1
|
Liu D, Li MJ, Luo JS, Chen HF, Yang Y, Xiao G, Wu J, Ismail AM, Zhang ZH. Overexpression of OsSTP1 increases grain yield via enhancing carbohydrate metabolism and transport in rice. PLANTA 2024; 261:5. [PMID: 39623007 DOI: 10.1007/s00425-024-04579-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/17/2024] [Indexed: 01/16/2025]
Abstract
MAIN CONCLUSION Overexpression of OsSTP1 enhances the non-structural carbohydrate remobilization in the source, starch accumulation in grains, and the transportation of carbohydrates from source to sink during the filling stage. The sugar transporter protein (STP) is the best-characterized subfamily of the monosaccharide transporter (MST) family and plays critical roles in regulating plant stress tolerance, growth, and development. However, the role of STPs in regulating rice yield is poorly understood. In this study, we report that compared with Taipei 309, overexpression of OsSTP1 can achieve higher rice yield. We demonstrate that OsSTP1 mRNA levels are higher than those of the other seven STPs in mixed samples of leaf sheaths, stems, and nodes at 12 days after pollination (DAP). OsSTP1 is prominently expressed in the leaf sheaths, stems, and nodes at the grain filling stage. Subcellular localization analysis revealed that OsSTP1 is localized in the plasma membrane. Overexpression of OsSTP1 increased the activities of amylase (AMY) and sucrose phosphate synthase (SPS) in mixed samples of leaf sheaths, stems, and nodes at 12 DAP, the sucrose content of the phloem exudate, and accumulation of soluble sugars and starch in panicles, ultimately increasing seed-setting rates and grain yields in the Taipei 309 cultivar. These findings indicate that overexpression of OsSTP1 can improve grain yield by synergistically promoting non-structural carbohydrate (NSC) remobilization and transportation.
Collapse
Affiliation(s)
- Dong Liu
- College of Resources, Hunan Agricultural University, Changsha, 410125, China
| | - Ming-Juan Li
- College of Resources, Hunan Agricultural University, Changsha, 410125, China
| | - Jin-Song Luo
- College of Resources, Hunan Agricultural University, Changsha, 410125, China
| | - Hai-Fei Chen
- College of Resources, Hunan Agricultural University, Changsha, 410125, China
| | - Yong Yang
- College of Resources, Hunan Agricultural University, Changsha, 410125, China
| | - Gui Xiao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Abdelbagi M Ismail
- Africa Regional Office, International Rice Research Institute, Nairobi, Kenya
| | - Zhen-Hua Zhang
- College of Resources, Hunan Agricultural University, Changsha, 410125, China.
- Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China.
| |
Collapse
|
2
|
Han X, Yang R, Zhang L, Wei Q, Zhang Y, Wang Y, Shi Y. A Review of Potato Salt Tolerance. Int J Mol Sci 2023; 24:10726. [PMID: 37445900 DOI: 10.3390/ijms241310726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Potato is the world's fourth largest food crop. Due to limited arable land and an ever-increasing demand for food from a growing population, it is critical to increase crop yields on existing acreage. Soil salinization is an increasing problem that dramatically impacts crop yields and restricts the growing area of potato. One possible solution to this problem is the development of salt-tolerant transgenic potato cultivars. In this work, we review the current potato planting distribution and the ways in which it overlaps with salinized land, in addition to covering the development and utilization of potato salt-tolerant cultivars. We also provide an overview of the current progress toward identifying potato salt tolerance genes and how they may be deployed to overcome the current challenges facing potato growers.
Collapse
Affiliation(s)
- Xue Han
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Ruijie Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Qiaorong Wei
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yazhi Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Ying Shi
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Ayadi M, Chiab N, Charfeddine S, Abdelhedi R, Dabous A, Talbi O, Mieulet D, Guiderdoni E, Aifa S, Gargouri-Bouzid R, Hanana M. Improved growth and tuber quality of transgenic potato plants overexpressing either NHX antiporter, CLC chloride channel, or both. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:46-58. [PMID: 36044822 DOI: 10.1016/j.plaphy.2022.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The nutritional enhancement of potato plants (Solanum tuberosum L.,) is highly critical. As it is considered a worldwide basic vegetarian nutrition to maintain health. S. tuberosum is one of the foremost staples and the world's fourth-largest food crop. In advance, its need is increasing because of its high-industrial value and population blast. To improve both potato growth and behavior under harsh environmental conditions, we produced transgenic potato plants overexpressing either VvNHX (a sodium proton antiporter from Vitis vinifera), VvCLC (a chloride channel from Vitis vinifera), or both. Control and transgenic plants were grown in greenhouse and field under non-stressed conditions for 85 days in order to characterize their phenotype and evaluate their agronomical performance. To this aim, the evaluation of plant growth parameters, tuber yields and characteristics (calibers, eye number and color), the chemical composition of tubers, was conducted and compared between the different lines. The obtained results showed that transgenic plants displayed an improved growth (flowering precocity, gain of vigor and better vegetative growth) along with enhanced tuber yields and quality (increased protein and starch contents). Our findings provide then insight into the role played by the VvNHX antiport and the VvCLC channel and a greater understanding of the effect of their overexpression in potato plants.
Collapse
Affiliation(s)
- Mariem Ayadi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia; Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif, Tunisia
| | - Nour Chiab
- Plant amelioration and Agri-resource valorization laboratory, National School of Engineers of Sfax (ENIS), Tunisia
| | - Safa Charfeddine
- Plant amelioration and Agri-resource valorization laboratory, National School of Engineers of Sfax (ENIS), Tunisia
| | - Rania Abdelhedi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Amira Dabous
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif, Tunisia
| | - Ons Talbi
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif, Tunisia
| | - Delphine Mieulet
- Cirad, UMR AGAP, Montpellier, France; Université de Montpellier, Cirad-Inra-Montpellier SupAgro, Montpellier, France
| | - Emmanuel Guiderdoni
- Cirad, UMR AGAP, Montpellier, France; Université de Montpellier, Cirad-Inra-Montpellier SupAgro, Montpellier, France
| | - Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Radhia Gargouri-Bouzid
- Plant amelioration and Agri-resource valorization laboratory, National School of Engineers of Sfax (ENIS), Tunisia
| | - Mohsen Hanana
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif, Tunisia.
| |
Collapse
|
4
|
Li Z, Wei X, Tong X, Zhao J, Liu X, Wang H, Tang L, Shu Y, Li G, Wang Y, Ying J, Jiao G, Hu H, Hu P, Zhang J. The OsNAC23-Tre6P-SnRK1a feed-forward loop regulates sugar homeostasis and grain yield in rice. MOLECULAR PLANT 2022; 15:706-722. [PMID: 35093592 DOI: 10.1016/j.molp.2022.01.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 05/14/2023]
Abstract
Tre6P (trehalose-6-phosphate) mediates sensing of carbon availability to maintain sugar homeostasis in plants, which underpins crop yield and resilience. However, how Tre6P responds to fluctuations in sugar levels and regulates the utilization of sugars for growth remains to be addressed. Here, we report that the sugar-inducible rice NAC transcription factor OsNAC23 directly represses the transcription of the Tre6P phosphatase gene TPP1 to simultaneously elevate Tre6P and repress trehalose levels, thus facilitating carbon partitioning from source to sink organs. Meanwhile, OsNAC23 and Tre6P suppress the transcription and enzyme activity of SnRK1a, a low-carbon sensor and antagonist of OsNAC23, to prevent the SnRK1a-mediated phosphorylation and degradation of OsNAC23. Thus, OsNAC23, Tre6P, and SnRK1a form a feed-forward loop to sense sugar and maintain sugar homeostasis by transporting sugars to sink organs. Importantly, plants over-expressing OsNAC23 exhibited an elevated photosynthetic rate, sugar transport, and sink organ size, which consistently increased rice yields by 13%-17% in three elite-variety backgrounds and two locations, suggesting that manipulation of OsNAC23 expression has great potential for rice improvement. Collectively, these findings enhance our understanding of Tre6P-mediated sugar signaling and homeostasis, and provide a new strategy for genetic improvement of rice and possibly also other crops.
Collapse
Affiliation(s)
- Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangjin Wei
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Juan Zhao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Huimei Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Liqun Tang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yazhou Shu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Guanghao Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Guiai Jiao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Honghong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peisong Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
5
|
Wu Y, Fang W, Peng W, Jiang M, Chen G, Xiong F. Sucrose transporter in rice. PLANT SIGNALING & BEHAVIOR 2021; 16:1952373. [PMID: 34269147 PMCID: PMC8525984 DOI: 10.1080/15592324.2021.1952373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Plant photosynthesis processes play vital roles in crop plant development. Understanding carbohydrate partitioning via sugar transport is one of the potential ways to modify crop biomass, which is tightly linked to plant architecture, such as plant height and panicle size. Based on the literature, we highlight recent findings to summarize phloem loading by sucrose transport in rice. In rice, sucrose transporters, OsSUTs (sucrose transporters) and OsSWEETs (sugars are eventually exported transporters) import sucrose and export cells between phloem parenchyma cells and companion cells. Before sucrose transporters perform their functions, several transcription factors can induce sucrose transporter gene transcription levels, such as Oryza sativa DNA binding with one finger 11 (OsDOF11) and Oryza sativa Nuclear Factor Y B1 (OsNF-YB1). In addition to native regulator genes, environmental factors, such as CO2 concentration, drought stress and increased temperature, also affect sucrose transporter gene transcription levels. However, more research work is needed on formation regulation webs. Elucidation of the phloem loading mechanism could improve our understanding of rice development under multiple conditions and facilitate its manipulation to increase crop productivity.
Collapse
Affiliation(s)
- Yunfei Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture &agri-product Safety, Yangzhou University, Yangzhou, China
| | - wenchun Fang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture &agri-product Safety, Yangzhou University, Yangzhou, China
| | - Wangmenghan Peng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture &agri-product Safety, Yangzhou University, Yangzhou, China
| | - Min Jiang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture &agri-product Safety, Yangzhou University, Yangzhou, China
| | - Gang Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture &agri-product Safety, Yangzhou University, Yangzhou, China
| | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture &agri-product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Long X, Li H, Yang J, Xin L, Fang Y, He B, Huang D, Tang C. Characterization of a vacuolar sucrose transporter, HbSUT5, from Hevea brasiliensis: involvement in latex production through regulation of intracellular sucrose transport in the bark and laticifers. BMC PLANT BIOLOGY 2019; 19:591. [PMID: 31881921 PMCID: PMC6935173 DOI: 10.1186/s12870-019-2209-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sucrose (Suc), as the precursor molecule for rubber biosynthesis in Hevea brasiliensis, is transported via phloem-mediated long-distance transport from leaves to laticifers in trunk bark, where latex (cytoplasm of laticifers) is tapped for rubber. In our previous report, six Suc transporter (SUT) genes have been cloned in Hevea tree, among which HbSUT3 is verified to play an active role in Suc loading to the laticifers. In this study, another latex-abundant SUT isoform, HbSUT5, with expressions only inferior to HbSUT3 was characterized especially for its roles in latex production. RESULTS Both phylogenetic analysis and subcellular localization identify HbSUT5 as a tonoplast-localized SUT protein under the SUT4-clade (=type III). Suc uptake assay in baker's yeast reveals HbSUT5 to be a typical Suc-H+ symporter, but its high affinity for Suc (Km = 2.03 mM at pH 5.5) and the similar efficiency in transporting both Suc and maltose making it a peculiar SUT under the SUT4-clade. At the transcript level, HbSUT5 is abundantly and preferentially expressed in Hevea barks. The transcripts of HbSUT5 are conspicuously decreased both in Hevea latex and bark by two yield-stimulating treatments of tapping and ethephon, the patterns of which are contrary to HbSUT3. Under the ethephon treatment, the Suc level in latex cytosol decreases significantly, but that in latex lutoids (polydispersed vacuoles) changes little, suggesting a role of the decreased HbSUT5 expression in Suc compartmentalization in the lutoids and thus enhancing the Suc sink strength in laticifers. CONCLUSIONS Our findings provide insights into the roles of a vacuolar sucrose transporter, HbSUT5, in Suc exchange between lutoids and cytosol in rubber-producing laticifers.
Collapse
Affiliation(s)
- Xiangyu Long
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Heping Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
- Subtropical Agriculture Research Institute, Fujian Academy of Agricultural Sciences, Zhangzhou, 363005, Fujian, China
| | - Jianghua Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Lusheng Xin
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
| | - Yongjun Fang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Bin He
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
| | - Debao Huang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
| | - Chaorong Tang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
7
|
Singer SD, Soolanayakanahally RY, Foroud NA, Kroebel R. Biotechnological strategies for improved photosynthesis in a future of elevated atmospheric CO 2. PLANTA 2019; 251:24. [PMID: 31784816 DOI: 10.1007/s00425-019-03301-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The improvement of photosynthesis using biotechnological approaches has been the focus of much research. It is now vital that these strategies be assessed under future atmospheric conditions. The demand for crop products is expanding at an alarming rate due to population growth, enhanced affluence, increased per capita calorie consumption, and an escalating need for plant-based bioproducts. While solving this issue will undoubtedly involve a multifaceted approach, improving crop productivity will almost certainly provide one piece of the puzzle. The improvement of photosynthetic efficiency has been a long-standing goal of plant biotechnologists as possibly one of the last remaining means of achieving higher yielding crops. However, the vast majority of these studies have not taken into consideration possible outcomes when these plants are grown long-term under the elevated CO2 concentrations (e[CO2]) that will be evident in the not too distant future. Due to the considerable effect that CO2 levels have on the photosynthetic process, these assessments should become commonplace as a means of ensuring that research in this field focuses on the most effective approaches for our future climate scenarios. In this review, we discuss the main biotechnological research strategies that are currently underway with the aim of improving photosynthetic efficiency and biomass production/yields in the context of a future of e[CO2], as well as alternative approaches that may provide further photosynthetic benefits under these conditions.
Collapse
Affiliation(s)
- Stacy D Singer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.
| | - Raju Y Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Roland Kroebel
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
8
|
Li P, Chang T, Chang S, Ouyang X, Qu M, Song Q, Xiao L, Xia S, Deng Q, Zhu XG. Systems model-guided rice yield improvements based on genes controlling source, sink, and flow. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1154-1180. [PMID: 30415497 DOI: 10.1111/jipb.12738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
A large number of genes related to source, sink, and flow have been identified after decades of research in plant genetics. Unfortunately, these genes have not been effectively utilized in modern crop breeding. This perspective paper aims to examine the reasons behind such a phenomenon and propose a strategy to resolve this situation. Specifically, we first systematically survey the currently cloned genes related to source, sink, and flow; then we discuss three factors hindering effective application of these identified genes, which include the lack of effective methods to identify limiting or critical steps in a signaling network, the misplacement of emphasis on properties, at the leaf, instead of the whole canopy level, and the non-linear complex interaction between source, sink, and flow. Finally, we propose the development of systems models of source, sink and flow, together with a detailed simulation of interactions between them and their surrounding environments, to guide effective use of the identified elements in modern rice breeding. These systems models will contribute directly to the definition of crop ideotype and also identification of critical features and parameters that limit the yield potential in current cultivars.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Phytochromes, Hunan Agriculture University, Changsha 410125, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Tiangen Chang
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| | - Shuoqi Chang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Xiang Ouyang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Mingnan Qu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| | - Qingfeng Song
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| | - Langtao Xiao
- State Key Laboratory of Hybrid Rice, Key Laboratory of Phytochromes, Hunan Agriculture University, Changsha 410125, China
| | - Shitou Xia
- State Key Laboratory of Hybrid Rice, Key Laboratory of Phytochromes, Hunan Agriculture University, Changsha 410125, China
| | - Qiyun Deng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| |
Collapse
|
9
|
Ainsworth EA, Lemonnier P. Phloem function: a key to understanding and manipulating plant responses to rising atmospheric [CO 2]? CURRENT OPINION IN PLANT BIOLOGY 2018; 43:50-56. [PMID: 29329037 DOI: 10.1016/j.pbi.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/01/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
Increasing atmospheric carbon dioxide concentration ([CO2]) directly stimulates photosynthesis and reduces stomatal conductance in C3 plants. Both of these physiological effects have the potential to alter phloem function at elevated [CO2]. Recent research has clearly established that photosynthetic capacity is correlated to vascular traits associated with phloem loading and water transport, but the effects of elevated [CO2] on these relationships are largely unexplored. Plants also employ different strategies for loading sucrose and other sugars into the phloem, and there is potential for species with different phloem loading strategies to respond differently to elevated [CO2]. Recent research manipulating sucrose transporters and other key enzymes with roles in phloem loading show promise for maximizing crop performance in an elevated [CO2] world.
Collapse
Affiliation(s)
- Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, 1201 W. Gregory Drive, Urbana, IL 61801, USA; Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana, Champaign, USA.
| | - Pauline Lemonnier
- USDA ARS Global Change and Photosynthesis Research Unit, 1201 W. Gregory Drive, Urbana, IL 61801, USA; Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana, Champaign, USA
| |
Collapse
|
10
|
Wang LF, Qi XX, Huang XS, Xu LL, Jin C, Wu J, Zhang SL. Overexpression of sucrose transporter gene PbSUT2 from Pyrus bretschneideri, enhances sucrose content in Solanum lycopersicum fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:150-161. [PMID: 27105422 DOI: 10.1016/j.plaphy.2016.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/10/2016] [Accepted: 04/10/2016] [Indexed: 05/13/2023]
Abstract
Sucrose transporters (SUTs) belong to the major facilitator superfamily. The function of SUTs has been intensively investigated in some higher plants, whereas that in pear fruit is unknown. In this study, the cloning and functional characterization of a sucrose transporter, PbSUT2, in pear (Pyrus bretschneideri Rehd. cv. 'Yali') fruits are reported. PbSUT2 encoded a protein of 498 amino acid residues, and was localized in the plasma membrane of transformed onion epidermal cells and Arabidopsis protoplasts. Phylogenetic analysis revealed that PbSUT2 belonged to the SUT4 clade. The phenotype of overexpression of PbSUT2 tomato plants included early flowering, higher fruit quantity and lower plant height. Overexpression of PbSUT2 in transgenic tomato plants led to increases in the net photosynthetic rate in leaves and sucrose content in mature fruit compared with wild-type tomato plants, and a decrease in the contents of glucose, fructose and total soluble sugars in mature fruits. These results suggested that PbSUT2 affected sucrose content in sinks and the flowering phase during tomato plant growth and development.
Collapse
Affiliation(s)
- Li-Fen Wang
- Center of Pear Engineering & Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Gold Mantis School of Architecture, Soochow University, Suzhou, 215123, China
| | - Xiao-Xiao Qi
- Center of Pear Engineering & Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-San Huang
- Center of Pear Engineering & Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin-Lin Xu
- Center of Pear Engineering & Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cong Jin
- Center of Pear Engineering & Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Wu
- Center of Pear Engineering & Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Ling Zhang
- Center of Pear Engineering & Technology Research, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Kolachevskaya OO, Alekseeva VV, Sergeeva LI, Rukavtsova EB, Getman IA, Vreugdenhil D, Buryanov YI, Romanov GA. Expression of auxin synthesis gene tms1 under control of tuber-specific promoter enhances potato tuberization in vitro. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:734-44. [PMID: 25421937 DOI: 10.1111/jipb.12314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/24/2014] [Indexed: 05/04/2023]
Abstract
Phytohormones, auxins in particular, play an important role in plant development and productivity. Earlier data showed positive impact of exogenous auxin on potato (Solanum tuberosum L.) tuberization. The aim of this study was to generate potato plants with increased auxin level predominantly in tubers. To this end, a pBinB33-tms1 vector was constructed harboring the Agrobacterium auxin biosynthesis gene tms1 fused to tuber-specific promoter of the class I patatin gene (B33-promoter) of potato. Among numerous independently generated B33:tms1 lines, those without visible differences from control were selected for detailed studies. In the majority of transgenic lines, tms1 gene transcription was detected, mostly in tubers rather than in shoots. Indoleacetic acid (IAA) content in tubers and the auxin tuber-to-shoot ratio were increased in tms1-expressing transformants. The organ-specific increase in auxin synthesis in B33:tms1-transformants accelerated and intensified the process of tuber formation, reduced the dose of carbohydrate supply required for in vitro tuberization, and decreased the photoperiodic dependence of tuber initiation. Overall, a positive correlation was observed between tms1 expression, IAA content in tubers, and stimulation of tuber formation. The revealed properties of B33:tms1 transformants imply an important role for auxin in potato tuberization and offer prospects to magnify potato productivity by a moderate organ-specific enhancement of auxin content.
Collapse
Affiliation(s)
- Oksana O Kolachevskaya
- Signaling Systems Laboratory, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Valeriya V Alekseeva
- Plant Biotechnology Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Lidiya I Sergeeva
- Signaling Systems Laboratory, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
- Laboratory of Plant Physiology, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Elena B Rukavtsova
- Plant Biotechnology Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Irina A Getman
- Signaling Systems Laboratory, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Dick Vreugdenhil
- Laboratory of Plant Physiology, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Yaroslav I Buryanov
- Plant Biotechnology Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Georgy A Romanov
- Signaling Systems Laboratory, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
- Department of Molecular Basis of Ontogenesis, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
12
|
Yadav UP, Ayre BG, Bush DR. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality. FRONTIERS IN PLANT SCIENCE 2015; 6:275. [PMID: 25954297 PMCID: PMC4405696 DOI: 10.3389/fpls.2015.00275] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/06/2015] [Indexed: 05/18/2023]
Abstract
The principal components of plant productivity and nutritional value, from the standpoint of modern agriculture, are the acquisition and partitioning of organic carbon (C) and nitrogen (N) compounds among the various organs of the plant. The flow of essential organic nutrients among the plant organ systems is mediated by its complex vascular system, and is driven by a series of transport steps including export from sites of primary assimilation, transport into and out of the phloem and xylem, and transport into the various import-dependent organs. Manipulating C and N partitioning to enhance yield of harvested organs is evident in the earliest crop domestication events and continues to be a goal for modern plant biology. Research on the biochemistry, molecular and cellular biology, and physiology of C and N partitioning has now matured to an extent that strategic manipulation of these transport systems through biotechnology are being attempted to improve movement from source to sink tissues in general, but also to target partitioning to specific organs. These nascent efforts are demonstrating the potential of applied biomass targeting but are also identifying interactions between essential nutrients that require further basic research. In this review, we summarize the key transport steps involved in C and N partitioning, and discuss various transgenic approaches for directly manipulating key C and N transporters involved. In addition, we propose several experiments that could enhance biomass accumulation in targeted organs while simultaneously testing current partitioning models.
Collapse
Affiliation(s)
- Umesh P. Yadav
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Brian G. Ayre
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Daniel R. Bush
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
13
|
Katoh A, Ashida H, Kasajima I, Shigeoka S, Yokota A. Potato yield enhancement through intensification of sink and source performances. BREEDING SCIENCE 2015; 65:77-84. [PMID: 25931982 PMCID: PMC4374566 DOI: 10.1270/jsbbs.65.77] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/27/2015] [Indexed: 05/07/2023]
Abstract
The combined total annual yield of six major crops (maize, rice, wheat, cassava, soybean, and potato; Solanum tuberosum L.) amounts to 3.1 billion tons. In recent years, staple crops have begun to be used as substitutes for fossil fuel and feedstocks. The diversion of crop products to fuels and industrial feedstocks has become a concern in many countries because of competition for arable lands and increased food prices. These concerns are definitely justified; however, if plant biotechnology succeeds in increasing crop yields to double the current yields, it will be possible to divert the surplus to purposes other than food without detrimental effects. Maize, rice, wheat, and soybean bear their sink organs in the aerial parts of the plant, and potato in the underground parts. Plants with aerial storage organs cannot accumulate products beyond their capacity to support the weight of these organs. In contrast, potato has heavy storage organs that are supported by the soil. In this mini-review, we introduce strategies of intensifying potato productivity and discuss recent advances in this research area.
Collapse
Affiliation(s)
- Akira Katoh
- Center for Frontier Science and Technology, Nara Institute of Science and Technology,
Takayama 8916-5, Ikoma, Nara 630-0192,
Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency,
Kawaguchi, Saitama 332-0012,
Japan
| | - Hiroki Ashida
- Graduate School of Human Development and Environment, Kobe University,
3-11 Tsurukabuto, Nada, Kobe, Hyogo 657-8501,
Japan
| | - Ichiro Kasajima
- Center for Frontier Science and Technology, Nara Institute of Science and Technology,
Takayama 8916-5, Ikoma, Nara 630-0192,
Japan
- Institute of Floricultural Science, National Agriculture and Food Research Organization,
2-1, Fujimoto, Tsukuba, Ibaraki 305-8519,
Japan
| | - Shigeru Shigeoka
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency,
Kawaguchi, Saitama 332-0012,
Japan
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University,
3327-204 Nakamachi, Nara 631-8505,
Japan
| | - Akiho Yokota
- Center for Frontier Science and Technology, Nara Institute of Science and Technology,
Takayama 8916-5, Ikoma, Nara 630-0192,
Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency,
Kawaguchi, Saitama 332-0012,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
14
|
Li F, Wu B, Qin X, Yan L, Hao C, Tan L, Lai J. Molecular cloning and expression analysis of the sucrose transporter gene family from Theobroma cacao L. Gene 2014; 546:336-41. [PMID: 24875417 DOI: 10.1016/j.gene.2014.05.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/30/2014] [Accepted: 05/23/2014] [Indexed: 11/29/2022]
Abstract
In this study, we performed cloning and expression analysis of six putative sucrose transporter genes, designated TcSUT1, TcSUT2, TcSUT3, TcSUT4, TcSUT5 and TcSUT6, from the cacao genotype 'TAS-R8'. The combination of cDNA and genomic DNA sequences revealed that the cacao SUT genes contained exon numbers ranging from 1 to 14. The average molecular mass of all six deduced proteins was approximately 56 kDa (range 52 to 66 kDa). All six proteins were predicted to exhibit typical features of sucrose transporters with 12 trans-membrane spanning domains. Phylogenetic analysis revealed that TcSUT2 and TcSUT4 belonged to Group 2 SUT and Group 4 SUT, respectively, and the other TcSUT proteins were belonging to Group 1 SUT. Real-time PCR was conducted to investigate the expression pattern of each member of the SUT family in cacao. Our experiment showed that TcSUT1 was expressed dominantly in pods and that, TcSUT3 and TcSUT4 were highly expressed in both pods and in bark with phloem. Within pods, TcSUT1 and TcSUT4 were expressed more in the seed coat and seed from the pod enlargement stage to the ripening stage. TcSUT5 expression sharply increased to its highest expression level in the seed coat during the ripening stage. Expression pattern analysis indicated that TcSUT genes may be associated with photoassimilate transport into developing seeds and may, therefore, have an impact on seed production.
Collapse
Affiliation(s)
- Fupeng Li
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, PR China; Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, PR China; Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning 571533, PR China
| | - Baoduo Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, PR China; Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, PR China; Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning 571533, PR China
| | - Xiaowei Qin
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, PR China; Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, PR China; Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning 571533, PR China
| | - Lin Yan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, PR China; Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, PR China; Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning 571533, PR China
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, PR China; Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, PR China; Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning 571533, PR China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, PR China; Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, PR China; Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning 571533, PR China
| | - Jianxiong Lai
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, PR China; Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, PR China; Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning 571533, PR China.
| |
Collapse
|
15
|
Dasgupta K, Khadilkar AS, Sulpice R, Pant B, Scheible WR, Fisahn J, Stitt M, Ayre BG. Expression of Sucrose Transporter cDNAs Specifically in Companion Cells Enhances Phloem Loading and Long-Distance Transport of Sucrose but Leads to an Inhibition of Growth and the Perception of a Phosphate Limitation. PLANT PHYSIOLOGY 2014; 165:715-731. [PMID: 24777345 PMCID: PMC4044860 DOI: 10.1104/pp.114.238410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sucrose (Suc) is the predominant form of carbon transported through the phloem from source to sink organs and is also a prominent sugar for short-distance transport. In all streptophytes analyzed, Suc transporter genes (SUTs or SUCs) form small families, with different subgroups evolving distinct functions. To gain insight into their capacity for moving Suc in planta, representative members of each clade were first expressed specifically in companion cells of Arabidopsis (Arabidopsis thaliana) and tested for their ability to rescue the phloem-loading defect caused by the Suc transporter mutation, Atsuc2-4. Sequence similarity was a poor indicator of ability: Several genes with high homology to AtSUC2, some of which have phloem-loading functions in other eudicot species, did not rescue the Atsuc2-4 mutation, whereas a more distantly related gene, ZmSUT1 from the monocot Zea mays, did restore phloem loading. Transporter complementary DNAs were also expressed in the companion cells of wild-type Arabidopsis, with the aim of increasing productivity by enhancing Suc transport to growing sink organs and reducing Suc-mediated feedback inhibition on photosynthesis. Although enhanced Suc loading and long-distance transport was achieved, growth was diminished. This growth inhibition was accompanied by increased expression of phosphate (P) starvation-induced genes and was reversed by providing a higher supply of external P. These experiments suggest that efforts to increase productivity by enhancing sugar transport may disrupt the carbon-to-P homeostasis. A model for how the plant perceives and responds to changes in the carbon-to-P balance is presented.
Collapse
Affiliation(s)
- Kasturi Dasgupta
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (K.D., A.S.K., B.G.A.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (R.S., J.F., M.S.); andThe Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.P., W.-R.S.)
| | - Aswad S Khadilkar
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (K.D., A.S.K., B.G.A.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (R.S., J.F., M.S.); andThe Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.P., W.-R.S.)
| | - Ronan Sulpice
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (K.D., A.S.K., B.G.A.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (R.S., J.F., M.S.); andThe Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.P., W.-R.S.)
| | - Bikram Pant
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (K.D., A.S.K., B.G.A.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (R.S., J.F., M.S.); andThe Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.P., W.-R.S.)
| | - Wolf-Rüdiger Scheible
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (K.D., A.S.K., B.G.A.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (R.S., J.F., M.S.); andThe Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.P., W.-R.S.)
| | - Joachim Fisahn
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (K.D., A.S.K., B.G.A.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (R.S., J.F., M.S.); andThe Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.P., W.-R.S.)
| | - Mark Stitt
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (K.D., A.S.K., B.G.A.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (R.S., J.F., M.S.); andThe Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.P., W.-R.S.)
| | - Brian G Ayre
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (K.D., A.S.K., B.G.A.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (R.S., J.F., M.S.); andThe Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (B.P., W.-R.S.)
| |
Collapse
|
16
|
Yang WC, Wan J. Transgenic crops: an option for future agriculture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:510-511. [PMID: 21733120 DOI: 10.1111/j.1744-7909.2011.01064.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|