnagar-Mathur P. CRISPR for accelerating genetic gains in under-utilized crops of the drylands: Progress and prospects. Front Genet 2022; 13:999207. [PMID: 36276961 PMCID: PMC9582247 DOI: 10.3389/fgene.2022.999207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 12/12/2022] Open
Abstract
Technologies and innovations are critical for addressing the future food system needs where genetic resources are an essential component of the change process. Advanced breeding tools like "genome editing" are vital for modernizing crop breeding to provide game-changing solutions to some of the "must needed" traits in agriculture. CRISPR/Cas-based tools have been rapidly repurposed for editing applications based on their improved efficiency, specificity and reduced off-target effects. Additionally, precise gene-editing tools such as base editing, prime editing, and multiplexing provide precision in stacking of multiple traits in an elite variety, and facilitating specific and targeted crop improvement. This has helped in advancing research and delivery of products in a short time span, thereby enhancing the rate of genetic gains. A special focus has been on food security in the drylands through crops including millets, teff, fonio, quinoa, Bambara groundnut, pigeonpea and cassava. While these crops contribute significantly to the agricultural economy and resilience of the dryland, improvement of several traits including increased stress tolerance, nutritional value, and yields are urgently required. Although CRISPR has potential to deliver disruptive innovations, prioritization of traits should consider breeding product profiles and market segments for designing and accelerating delivery of locally adapted and preferred crop varieties for the drylands. In this context, the scope of regulatory environment has been stated, implying the dire impacts of unreasonable scrutiny of genome-edited plants on the evolution and progress of much-needed technological advances.
Collapse
Affiliation(s)
- Kiran K. Sharma
- Sustainable Agriculture Programme, The Energy and Resources Institute (TERI), India Habitat Center, New Delhi, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Sudhakar Reddy Palakolanu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, Telangana, India
| | - Aishwarya R. Shankhapal
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- International Maize and Wheat Improvement Center (CIMMYT), México, United Kingdom
| |
Collapse
|
5
|
Mabhaudhi T, Hlahla S, Chimonyo VGP, Henriksson R, Chibarabada TP, Murugani VG, Groner VP, Tadele Z, Sobratee N, Slotow R, Modi AT, Baudron F, Chivenge P. Diversity and Diversification: Ecosystem Services Derived From Underutilized Crops and Their Co-benefits for Sustainable Agricultural Landscapes and Resilient Food Systems in Africa. FRONTIERS IN AGRONOMY 2022; 4:859223. [PMID: 37680880 PMCID: PMC7615041 DOI: 10.3389/fagro.2022.859223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
There are growing calls to adopt more sustainable forms of agriculture that balance the need to increase production with environmental, human health, and wellbeing concerns. Part of this conversation has included a debate on promoting and mainstreaming neglected and underutilized crop species (NUS) because they represent a more ecologically friendly type of agriculture. We conducted a systematic review to determine the ecosystem services derived from NUS and assess their potential to promote functional ecological diversity, food and nutritional security, and transition to more equitable, inclusive, sustainable and resilient agricultural landscapes and food systems in Africa. Our literature search yielded 35 articles for further analysis. The review showed that NUS provide various provisioning, regulating, cultural, and supporting ecosystem services and several environmental and health co-benefits, dietary diversity, income, sustainable livelihood outcomes, and economic empowerment, especially for women. Importantly, NUS address the three pillars of sustainable development-ecological, social, and economic. Thus, NUS may provide a sustainable, fit-for-purpose transformative ecosystem-based adaptation solution for Africa to transition to more sustainable, healthy, equitable, and resilient agricultural landscapes and food systems.
Collapse
Affiliation(s)
- Tafadzwanashe Mabhaudhi
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- International Water Management Institute-Ghana (IWMI-GH), West Africa Office, c/o CSIR, Accra, Ghana
- Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Sithabile Hlahla
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Future Water Research Institute, University of Cape Town, Cape Town, South Africa
| | - Vimbayi Grace Petrova Chimonyo
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- International Maize and Wheat Improvement Center (CIMMYT)-Zimbabwe, Harare, Zimbabwe
| | - Rebecka Henriksson
- Centre for Water Resources Research, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Tendai Polite Chibarabada
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Vongai G. Murugani
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Stockholm International Peace Research Institute, Stockholm, Sweden
| | - Vivienne P. Groner
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Zerihun Tadele
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Nafiisa Sobratee
- Centre for Transformative Agricultural and Food Systems, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Rob Slotow
- Centre for Transformative Agricultural and Food Systems, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Albert Thembinkosi Modi
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Frédéric Baudron
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- International Maize and Wheat Improvement Center (CIMMYT)-Zimbabwe, Harare, Zimbabwe
| | - Pauline Chivenge
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- African Plant Nutrition Institute, UM6P Experimental Farm, Benguérir, Morocco
| |
Collapse
|
6
|
Fathima AA, Sanitha M, Tripathi L, Muiruri S. Cassava (
Manihot esculenta
) dual use for food and bioenergy: A review. Food Energy Secur 2022. [DOI: 10.1002/fes3.380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Anwar Aliya Fathima
- Department of Bioinformatics Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai India
| | - Mary Sanitha
- Department of Bioinformatics Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai India
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
| | - Samwel Muiruri
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
- Department of Plant Sciences Kenyatta University Nairobi Kenya
| |
Collapse
|
7
|
Hu Q, Chen Y, Zhao Y, Gu J, Ma M, Li H, Li C, Wang ZY. Overexpression of SCL30A from cassava (Manihot esculenta) negatively regulates salt tolerance in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1213-1224. [PMID: 34782061 DOI: 10.1071/fp21165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/13/2021] [Indexed: 05/24/2023]
Abstract
Soil salinity is a significant threat to sustainable agricultural production. Plants must adjust their developmental and physiological processes to deal with environmental salt conditions. We previously identified 18 serine-arginine-rich (SR) proteins from cassava (Manihot esculenta Crantz) that play pivotal roles in alternative splicing when encountering the external stress condition. However, functional characterisation of SR proteins is less reported in cassava, which is an important staple crop in the world. In the current study, we found that the expression of cassava spliceosomal component 35-like 30A (MeSCL30A) was significantly induced in response to drought and salt stress. The MeSCL30A overexpressing lines were also obtained in Arabidopsis thaliana L., which flowered earlier when compared with Col-0. Moreover, the MeSCL30A overexpressing lines were hypersensitive to salt and drought stress with lower germination and greening rate in comparison to Col-0. Importantly, soil-grown overexpression lines exhibited salt sensitivity through modulating the reactive oxygen species homeostasis and negatively regulating the gene expression that involved in ionic stress pathway. Therefore, these findings refined the SR protein-coding genes and provided novel insights for enhancing the resistance to environmental stress in plant.
Collapse
Affiliation(s)
- Qing Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; and Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangdong 510316, China
| | - Yanhang Chen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangdong 510316, China
| | - Yunfeng Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Jinbao Gu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangdong 510316, China
| | - Muqing Ma
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Hua Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangdong 510316, China
| | - Cong Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangdong 510316, China
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangdong 510316, China; and Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Zhanjiang, Guangdong 524300, China
| |
Collapse
|
8
|
Tuo D, Zhou P, Yan P, Cui H, Liu Y, Wang H, Yang X, Liao W, Sun D, Li X, Shen W. A cassava common mosaic virus vector for virus-induced gene silencing in cassava. PLANT METHODS 2021; 17:74. [PMID: 34247636 PMCID: PMC8273954 DOI: 10.1186/s13007-021-00775-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/01/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Cassava is an important crop for food security and industry in the least-developed and developing countries. The completion of the cassava genome sequence and identification of large numbers of candidate genes by next-generation sequencing provide extensive resources for cassava molecular breeding and increase the need for rapid and efficient gene function analysis systems in cassava. Several plant virus-induced gene silencing (VIGS) systems have been developed as reverse genetic tools for rapid gene function analysis in cassava. However, these VIGS vectors could cause severe viral symptoms or inefficient gene silencing. RESULTS In this study, we constructed agroinfection-compatible infectious cDNA clones of cassava common mosaic virus isolate CM (CsCMV-CM, genus Potexvirus, family Alphaflexiviridae) that causes systemic infection with mild symptoms in cassava. CsCMV-CM was then modified to a viral vector carrying the Nimble cloning frame, which facilitates the rapid and high-throughput cloning of silencing fragments into the viral genome. The CsCMV-based vector successfully silenced phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI) in different cassava varieties and Nicotiana benthamiana. The silencing of the ChlI gene could persist for more than two months. CONCLUSIONS This CsCMV-based VIGS system provides a new tool for rapid and efficient gene function studies in cassava.
Collapse
Affiliation(s)
- Decai Tuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Peng Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Pu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hongguang Cui
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Yang Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- College of Horticulture, Hainan University, Haikou, 570228, China
| | - He Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- College of Horticulture, Hainan University, Haikou, 570228, China
| | - Xiukun Yang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- College of Horticulture, Hainan University, Haikou, 570228, China
| | - Wenbin Liao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Di Sun
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- College of Horticulture, Hainan University, Haikou, 570228, China
| | - Xiaoying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Wentao Shen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
9
|
Abstract
Virus-induced gene silencing (VIGS) is an efficient, low-cost, and rapid functional validation tool for candidate genes in planta. The VIGS approach is particularly suitable to perform reverse genetics studies in crop species. Here we present a detailed method to perform VIGS in cassava, from target gene fragment to agroinoculation and VIGS quantitation.
Collapse
|
10
|
Elegba W, McCallum E, Gruissem W, Vanderschuren H. Efficient Genetic Transformation and Regeneration of a Farmer-Preferred Cassava Cultivar From Ghana. FRONTIERS IN PLANT SCIENCE 2021; 12:668042. [PMID: 34140963 PMCID: PMC8204248 DOI: 10.3389/fpls.2021.668042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/22/2021] [Indexed: 05/04/2023]
Abstract
Cassava is an important staple crop that provides food and income for about 700 million Africans. Cassava productivity in Africa is limited by viral diseases, mainly cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). Genetic barriers such as high heterozygosity, allopolyploidy, poor seed set, and irregular flowering constrain the development of virus-resistant cassava varieties via conventional breeding. Genetic transformation represents a valuable tool to circumvent several challenges associated with the development of virus resistance and other valuable agronomic traits in cassava. The implementation of genetic transformation in many local African cultivars is limited either by the difficulty to produce friable embryogenic callus (FEC), low transformation, and/or regeneration efficiencies. Here, we report the successful induction of organized embryogenic structures (OES) in 11 farmer-preferred cultivars locally grown in Ghana. The production of high quality FEC from one local cultivar, ADI 001, facilitated its genetic transformation with high shoot regeneration and selection efficiency, comparable to the model cassava cultivar 60444. We show that using flow cytometry for analysis of nuclear ploidy in FEC tissues prior to genetic transformation ensures the selection of genetically uniform FEC tissue for transformation. The high percentage of single insertion events in transgenic lines indicates the suitability of the ADI 001 cultivar for the introduction of virus resistance and other useful agronomic traits into the farmer-preferred cassava germplasm in Ghana and Africa.
Collapse
Affiliation(s)
- Wilfred Elegba
- Plant Biotechnology, Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Biotechnology and Nuclear Agriculture Research Institute, GAEC, Legon, Ghana
- *Correspondence: Wilfred Elegba, ;
| | - Emily McCallum
- Plant Biotechnology, Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Wilhelm Gruissem
- Plant Biotechnology, Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Hervé Vanderschuren
- Plant Biotechnology, Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium
- Plant Genetics, TERRA Research and Teaching Centre, Gembloux Agro BioTech, University of Liège, Gembloux, Belgium
- Hervé Vanderschuren,
| |
Collapse
|
11
|
Analysis of leaf morphology, secondary metabolites and proteins related to the resistance to Tetranychus cinnabarinus in cassava (Manihot esculenta Crantz). Sci Rep 2020; 10:14197. [PMID: 32848172 PMCID: PMC7450062 DOI: 10.1038/s41598-020-70509-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/27/2020] [Indexed: 11/10/2022] Open
Abstract
Constitutive resistance of plant can be divided into physical and chemical barriers. Cassava (Manihot esculenta Crantz) is susceptible to mites, especially Tetranychus cinnabarinus. Although significant differences in the resistance to T. cinnabarinus are observed in different cassava cultivars, limited research has been done on the mechanism accounting for the resistance. The aim of this study was to explore the mechanism of resistance to T. cinnabarinus by comparing morphology, secondary metabolites and proteins in different cassava cultivars. The anatomical structure of leaves showed that the cassava cultivar Xinxuan 048 (XX048), which showed a stronger resistance to T. cinnabarinus in both greenhouse testing and three years field evaluation tests (2016–2018), had thicker palisade tissue, spongy tissue, lower epidermis and leaf midrib tissue compared to cultivar Guire 4 (GR4). Greenhouse evaluation demonstrated that originally these cultivars were different, leading to differences in constitutive levels of metabolites. The proteomic analysis of protected leaves in XX048 and GR4 revealed that up-regulated differentially expressed proteins (DEPs) were highly enriched in secondary metabolic pathways, especially in the biosynthesis of flavonoids. This study not only provides a comprehensive data set for overall proteomic changes of leaves in resistant and susceptible cassava, but also sheds light on the morphological characteristics of cassava-mite interaction, secondary metabolite defense responses, and molecular breeding of mite-resistant cassava for effective pest control.
Collapse
|
12
|
Zhou W, Zhao S, He S, Ma Q, Lu X, Hao X, Wang H, Yang J, Zhang P. Production of very-high-amylose cassava by post-transcriptional silencing of branching enzyme genes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:832-846. [PMID: 31180179 DOI: 10.1111/jipb.12848] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
High amylose starch can be produced by plants deficient in the function of branching enzymes (BEs). Here we report the production of transgenic cassava (Manihot esculenta Crantz) with starches containing up to 50% amylose due to the constitutive expression of hair-pin dsRNAs targeting the BE1 or BE2 genes. All BE1-RNAi plant lines (BE1i) and BE2-RNAi plant lines (BE2i) were grown up in the field, but with reduced total biomass production. Considerably high amylose content in the storage roots of BE2i plant lines was achieved. Storage starch granules of BE1i and BE2i plants had similar morphology as wild type (WT), however, the size of BE1i starch granules were bigger than that of WT. Comparisons of amylograms and thermograms of all three sources of storage starches revealed dramatic changes to the pasting properties and a higher melting temperature for BE2i starches. Glucan chain length distribution analysis showed a slight increase in chains of DP>36 in BE1i lines and a dramatic increase in glucan chains between DP 10-20 and DP>40 in BE2i lines. Furthermore, BE2i starches displayed a B-type X-ray diffraction pattern instead of the A-type pattern found in BE1i and WT starches. Therefore, cassava BE1 and BE2 function differently in storage root starch biosynthesis.
Collapse
Affiliation(s)
- Wenzhi Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shanshan Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, the Chinese Academy of Sciences, Shanghai, 201602, China
| | - Shutao He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinlu Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaomeng Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxia Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, the Chinese Academy of Sciences, Shanghai, 201602, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Sanjaya BRL, Avivi S, Siswoyo TA, Tanziman AM, Ogita S. Application of fluorescent and UV-Vis detection methods to profile antimicrobial activity of cassava tissues for an efficient Agrobacterium-mediated transformation. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:57-61. [PMID: 31275051 PMCID: PMC6566009 DOI: 10.5511/plantbiotechnology.19.0203a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
The majority of tissue culture and transformation studies in cassava (Manihot esculenta Crantz) focus on the modification of conditions in order to establish a better protocol. Although this is a standard approach for making progress in genetic transformation technology for a target plant variety, serious difficulty still remains due to the limited applicability and adaptability of the given protocol. In the present study, we aim to develop a new concept that focuses on the development of simple but adaptable genetic transformation technology in cassava. In order to establish an efficient transformation protocol, two local edible cassava varieties, R-type, with a broad leaf with reddish petiole, and S-type, with a thin leaf with shiny greenish petiole, were obtained from Okinawa, Japan. Three detection methods, i.e., fluorescence microscopy, thin-layer chromatography (TLC) with detection under an ultraviolet (UV) illumination (254 nm) and light emitting diode (LED) illuminations (365 nm and 500 nm) without any staining, and a spectrum scanning (250-700 nm) by a microplate reader system were employed to identify a series of unique features of the petioles and leaves. Antimicrobial activity of methanol extracts from the tissues was also assayed. We succeeded in the transient expression of the GUS gene using cassava leaves and also established stable introduction of the GUS gene into three organogenic cassava calli by adapting Agrobacterium-mediated transformation. With all the findings, we have identified a flexible tool to create a better match between explants and Agrobacterium strains.
Collapse
Affiliation(s)
- Bella Rhea Lavifa Sanjaya
- Graduate Program of Biotechnology, University of Jember, Jember, East Java, Indonesia
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan
| | - Sholeh Avivi
- Graduate Program of Biotechnology, University of Jember, Jember, East Java, Indonesia
| | - Tri Agus Siswoyo
- Graduate Program of Biotechnology, University of Jember, Jember, East Java, Indonesia
| | - Ara Most Tanziman
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan
| | - Shinjiro Ogita
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan
| |
Collapse
|
14
|
Brand A, Quimbaya M, Tohme J, Chavarriaga-Aguirre P. Arabidopsis LEC1 and LEC2 Orthologous Genes Are Key Regulators of Somatic Embryogenesis in Cassava. FRONTIERS IN PLANT SCIENCE 2019; 10:673. [PMID: 31191582 PMCID: PMC6541005 DOI: 10.3389/fpls.2019.00673] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/03/2019] [Indexed: 05/22/2023]
Abstract
High genotype-dependent variation in friable embryogenic callus (FEC) induction and subsequent somaclonal variation constitute bottlenecks for the application and scaling of genetic transformation (GT) technology to more farmer- and industry-preferred cassava varieties. The understanding and identification of molecular factors underlying embryogenic development in cassava may help to overcome these constraints. Here, we described the Arabidopsis thaliana LEAFY COTYLEDON (LEC) LEC1 and LEC2 orthologous genes in cassava, designated as MeLEC1 and MeLEC2, respectively. Expression analyses showed that both, MeLEC1 and MeLEC2, are expressed at higher levels in somatic embryogenic (SE) tissues in contrast with differentiated mature tissues. The rapid expression increase of MeLEC genes at early SE induction times strongly suggests that they are involved in the transition from a somatic to an embryonic state, and probably, in the competence acquisition for SE development in cassava. The independent overexpression of the MeLEC genes resulted in different regenerated events with embryogenic characteristics such as MeLEC1OE plants with cotyledon-like leaves and MeLEC2OE plants with somatic-like embryos that emerged over the surface of mature leaves. Transcript increases of other embryo-specific regulating factors were also detected in MeLECOE plants, supporting their mutual interaction in the embryo development coordination. The single overexpression of MeLEC2 was enough to reprogram the vegetative cells and induce direct somatic embryogenesis, which converts this gene into a tool that could improve the recovery of transformed plants of recalcitrant genotypes. The identification of MeLEC genes contributes not only to improve our understanding of SE process in cassava, but also provides viable alternatives to optimize GT and advance in gene editing in this crop, through the development of genotype-independent protocols.
Collapse
Affiliation(s)
- Alejandro Brand
- International Center for Tropical Agriculture, Cali, Colombia
| | - Mauricio Quimbaya
- Department of Natural Sciences and Mathematics, Pontificia Universidad Javeriana Cali, Cali, Colombia
| | - Joe Tohme
- International Center for Tropical Agriculture, Cali, Colombia
| | - Paul Chavarriaga-Aguirre
- International Center for Tropical Agriculture, Cali, Colombia
- *Correspondence: Paul Chavarriaga-Aguirre,
| |
Collapse
|
15
|
Lentz EM, Eisner S, McCallum EJ, Schlegel K, Campos FDADP, Gruissem W, Vanderschuren H. Genetic Transformation of Recalcitrant Cassava by Embryo Selection and Increased Hormone Levels. Methods Protoc 2018; 1:E42. [PMID: 31164582 PMCID: PMC6481083 DOI: 10.3390/mps1040042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022] Open
Abstract
Genetic engineering is considered to be an important tool for the improvement of cassava. Cassava is a highly heterozygous crop species for which conventional breeding is a lengthy and tedious process. Robust transformation is based on Agrobacterium-mediated transformation of friable embryogenic callus (FEC). Production of FEC is genotype-dependent and considered to be a major bottleneck for the genetic transformation of cassava. As a consequence, routine genetic transformation has only been established for a handful of cassava cultivars. Therefore, development of procedures enabling efficient production of high-quality cassava FEC is required to allow the translation of research from the model cultivar to farmer-preferred cassava cultivars. Here we study the FEC production capacity of Brazilian cassava cultivars and report the modification of the protocol for the genetic transformation of Verdinha (BRS 222), a recalcitrant cultivar with high potential for protein production that is extensively used by farmers in Brazil.
Collapse
Affiliation(s)
| | - Sabrina Eisner
- Department of Biology, Plant Biotechnology, ETH Zurich, 8092 Zürich, Switzerland.
| | - Emily Jane McCallum
- Department of Biology, Plant Biotechnology, ETH Zurich, 8092 Zürich, Switzerland.
| | - Kim Schlegel
- Department of Biology, Plant Biotechnology, ETH Zurich, 8092 Zürich, Switzerland.
| | | | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich, 8092 Zürich, Switzerland.
| | - Hervé Vanderschuren
- Department of Biology, Plant Biotechnology, ETH Zurich, 8092 Zürich, Switzerland.
- Plant Genetics, TERRA Teaching and Research Center, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| |
Collapse
|
16
|
Chauhan RD, Taylor NJ. Meta-topolin stimulates de novo shoot organogenesis and plant regeneration in cassava. PLANT CELL, TISSUE AND ORGAN CULTURE 2017; 132:219-224. [PMID: 32981997 PMCID: PMC7507842 DOI: 10.1007/s11240-017-1315-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/15/2017] [Indexed: 05/26/2023]
Abstract
A novel protocol for de novo shoot organogenesis from cassava has been developed utilizing meta-topolin to stimulate shoot regeneration from leaf, petiole and stem internode explants. While use of meta-topolin alone was capable of inducing shoot regeneration, a two-stage system combining meta-topolin with 2,4-D in a first stage medium, followed by subculture onto elevated levels of meta-topolin, was superior for inducing multiple shoot regeneration events in more than 35% of explants in cultivar TME 7. Caulogenesis was achieved in eleven additional cultivars. Metatopolin was also found to be beneficial for stimulating shoot regeneration from somatic embryos and cotyledon explants. The shoot organogenesis techniques described enhance the capacity of existing embryogenic systems and present previously unavailable morphogenic pathways for developing genetic transformation and gene editing technologies in cassava.
Collapse
Affiliation(s)
- Raj Deepika Chauhan
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Nigel James Taylor
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| |
Collapse
|
17
|
Utsumi Y, Utsumi C, Tanaka M, Ha VT, Matsui A, Takahashi S, Seki M. Formation of friable embryogenic callus in cassava is enhanced under conditions of reduced nitrate, potassium and phosphate. PLoS One 2017; 12:e0180736. [PMID: 28806727 PMCID: PMC5555663 DOI: 10.1371/journal.pone.0180736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/20/2017] [Indexed: 01/22/2023] Open
Abstract
Agrobacterium-mediated transformation is an important research tool for the genetic improvement of cassava. The induction of friable embryogenic callus (FEC) is considered as a key step in cassava transformation. In the present study, the media composition was optimized for enhancing the FEC induction, and the effect of the optimized medium on gene expression was evaluated. In relative comparison to MS medium, results demonstrated that using a medium with reducing nutrition (a 10-fold less concentration of nitrogen, potassium, and phosphate), the increased amount of vitamin B1 (10 mg/L) and the use of picrolam led to reprogram non-FEC to FEC. Gene expression analyses revealed that FEC on modified media increased the expression of genes related to the regulation of polysaccharide biosynthesis and breakdown of cell wall components in comparison to FEC on normal CIM media, whereas the gene expression associated with energy flux was not dramatically altered. It is hypothesized that we reprogram non-FEC to FEC under low nitrogen, potassium and phosphate and high vitamin B1. These findings were more effective in inducing FEC formation than the previous protocol. It might contribute to development of an efficient transformation strategy in cassava.
Collapse
Affiliation(s)
- Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Chikako Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (JST), 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Vu The Ha
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (JST), 4-1-8 Honcho, Kawaguchi, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641–12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
18
|
Bechoff A, Tomlins K, Fliedel G, Becerra Lopez-Lavalle LA, Westby A, Hershey C, Dufour D. Cassava traits and end-user preference: Relating traits to consumer liking, sensory perception, and genetics. Crit Rev Food Sci Nutr 2017; 58:547-567. [PMID: 27494196 DOI: 10.1080/10408398.2016.1202888] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Breeding efforts have focused on improving agronomic traits of the cassava plant however little research has been done to enhance the crop palatability. This review investigates the links between cassava traits and end-user preference in relation with sensory characteristics. The main trait is starch and its composition related to the textural properties of the food. Pectin degradation during cooking resulted in increased mealiness. Nutritional components such as carotenoids made the cassava yellow but also altered sweetness and softness; however, yellow cassava was more appreciated by consumers than traditional (white) varieties. Components formed during processing such as organic acids gave fermented cassava products an acidic taste that was appreciated but the fermented smell was not always liked. Anti-nutritional compounds such as cyanogenic glucosides were mostly related to bitter taste. Post-harvest Physiological Deterioration (PPD) affected the overall sensory characteristics and acceptability. Genes responsible for some of these traits were also investigated. Diversity in cassava food products can provide a challenge to identifying acceptance criteria. Socio-economic factors such as gender may also be critical. This review leads to questions in relation to the adaptation of cassava breeding to meet consumer needs and preference in order to maximize income, health and food security.
Collapse
Affiliation(s)
- Aurélie Bechoff
- a Natural Resources Institute (NRI), University of Greenwich , Central Avenue, Chatham Maritime, Kent , United Kingdom
| | - Keith Tomlins
- a Natural Resources Institute (NRI), University of Greenwich , Central Avenue, Chatham Maritime, Kent , United Kingdom
| | - Geneviève Fliedel
- b UMR Qualisud, Centre International de Recherche Agronomique pour le Développement (CIRAD) , Breton Montpellier , France
| | | | - Andrew Westby
- a Natural Resources Institute (NRI), University of Greenwich , Central Avenue, Chatham Maritime, Kent , United Kingdom
| | - Clair Hershey
- b UMR Qualisud, Centre International de Recherche Agronomique pour le Développement (CIRAD) , Breton Montpellier , France
| | - Dominique Dufour
- b UMR Qualisud, Centre International de Recherche Agronomique pour le Développement (CIRAD) , Breton Montpellier , France.,c International Center for Tropical Agriculture (CIAT), Recta Cali-Palmira , Cali , Colombia
| |
Collapse
|
19
|
Abstract
Cassava is the fourth largest source of calories in the world but is subject to economically important yield losses due to viral diseases, including cassava brown streak disease and cassava mosaic disease. Cassava mosaic disease occurs in sub-Saharan Africa and the Asian subcontinent and is associated with nine begomovirus species, whereas cassava brown streak disease has to date been reported only in sub-Saharan Africa and is caused by two distinct ipomovirus species. We present an overview of key milestones and their significance in the understanding and characterization of these two major diseases as well as their associated viruses and whitefly vector. New biotechnologies offer a wide range of opportunities to reduce virus-associated yield losses in cassava for farmers and can additionally enable the exploitation of this valuable crop for industrial purposes. This review explores established and new technologies for genetic manipulation to achieve desired traits such as virus resistance.
Collapse
Affiliation(s)
- Chrissie Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2000, South Africa;
| | - Hervé Vanderschuren
- AgroBioChem Department, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| |
Collapse
|
20
|
Li S, Cui Y, Zhou Y, Luo Z, Liu J, Zhao M. The industrial applications of cassava: current status, opportunities and prospects. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2282-2290. [PMID: 28233322 DOI: 10.1002/jsfa.8287] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 05/27/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a drought-tolerant, staple food crop that is grown in tropical and subtropical areas. As an important raw material, cassava is a valuable food source in developing countries and is also extensively employed for producing starch, bioethanol and other bio-based products (e.g. feed, medicine, cosmetics and biopolymers). These cassava-based industries also generate large quantities of wastes/residues rich in organic matter and suspended solids, providing great potential for conversion into value-added products through biorefinery. However, the community of cassava researchers is relatively small and there is very limited information on cassava. Therefore this review summarizes current knowledge on the system biology, economic value, nutritional quality and industrial applications of cassava and its wastes in an attempt to accelerate understanding of the basic biology of cassava. The review also discusses future perspectives with respect to integrating and utilizing cassava information resources for increasing the economic and environmental sustainability of cassava industries. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yanyan Cui
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yuan Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Zhiting Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Mouming Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
21
|
Qin Y, Djabou ASM, An F, Li K, Li Z, Yang L, Wang X, Chen S. Proteomic analysis of injured storage roots in cassava (Manihot esculenta Crantz) under postharvest physiological deterioration. PLoS One 2017; 12:e0174238. [PMID: 28339481 PMCID: PMC5365129 DOI: 10.1371/journal.pone.0174238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/06/2017] [Indexed: 11/23/2022] Open
Abstract
Postharvest physiological deterioration (PPD) is a global challenge in the improvement of cassava value chain. However, how to reduce cassava spoilage and reveal the mechanism of injured cassava storage roots in response to PPD were poorly understood. In the present study, we investigated the activities of antioxidant enzymes of cassava injured storage roots in PPD-susceptible (SC9) and PPD-tolerant (QZ1) genotypes at the time-points from 0h to 120h, and further analyzed their proteomic changes using two-dimensional electrophoresis (2-DE) in combination with MALDI-TOF-MS/MS. Ninety-nine differentially expressed proteins were identified from SC9 and QZ1 genotypes in the pairwise comparison of 24h/0h, 48h/0h, 72h/0h and 96h/0h. Of those proteins were associated with 13 biological functions, in which carbohydrate and energy metabolism related proteins were the biggest amount differential proteins in both genotypes, followed by chaperones, DNA and RNA metabolism, and defense system. We speculated that SOD in combination with CAT activities would be the first line of defense against PPD to support PPD-tolerant cassava varieties. The four hub proteins including CPN60B, LOS2, HSC70-1 and CPN20B, produced from the network of protein-protein interaction, will be the candidate key proteins linked with PPD. This study provides a new clue to improve cassava PPD-tolerant varieties and would be helpful to much better understand the molecular mechanism of PPD of cassava injured storage roots.
Collapse
Affiliation(s)
- Yuling Qin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
- Tropical Crops Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, China
| | - Astride Stéphanie Mouafi Djabou
- Laboratory of plant physiology, Department of Biological Science, Higher Teachers´ Training College, University of Yaounde I, Yaounde, Cameroon
| | - Feifei An
- Tropical Crops Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, China
| | - Kaimian Li
- Tropical Crops Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, China
| | - Zhaogui Li
- Agricultural Bureau of Wuming County, Wuming, China
| | - Long Yang
- Subtropical Crops Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Xingyi, China
| | - Xiaojing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, China
- * E-mail:
| |
Collapse
|
22
|
Wu JZ, Liu Q, Geng XS, Li KM, Luo LJ, Liu JP. Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz). BMC Biotechnol 2017; 17:29. [PMID: 28292294 PMCID: PMC5351281 DOI: 10.1186/s12896-017-0349-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/07/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Cassava (Manihot esculenta Crantz) is a major crop extensively cultivated in the tropics as both an important source of calories and a promising source for biofuel production. Although stable gene expression have been used for transgenic breeding and gene function study, a quick, easy and large-scale transformation platform has been in urgent need for gene functional characterization, especially after the cassava full genome was sequenced. METHODS Fully expanded leaves from in vitro plantlets of Manihot esculenta were used to optimize the concentrations of cellulase R-10 and macerozyme R-10 for obtaining protoplasts with the highest yield and viability. Then, the optimum conditions (PEG4000 concentration and transfection time) were determined for cassava protoplast transient gene expression. In addition, the reliability of the established protocol was confirmed for subcellular protein localization. RESULTS In this work we optimized the main influencing factors and developed an efficient mesophyll protoplast isolation and PEG-mediated transient gene expression in cassava. The suitable enzyme digestion system was established with the combination of 1.6% cellulase R-10 and 0.8% macerozyme R-10 for 16 h of digestion in the dark at 25 °C, resulting in the high yield (4.4 × 107 protoplasts/g FW) and vitality (92.6%) of mesophyll protoplasts. The maximum transfection efficiency (70.8%) was obtained with the incubation of the protoplasts/vector DNA mixture with 25% PEG4000 for 10 min. We validated the applicability of the system for studying the subcellular localization of MeSTP7 (an H+/monosaccharide cotransporter) with our transient expression protocol and a heterologous Arabidopsis transient gene expression system. CONCLUSION We optimized the main influencing factors and developed an efficient mesophyll protoplast isolation and transient gene expression in cassava, which will facilitate large-scale characterization of genes and pathways in cassava.
Collapse
Affiliation(s)
- Jun-Zheng Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, Hainan Province, 570228, China
| | - Qin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, Hainan Province, 570228, China
| | - Xiao-Shan Geng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, Hainan Province, 570228, China
| | - Kai-Mian Li
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan Province, 571101, China
| | - Li-Juan Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, Hainan Province, 570228, China.
| | - Jin-Ping Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, Hainan Province, 570228, China.
| |
Collapse
|
23
|
Wilson MC, Mutka AM, Hummel AW, Berry J, Chauhan RD, Vijayaraghavan A, Taylor NJ, Voytas DF, Chitwood DH, Bart RS. Gene expression atlas for the food security crop cassava. THE NEW PHYTOLOGIST 2017; 213:1632-1641. [PMID: 28116755 PMCID: PMC5516207 DOI: 10.1111/nph.14443] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/18/2016] [Indexed: 05/17/2023]
Abstract
Cassava (Manihot esculenta) feeds c. 800 million people world-wide. Although this crop displays high productivity under drought and poor soil conditions, it is susceptible to disease, postharvest deterioration and the roots contain low nutritional content. Here, we provide molecular identities for 11 cassava tissue/organ types through RNA-sequencing and develop an open access, web-based interface for further interrogation of the data. Through this dataset, we consider the physiology of cassava. Specifically, we focus on identification of the transcriptional signatures that define the massive, underground storage roots used as a food source and the favored target tissue for transgene integration and genome editing, friable embryogenic callus (FEC). Further, we identify promoters able to drive strong expression in multiple tissue/organs. The information gained from this study is of value for both conventional and biotechnological improvement programs.
Collapse
Affiliation(s)
- Mark C. Wilson
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| | - Andrew M. Mutka
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| | - Aaron W. Hummel
- Department of Genetics, Cell Biology & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Jeffrey Berry
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| | | | | | - Nigel J. Taylor
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Daniel H. Chitwood
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| | - Rebecca S. Bart
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| |
Collapse
|
24
|
Beyene G, Chauhan RD, Wagaba H, Moll T, Alicai T, Miano D, Carrington JC, Taylor NJ. Loss of CMD2-mediated resistance to cassava mosaic disease in plants regenerated through somatic embryogenesis. MOLECULAR PLANT PATHOLOGY 2016; 17:1095-110. [PMID: 26662210 PMCID: PMC5021159 DOI: 10.1111/mpp.12353] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 05/11/2023]
Abstract
Cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are the two most important viral diseases affecting cassava production in Africa. Three sources of resistance are employed to combat CMD: polygenic recessive resistance, termed CMD1, the dominant monogenic type, named CMD2, and the recently characterized CMD3. The farmer-preferred cultivar TME 204 carries inherent resistance to CMD mediated by CMD2, but is highly susceptible to CBSD. Selected plants of TME 204 produced for RNA interference (RNAi)-mediated resistance to CBSD were regenerated via somatic embryogenesis and tested in confined field trials in East Africa. Although micropropagated, wild-type TME 204 plants exhibited the expected levels of resistance, all plants regenerated via somatic embryogenesis were found to be highly susceptible to CMD. Glasshouse studies using infectious clones of East African cassava mosaic virus conclusively demonstrated that the process of somatic embryogenesis used to regenerate cassava caused the resulting plants to become susceptible to CMD. This phenomenon could be replicated in the two additional CMD2-type varieties TME 3 and TME 7, but the CMD1-type cultivar TMS 30572 and the CMD3-type cultivar TMS 98/0505 maintained resistance to CMD after passage through somatic embryogenesis. Data are presented to define the specific tissue culture step at which the loss of CMD resistance occurs and to show that the loss of CMD2-mediated resistance is maintained across vegetative generations. These findings reveal new aspects of the widely used technique of somatic embryogenesis, and the stability of field-level resistance in CMD2-type cultivars presently grown by farmers in East Africa, where CMD pressure is high.
Collapse
Affiliation(s)
- Getu Beyene
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Raj Deepika Chauhan
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Henry Wagaba
- National Crops Resources Research Institute, Namulonge, P. O. Box 7084, Kampala, Uganda
| | - Theodore Moll
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Titus Alicai
- National Crops Resources Research Institute, Namulonge, P. O. Box 7084, Kampala, Uganda
| | - Douglas Miano
- University of Nairobi, P. O. Box 29053, Nairobi, post code 00625, Kenya
| | - James C Carrington
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Nigel J Taylor
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| |
Collapse
|
25
|
Chavarriaga-Aguirre P, Brand A, Medina A, Prías M, Escobar R, Martinez J, Díaz P, López C, Roca WM, Tohme J. The potential of using biotechnology to improve cassava: a review. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2016; 52:461-478. [PMID: 27818605 PMCID: PMC5071364 DOI: 10.1007/s11627-016-9776-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/06/2016] [Indexed: 05/26/2023]
Abstract
The importance of cassava as the fourth largest source of calories in the world requires that contributions of biotechnology to improving this crop, advances and current challenges, be periodically reviewed. Plant biotechnology offers a wide range of opportunities that can help cassava become a better crop for a constantly changing world. We therefore review the state of knowledge on the current use of biotechnology applied to cassava cultivars and its implications for breeding the crop into the future. The history of the development of the first transgenic cassava plant serves as the basis to explore molecular aspects of somatic embryogenesis and friable embryogenic callus production. We analyze complex plant-pathogen interactions to profit from such knowledge to help cassava fight bacterial diseases and look at candidate genes possibly involved in resistance to viruses and whiteflies-the two most important traits of cassava. The review also covers the analyses of main achievements in transgenic-mediated nutritional improvement and mass production of healthy plants by tissue culture and synthetic seeds. Finally, the perspectives of using genome editing and the challenges associated to climate change for further improving the crop are discussed. During the last 30 yr, great advances have been made in cassava using biotechnology, but they need to scale out of the proof of concept to the fields of cassava growers.
Collapse
Affiliation(s)
- Paul Chavarriaga-Aguirre
- Agrobiodiversity Research Area, International Center for tropical Agriculture-CIAT, AA 6713 Cali, Colombia
| | - Alejandro Brand
- Agrobiodiversity Research Area, International Center for tropical Agriculture-CIAT, AA 6713 Cali, Colombia
| | - Adriana Medina
- Agrobiodiversity Research Area, International Center for tropical Agriculture-CIAT, AA 6713 Cali, Colombia
| | - Mónica Prías
- Agrobiodiversity Research Area, International Center for tropical Agriculture-CIAT, AA 6713 Cali, Colombia
| | - Roosevelt Escobar
- Agrobiodiversity Research Area, International Center for tropical Agriculture-CIAT, AA 6713 Cali, Colombia
| | - Juan Martinez
- Agrobiodiversity Research Area, International Center for tropical Agriculture-CIAT, AA 6713 Cali, Colombia
| | - Paula Díaz
- Biology Department, Universidad Nacional de Colombia, Carrera 30 No. 45-03. Edificio 421, Bogotá, Colombia
| | - Camilo López
- Biology Department, Universidad Nacional de Colombia, Carrera 30 No. 45-03. Edificio 421, Bogotá, Colombia
| | - Willy M Roca
- International Potato Center-CIP, Av. La Molina 1895, Lima 12, P.O. Box 1558, Lima, Perú
| | - Joe Tohme
- Agrobiodiversity Research Area, International Center for tropical Agriculture-CIAT, AA 6713 Cali, Colombia
| |
Collapse
|
26
|
Díaz Tatis P, Zárate CA, Bernal Giraldo A, López Carrascal C. Infección de callo embriogénico friable de yuca con Xanthomonas axonopodis pv. manihotis (Xam). REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2016. [DOI: 10.15446/rev.colomb.biote.v18n2.61523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Las nuevas tecnologías para la edición de genomas, como los TALEN y el sistema CRISPR/Cas9, representan una gran oportunidad para mejorar características deseables en diferentes organismos. Los TALEN son el resultado del acoplamiento de nucleasas a los TALE (Transcription Activator-Like Effectors), los cuales son efectores naturales de gran importancia en la patogénesis de las especies de Xanthomonas. Xanthomonas axonopodis pv. manihotis (Xam) es el agente causal del añublo bacteriano de la yuca, quien durante el proceso patogénico es capaz de translocar sus efectores a la célula vegetal mediante el sistema de secreción tipo tres (SSTT). Actualmente no hay protocolos estándar para la edición de genomas en yuca. En este estudio se exploró la posibilidad de translocar efectores sobre callo embriogénico friable (CEF) a través de la inoculación con Xam, con el fin de determinar el potencial de este patógeno como sistema de entrega de TALEN. El CEF de dos variedades de yuca susceptibles (COL2215 y cv. 60444) se cocultivaron con la cepa Xam668 a diferentes tiempos. Posteriormente, se evaluó la expresión de marcadores correspondientes a los genes blanco conocidos para los TALE presentes en esta cepa bacteriana. Aunque no se logró demostrar la translocación de los mismos en el tejido embriogénico, sí se lograron establecer condiciones adecuadas de cocultivo con Xam y el efecto que la infección bacteriana tiene sobre la regeneración de embriones a partir de este tejido. Palabras clave: cultivo de tejidos vegetales, edición de genomas, sistema de secreción tipo tres, efectores TALE, transformación.
Collapse
|
27
|
Wang X, Chang L, Tong Z, Wang D, Yin Q, Wang D, Jin X, Yang Q, Wang L, Sun Y, Huang Q, Guo A, Peng M. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization. Sci Rep 2016; 6:19643. [PMID: 26791570 PMCID: PMC4726164 DOI: 10.1038/srep19643] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023] Open
Abstract
Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.
Collapse
Affiliation(s)
- Xuchu Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Lili Chang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Zheng Tong
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Dongyang Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Qi Yin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Dan Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Xiang Jin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Qian Yang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Liming Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yong Sun
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Qixing Huang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Anping Guo
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
28
|
An D, Ma Q, Yan W, Zhou W, Liu G, Zhang P. Divergent Regulation of CBF Regulon on Cold Tolerance and Plant Phenotype in Cassava Overexpressing Arabidopsis CBF3 Gene. FRONTIERS IN PLANT SCIENCE 2016; 7:1866. [PMID: 27999588 PMCID: PMC5138201 DOI: 10.3389/fpls.2016.01866] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/25/2016] [Indexed: 05/02/2023]
Abstract
Cassava is a tropical origin plant that is sensitive to chilling stress. In order to understand the CBF cold response pathway, a well-recognized regulatory mechanism in temperate plants, in cassava, overexpression of an Arabidopsis CBF3 gene is studied. This gene renders cassava increasingly tolerant to cold and drought stresses but is associated with retarded plant growth, leaf curling, reduced storage root yield, and reduced anthocyanin accumulation in a transcript abundance-dependent manner. Physiological analysis revealed that the transgenic cassava increased proline accumulation, reduced malondialdehyde production, and electrolyte leakage under cold stress. These transgenic lines also showed high relative water content when faced with drought. The expression of partial CBF-targeted genes in response to cold displayed temporal and spatial variations in the wild-type and transgenic plants: highly inducible in leaves and less altered in apical buds. In addition, anthocyanin accumulation was inhibited by downregulating the expression of genes involved in its biosynthesis and by interplaying between the CBF3 and the endogenous transcription factors. Thus, the heterologous CBF3 modulates the expression of stress-related genes and carries out a series of physiological adjustments under stressful conditions, showing a varied regulation pattern of CBF regulon from that of cassava CBFs.
Collapse
Affiliation(s)
- Dong An
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of ScienceShanghai, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of ScienceShanghai, China
| | - Wei Yan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of ScienceShanghai, China
- Institute of Tropical and Sub-tropical Cash Crops, Yunnan Academy of Agricultural SciencesBaoshan, China
| | - Wenzhi Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of ScienceShanghai, China
- Institute of Tropical and Sub-tropical Cash Crops, Yunnan Academy of Agricultural SciencesBaoshan, China
| | - Guanghua Liu
- Institute of Tropical and Sub-tropical Cash Crops, Yunnan Academy of Agricultural SciencesBaoshan, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of ScienceShanghai, China
- *Correspondence: Peng Zhang,
| |
Collapse
|
29
|
An F, Li G, Li QX, Li K, Carvalho LJCB, Ou W, Chen S. The Comparatively Proteomic Analysis in Response to Cold Stress in Cassava Plantlets. PLANT MOLECULAR BIOLOGY REPORTER 2016; 34:1095-1110. [PMID: 27881899 PMCID: PMC5099363 DOI: 10.1007/s11105-016-0987-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a tropical root crop and sensitive to low temperature. However, it is poorly to know how cassava can modify its metabolism and growth to adapt to cold stress. An investigation aimed at a better understanding of cold-tolerant mechanism of cassava plantlets was carried out with the approaches of physiology and proteomics in the present study. The principal component analysis of seven physiological characteristics showed that electrolyte leakage (EL), chlorophyll content, and malondialdehyde (MDA) may be the most important physiological indexes for determining cold-resistant abilities of cassava. The genome-wide proteomic analysis showed that 20 differential proteins had the same patterns in the apical expanded leaves of cassava SC8 and Col1046. They were mainly related to photosynthesis, carbon metabolism and energy metabolism, defense, protein synthesis, amino acid metabolism, signal transduction, structure, detoxifying and antioxidant, chaperones, and DNA-binding proteins, in which 40 % were related with photosynthesis. The remarkable variation in photosynthetic activity and expression level of peroxiredoxin is closely linked with expression levels of proteomic profiles. Moreover, analysis of differentially expressed proteins under cold stress is an important step toward further elucidation of mechanisms of cold stress resistance.
Collapse
Affiliation(s)
- Feifei An
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, 571737 China
| | - Genghu Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, 571737 China
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Manoa, HI USA
| | - Kaimian Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, 571737 China
| | | | - Wenjun Ou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, 571737 China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, 571737 China
| |
Collapse
|
30
|
Mongomake K, Doungous O, Khatabi B, Fondong VN. Somatic embryogenesis and plant regeneration of cassava (Manihot esculenta Crantz) landraces from Cameroon. SPRINGERPLUS 2015; 4:477. [PMID: 26361578 PMCID: PMC4559553 DOI: 10.1186/s40064-015-1272-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/25/2015] [Indexed: 12/05/2022]
Abstract
A procedure to regenerate cassava (Manihot esculenta Crantz) cultivars from Cameroon via somatic embryogenesis (SE) was developed. Shoot apical meristems and immature leaf lobes were used as explants on Murashige and Skoog (MS) basal medium containing 33 or 50 µM of the auxins Picloram (Pic), 2,4-Dichlorophenoxyacetic acid (2,4-D), Dicamba (Dic), and α-Naphthalene acetic acid. Cultivar performance was assessed using SE and number of somatic embryos produced. Overall, the frequency of primary somatic embryogenesis (PSE) and the mean number of somatic embryos produced varied considerably with genotype, type of auxin and concentration tested. For example, cultivar (cv.) Ngan Mbada showed the best performance on MS medium supplemented with 50 µM Pic with a SE frequency of 40 % and an average number of somatic embryos of 90. The second best performance was recorded in cv. Local Red on MS medium supplemented with 33 µM 2,4-D, where the SE frequency was 40 % and an average number of somatic embryos of 60.5. Cultivar Ekona Red recorded the best performance on medium supplemented with 50 µM Pic showing a SE frequency of 47 % and an average number of somatic embryos of 45. We further examined secondary and cyclic somatic embryogenesis (SSE, CSE) and both were also observed to vary with genotype, however, both exhibited significantly higher frequencies of SE compared with PSE. SE started to decline at the fourth cycle of embryogenesis. Examination of organogenesis showed that shoot bud induction from green cotyledons varied across cultivars and benzylaminopurine was shown to outperform Thidiazuron in the ability to induce organogenesis. Furthermore, the frequencies of bud induction were identical under light and dark conditions. Finally, regenerated plants grew easily in the greenhouse with 90-100 % survival rate and did not display detectable variation in morphology.
Collapse
Affiliation(s)
- Kone Mongomake
- />Department of Biological Sciences, Delaware State University, Dover, DE 19901 USA
- />Laboratory of Crop Breeding, Department of Natural Sciences, University Nangui Abrogoua, Abidjan, Côte D’Ivoire
| | - Oumar Doungous
- />Laboratory of Crop Breeding, Department of Natural Sciences, University Nangui Abrogoua, Abidjan, Côte D’Ivoire
- />Ekona Research Center, Institute of Agronomic Research for Development, Buea, South West Region Cameroon
| | - Behnam Khatabi
- />Department of Biological Sciences, Delaware State University, Dover, DE 19901 USA
| | - Vincent N. Fondong
- />Department of Biological Sciences, Delaware State University, Dover, DE 19901 USA
| |
Collapse
|
31
|
Nyaboga EN, Njiru JM, Tripathi L. Factors influencing somatic embryogenesis, regeneration, and Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) cultivar TME14. FRONTIERS IN PLANT SCIENCE 2015; 6:411. [PMID: 26113851 PMCID: PMC4461822 DOI: 10.3389/fpls.2015.00411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/22/2015] [Indexed: 05/20/2023]
Abstract
Routine production of large numbers of transgenic plants is required to fully exploit advances in cassava biotechnology and support development of improved germplasm for deployment to farmers. This article describes an improved, high-efficiency transformation protocol for recalcitrant cassava cultivar TME14 preferred in Africa. Factors that favor production of friable embryogenic calli (FEC) were found to be use of DKW medium, crushing of organized embryogenic structures (OES) through 1-2 mm sized metal wire mesh, washing of crushed OES tissues and short exposure of tyrosine to somatic embryos; and transformation efficiency was enhanced by use of low Agrobacterium density during co-cultivation, co-centrifugation of FEC with Agrobacterium, germination of paramomycin resistant somatic embryos on medium containing BAP with gradual increase in concentration and variations of the frequency of subculture of cotyledonary-stage embryos on shoot elongation medium. By applying the optimized parameters, FEC were produced for cassava cultivar TME14 and transformed using Agrobacterium strain LBA4404 harboring the binary vector pCAMBIA2301. About 70-80 independent transgenic lines per ml settled cell volume (SCV) of FEC were regenerated on selective medium. Histochemical GUS assays confirmed the expression of gusA gene in transformed calli, somatic embryos and transgenic plants. The presence and integration of the gusA gene were confirmed by PCR and Southern blot analysis, respectively. RT-PCR analysis of transgenic plants confirmed the expression of gusA gene. This protocol demonstrates significantly enhanced transformation efficiency over existing cassava transformation protocols and could become a powerful tool for functional genomics and transferring new traits into cassava.
Collapse
Affiliation(s)
| | | | - Leena Tripathi
- Bioscience Center, International Institute of Tropical AgricultureNairobi, Kenya
| |
Collapse
|
32
|
Abstract
Genetic transformation of plants is an indispensable technique used for fundamental research and crop improvement. Recent advances in cassava (Manihot esculenta Crantz) transformation have facilitated the effective generation of stably transformed cassava plants with favorable traits. Agrobacterium-mediated transformation of friable, embryogenic callus has evolved to become the most widely used approach and has been adopted by research laboratories in Africa. This procedure utilizes axillary meristem tissue (buds) to produce primary and secondary somatic embryos and subsequently friable, embryogenic callus. Agrobacterium harboring a binary expression cassette is used to transform this tissue, which is regenerated via cotyledons and shoot organogenesis to produce rooted in vitro plantlets. This chapter details each step of the procedure using the model cultivar 60444 and provides supplementary notes to successfully produce transgenic cassava.
Collapse
|
33
|
Ma Q, Zhou W, Zhang P. Transition from somatic embryo to friable embryogenic callus in cassava: dynamic changes in cellular structure, physiological status, and gene expression profiles. FRONTIERS IN PLANT SCIENCE 2015; 6:824. [PMID: 26500668 PMCID: PMC4594424 DOI: 10.3389/fpls.2015.00824] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/22/2015] [Indexed: 05/20/2023]
Abstract
Friable embryogenic callus (FEC) is considered as the most suitable material for efficient genetic transformation of cassava. Heavy genotype dependence of FEC induction and amenability to somaclonal variation limits the production and maintenance of reliable FEC. Identifying key elements involved in biological processes from somatic embryos (SEs) to FEC at different stages provides critical insights for FEC improvement. Cytological observation showed a dramatic change of subcellular structures among SEs, fresh FEC (FFEC), and old FEC (OFEC). Decrease of sucrose and increase of fructose and glucose were detected in OFEC. A total of 6871 differentially expressed genes (DEGs) were identified from SEs, FFEC, and OFEC by RNA-seq. Analysis of the DEGs showed that FEC induction was accompanied by the process of dedifferentiation, whereas the epigenetics modification occurred during the continuous subculturing process. The cell structure was reconstructed, mainly including the GO terms of "cell periphery" and "external encapsulating structure"; in parallel, the internal mechanisms changed correspondingly, including the biological process of glycolysis and metabolisms of alanine, aspartate, and glutamate. The significant reduction of genomic DNA methylation in OFEC indicated altered gene expression via chromatin modification. These results indicate that the induction and long-term subculture of FEC is a complicated biological process involving changes of genome modification, gene expression, and subcellular reconstruction. The findings will be useful for improving FEC induction and maintenance from farmer-preferred cassava cultivars recalcitrant to genetic transformation, hence improving cassava through genetic engineering.
Collapse
Affiliation(s)
| | | | - Peng Zhang
- *Correspondence: Peng Zhang, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032 Shanghai, China
| |
Collapse
|
34
|
Suhandono S, Apriyanto A, Ihsani N. Isolation and characterization of three cassava elongation factor 1 alpha (MeEF1A) promoters. PLoS One 2014; 9:e84692. [PMID: 24404183 PMCID: PMC3880305 DOI: 10.1371/journal.pone.0084692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 11/25/2013] [Indexed: 11/19/2022] Open
Abstract
In plant genetic engineering, the identification of gene promoters leading to particular expression patterns is crucial for the development of new genetically modified plant generations. This research was conducted in order to isolate and characterize several new promoters from cassava (Manihot esculenta Crantz) elongation factor 1 alpha (EF1A) gene family.Three promoters MeEF1A3, MeEF1A5 and MeEF1A6 were successfully isolated [corrected]. Sequence analyses showed that all of the promoters contain three conserved putative cis-acting elements which are located upstream of the transcription start site. These elements are included a TEF1, a TELO and TATA boxes. In addition, all of the promoters also have the 5'UTR intron but with a different lengths. These promoters were constructed translationally with gusA reporter gene (promoter::gusA fusion) in pBI-121 binary vector to build a new binary vector using Overlap Extension PCR Cloning (OEPC) technique. Transient expression assay that was done by using agroinfiltration method was used to show functionality of these promoters. Qualitative and quantitative analysis from GUS assay showed that these promoters were functional and conferred a specific activity in tobacco seedlings (Nicotiana tabacum), tomato fruits (Solanum lycopersicum) and banana fruits (Musa acuminata). We hypothesized that MeEF1A6 could be categorized as a constitutive promoter because it was able to drive the gene expression in all transformed tissue described in here and also comparable to CaMV35S. On the other hand, MeEF1A3 drove specific expression in the aerial parts of seedlings such as hypocotyl and cotyledon thus MeEF1A5 drove specific expression in fruit tissue. The results obtained from transient analysis showed that these promoters had a distinct activity although they came from same gene family. The DNA sequences identified here are new promoters potentially use for genetic engineering in cassava or other plants.
Collapse
Affiliation(s)
- Sony Suhandono
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Jawa Barat, Indonesia
| | - Ardha Apriyanto
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Jawa Barat, Indonesia
| | - Nisa Ihsani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Jawa Barat, Indonesia
| |
Collapse
|
35
|
Nyaboga E, Njiru J, Nguu E, Gruissem W, Vanderschuren H, Tripathi L. Unlocking the potential of tropical root crop biotechnology in east Africa by establishing a genetic transformation platform for local farmer-preferred cassava cultivars. FRONTIERS IN PLANT SCIENCE 2013; 4:526. [PMID: 24400011 PMCID: PMC3872047 DOI: 10.3389/fpls.2013.00526] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/06/2013] [Indexed: 05/12/2023]
Abstract
Cassava genetic transformation capacity is still mostly restricted to advanced laboratories in the USA, Europe and China; and its implementation and maintenance in African laboratories has remained scarce. The impact of transgenic technologies for genetic improvement of cassava will depend largely on the transfer of such capabilities to researchers in Africa, where cassava has an important socioeconomic niche. A major constraint to the development of genetic transformation technologies for cassava improvement has been the lack of an efficient and robust transformation and regeneration system. Despite the success achieved in genetic modification of few cassava cultivars, including the model cultivar 60444, transgenic cassava production remains difficult for farmer-preferred cultivars. In this study, a protocol for cultivar 60444 developed at ETH Zurich was successfully implemented and optimized to establish transformation of farmer-preferred cassava cultivars popular in east Africa. The conditions for production and proliferation of friable embryogenic calli (FEC) and Agrobacterium-mediated transformation were optimized for three east African farmer-preferred cultivars (Ebwanatereka, Kibandameno and Serere). Our results demonstrated transformation efficiencies of about 14-22 independent transgenic lines per 100 mg of FEC for farmer-preferred cultivars in comparison to 28 lines per 100 mg of the model cultivar 60444. The presence, integration and expression of the transgenes were confirmed by PCR, Southern blot analysis and histochemical GUS assay. This study reports the establishment of a cassava transformation platform at International Institute of Tropical Agriculture (IITA) hosted by Biosciences eastern and central Africa (BecA) hub in Kenya and provides the basis for transferring important traits such as virus resistance and prolonged shelf-life to farmer-preferred cultivars in east Africa. We anticipate that such platform will also be instrumental to transfer technologies to national agricultural research systems (NARS) in sub-Saharan Africa.
Collapse
Affiliation(s)
- Evans Nyaboga
- International Institute of Tropical AgricultureNairobi, Kenya
- Department of Biology, Plant Biotechnology, Eidgenössische Technische HochschuleZurich, Switzerland
- Department of Biochemistry, University of NairobiNairobi, Kenya
| | - Joshua Njiru
- International Institute of Tropical AgricultureNairobi, Kenya
| | - Edward Nguu
- Department of Biochemistry, University of NairobiNairobi, Kenya
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, Eidgenössische Technische HochschuleZurich, Switzerland
| | - Herve Vanderschuren
- Department of Biology, Plant Biotechnology, Eidgenössische Technische HochschuleZurich, Switzerland
| | - Leena Tripathi
- International Institute of Tropical AgricultureNairobi, Kenya
| |
Collapse
|
36
|
Duan X, Xu J, Ling E, Zhang P. Expression of Cry1Aa in cassava improves its insect resistance against Helicoverpa armigera. PLANT MOLECULAR BIOLOGY 2013; 83:131-141. [PMID: 23325479 DOI: 10.1007/s11103-012-0004-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/15/2012] [Indexed: 06/01/2023]
Abstract
Lepidopteran insects affect cassava production globally, especially in intercropping system. The expression of Cry toxins in transgenic crops has contributed to an efficient control of insect pests, leading to a significant reduction in chemical insecticide usage. Helicoverpa armigera is a Lepidopteran pest that feeds on a wide range of plants like cotton and cassava. In the present study, transgenic cassava plants over-expressing Cry1Aa, which we named as Bt cassava, were developed and used to evaluate its efficacy against H. armigera as a model. Insect feeding assays were carried out to test the effects of Bt cassava leaves on the development and survival of H. armigera. Significant reduction (P < 0.05) in the survival and weight were detected on larvae fed with Bt cassava leaves in comparison with those fed with wild-type cassava leaves. The higher expression of Cry1Aa in transgenic cassava caused the lethal effect in larvae, in contrast to the normal growth and development of adults and pupation observed when fed with wild-type leaves. Morphological observation on the larval midguts showed that the consumption of Bt cassava affected the gut integrity of H. armigera. The columnar cells of the midgut epithelium were dramatically damaged and showed loose or disordered structure. Their cytoplasms become highly vacuolated and contained disorganized microvilli. Our study demonstrated that the transgenic cassava expressing the Cry1Aa is effective in controlling H. armigera. Our Bt transgenic cassava plant would provide a long-term beneficial effect on all crops in intercropping system, which in-turn, will be profitable to the farmers.
Collapse
Affiliation(s)
- Xiaoguang Duan
- National Key Laboratory of Plant Molecular Genetics, SIBS-ETH Shanghai Center for Cassava Biotechnology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | |
Collapse
|
37
|
Chetty C, Rossin C, Gruissem W, Vanderschuren H, Rey M. Empowering biotechnology in southern Africa: establishment of a robust transformation platform for the production of transgenic industry-preferred cassava. N Biotechnol 2013; 30:136-43. [DOI: 10.1016/j.nbt.2012.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/23/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
|
38
|
Koehorst-van Putten HJJ, Wolters AMA, Pereira-Bertram IM, van den Berg HHJ, van der Krol AR, Visser RGF. Cloning and characterization of a tuberous root-specific promoter from cassava (Manihot esculenta Crantz). PLANTA 2012; 236:1955-1965. [PMID: 23132522 DOI: 10.1007/s00425-012-1796-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/23/2012] [Indexed: 06/01/2023]
Abstract
In order to obtain a tuberous root-specific promoter to be used in the transformation of cassava, a 1,728 bp sequence containing the cassava granule-bound starch synthase (GBSSI) promoter was isolated. The sequence proved to contain light- and sugar-responsive cis elements. Part of this sequence (1,167 bp) was cloned into binary vectors to drive expression of the firefly luciferase gene. Cassava cultivar Adira 4 was transformed with this construct or a control construct in which the luciferase gene was cloned behind the 35S promoter. Luciferase activity was measured in leaves, stems, roots and tuberous roots. As expected, the 35S promoter induced luciferase activity in all organs at similar levels, whereas the GBSSI promoter showed very low expression in leaves, stems and roots, but very high expression in tuberous roots. These results show that the cassava GBSSI promoter is an excellent candidate to achieve tuberous root-specific expression in cassava.
Collapse
Affiliation(s)
- Herma J J Koehorst-van Putten
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
Vanderschuren H, Moreno I, Anjanappa RB, Zainuddin IM, Gruissem W. Exploiting the combination of natural and genetically engineered resistance to cassava mosaic and cassava brown streak viruses impacting cassava production in Africa. PLoS One 2012; 7:e45277. [PMID: 23049780 PMCID: PMC3458115 DOI: 10.1371/journal.pone.0045277] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/15/2012] [Indexed: 11/18/2022] Open
Abstract
Cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) are currently two major viral diseases that severely reduce cassava production in large areas of Sub-Saharan Africa. Natural resistance has so far only been reported for CMD in cassava. CBSD is caused by two virus species, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). A sequence of the CBSV coat protein (CP) highly conserved between the two virus species was used to demonstrate that a CBSV-CP hairpin construct sufficed to generate immunity against both viral species in the cassava model cultivar (cv. 60444). Most of the transgenic lines showed high levels of resistance under increasing viral loads using a stringent top-grafting method of inoculation. No viral replication was observed in the resistant transgenic lines and they remained free of typical CBSD root symptoms 7 month post-infection. To generate transgenic cassava lines combining resistance to both CBSD and CMD the hairpin construct was transferred to a CMD-resistant farmer-preferred Nigerian landrace TME 7 (Oko-Iyawo). An adapted protocol allowed the efficient Agrobacterium-based transformation of TME 7 and the regeneration of transgenic lines with high levels of CBSV-CP hairpin-derived small RNAs. All transgenic TME 7 lines were immune to both CBSV and UCBSV infections. Further evaluation of the transgenic TME 7 lines revealed that CBSD resistance was maintained when plants were co-inoculated with East African cassava mosaic virus (EACMV), a geminivirus causing CMD. The innovative combination of natural and engineered virus resistance in farmer-preferred landraces will be particularly important to reducing the increasing impact of cassava viral diseases in Africa.
Collapse
Affiliation(s)
- Hervé Vanderschuren
- Department of Biology, Plant Biotechnology, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
40
|
Adenle AA, Aworh OC, Akromah R, Parayil G. Developing GM super cassava for improved health and food security: future challenges in Africa. ACTA ACUST UNITED AC 2012. [DOI: 10.1186/2048-7010-1-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Zainuddin IM, Schlegel K, Gruissem W, Vanderschuren H. Robust transformation procedure for the production of transgenic farmer-preferred cassava landraces. PLANT METHODS 2012; 8:24. [PMID: 22784378 PMCID: PMC3439245 DOI: 10.1186/1746-4811-8-24] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/20/2012] [Indexed: 05/12/2023]
Abstract
Recent progress in cassava transformation has allowed the robust production of transgenic cassava even under suboptimal plant tissue culture conditions. The transformation protocol has so far been used mostly for the cassava model cultivar 60444 because of its good regeneration capacity of embryogenic tissues. However, for deployment and adoption of transgenic cassava in the field it is important to develop robust transformation methods for farmer- and industry-preferred landraces and cultivars. Because dynamics of multiplication and regeneration of embryogenic tissues differ between cassava genotypes, it was necessary to adapt the efficient cv. 60444 transformation protocol to genotypes that are more recalcitrant to transformation. Here we demonstrate that an improved cassava transformation protocol for cv. 60444 could be successfully modified for production of transgenic farmer-preferred cassava landraces. The modified transformation method reports on procedures for optimization and is likely transferable to other cassava genotypes reportedly recalcitrant to transformation provided production of high quality FEC. Because the three farmer-preferred cassava landraces selected in this study have been identified as resistant or tolerant to cassava mosaic disease (CMD), the adapted protocol will be essential to mobilize improved traits into cassava genotypes suitable for regions where CMD limits production.
Collapse
Affiliation(s)
- Ima M Zainuddin
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW E56.1, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Kim Schlegel
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW E56.1, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW E56.1, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Hervé Vanderschuren
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW E56.1, Universitaetstrasse 2, 8092, Zurich, Switzerland
| |
Collapse
|
42
|
Liu H, Fu D, Zhu B, Yan H, Shen X, Zuo J, Zhu Y, Luo Y. Virus-induced gene silencing in eggplant (Solanum melongena). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:422-429. [PMID: 22268843 DOI: 10.1111/j.1744-7909.2012.01102.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Eggplant (Solanum melongena) is an economically important vegetable requiring investigation into its various genomic functions. The current limitation in the investigation of genomic function in eggplant is the lack of effective tools available for conducting functional assays. Virus-induced gene silencing (VIGS) has played a critical role in the functional genetic analyses. In this paper, TRV-mediated VIGS was successfully elicited in eggplant. We first cloned the CDS sequence of PDS (PHYTOENE DESATURASE) in eggplant and then silenced the PDS gene. Photo-bleaching was shown on the newly-developed leaves four weeks after agroinoculation, indicating that VIGS can be used to silence genes in eggplant. To further illustrate the reliability of VIGS in eggplant, we selected Chl H, Su and CLA1 as reporters to elicit VIGS using the high-pressure spray method. Suppression of Chl H and Su led to yellow leaves, while the depletion of CLA1 resulted in albino. In conclusion, four genes, PDS, Chl H, Su (Sulfur), CLA1, were down-regulated significantly by VIGS, indicating that the VIGS system can be successfully applied in eggplant and is a reliable tool for the study of gene function.
Collapse
Affiliation(s)
- Haiping Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yang WC, Wan J. Transgenic crops: an option for future agriculture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:510-511. [PMID: 21733120 DOI: 10.1111/j.1744-7909.2011.01064.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
44
|
Niklaus M, Gruissem W, Vanderschuren H. Efficient transformation and regeneration of transgenic cassava using the neomycin phosphotransferase gene as aminoglycoside resistance marker gene. ACTA ACUST UNITED AC 2011; 2:193-200. [PMID: 22179195 DOI: 10.4161/gmcr.2.3.18866] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cassava is one of the most important crops in the tropics. Its industrial use for starch and biofuel production is also increasing its importance for agricultural production in tropical countries. In the last decade cassava biotechnology has emerged as a valuable alternative to the breeding constraints of this highly heterozygous crop for improved trait development of cassava germplasm. Cassava transformation remains difficult and time-consuming because of limitations in selecting transgenic tissues and regeneration of transgenic plantlets. We have recently reported an efficient and robust cassava transformation protocol using the hygromycin phosphotransferase II (hptII) gene as selection marker and the aminoglycoside hygromycin at optimal concentrations to maximize the regeneration of transgenic plantlets. In the present work, we expanded the transformation protocol to the use of the neomycin phosphotransferase II (nptII) gene as selection marker. Several aminoglycosides compatible with the use of nptII were tested and optimal concentrations for cassava transformation were determined. Given its efficiency equivalent to hptII as selection marker with the described protocol, the use of nptII opens new possibilities to engineer transgenic cassava lines with multiple T-DNA insertions and to produce transgenic cassava with a resistance marker gene that is already deregulated in several commercial transgenic crops.
Collapse
Affiliation(s)
- Michael Niklaus
- Department of Biology, Plant Biotechnology, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|