1
|
Xiong J, Liu L, Ma X, Li F, Tang C, Li Z, Lü B, Zhou T, Lian X, Chang Y, Tang M, Xie S, Lu X. Characterization of PtAOS1 Promoter and Three Novel Interacting Proteins Responding to Drought in Poncirus trifoliata. Int J Mol Sci 2020; 21:ijms21134705. [PMID: 32630273 PMCID: PMC7370134 DOI: 10.3390/ijms21134705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
Jasmonic acid (JA) plays a crucial role in various biological processes including development, signal transduction and stress response. Allene oxide synthase (AOS) catalyzing (13S)-hydroperoxyoctadecatrienoic acid (13-HPOT) to an unstable allene oxide is involved in the first step of JA biosynthesis. Here, we isolated the PtAOS1 gene and its promoter from trifoliate orange (Poncirus trifoliata). PtAOS1 contains a putative chloroplast targeting sequence in N-terminal and shows relative to pistachio (Pistacia vera) AOS. A number of stress-, light- and hormone-related cis-elements were found in the PtAOS1 promoter which may be responsible for the up-regulation of PtAOS1 under drought and JA treatments. Transient expression in tobacco (Nicotiana benthamiana) demonstrated that the P-532 (-532 to +1) fragment conferring drive activity was a core region in the PtAOS1 promoter. Using yeast one-hybrid, three novel proteins, PtDUF886, PtDUF1685 and PtRAP2.4, binding to P-532 were identified. The dual luciferase assay in tobacco illustrated that all three transcription factors could enhance PtAOS1 promoter activity. Genes PtDUF1685 and PtRAP2.4 shared an expression pattern which was induced significantly by drought stress. These findings should be available evidence for trifoliate orange responding to drought through JA modulation.
Collapse
Affiliation(s)
- Jiang Xiong
- Department of Horticulture, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.X.); (L.L.); (X.M.); (F.L.); (C.T.); (Z.L.); (B.L.); (T.Z.); (X.L.); (Y.C.); (M.T.); (S.X.)
- National Centre for Citrus Improvement, Changsha 410128, China
| | - Lian Liu
- Department of Horticulture, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.X.); (L.L.); (X.M.); (F.L.); (C.T.); (Z.L.); (B.L.); (T.Z.); (X.L.); (Y.C.); (M.T.); (S.X.)
- National Centre for Citrus Improvement, Changsha 410128, China
| | - Xiaochuan Ma
- Department of Horticulture, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.X.); (L.L.); (X.M.); (F.L.); (C.T.); (Z.L.); (B.L.); (T.Z.); (X.L.); (Y.C.); (M.T.); (S.X.)
- National Centre for Citrus Improvement, Changsha 410128, China
| | - Feifei Li
- Department of Horticulture, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.X.); (L.L.); (X.M.); (F.L.); (C.T.); (Z.L.); (B.L.); (T.Z.); (X.L.); (Y.C.); (M.T.); (S.X.)
- National Centre for Citrus Improvement, Changsha 410128, China
- Institute of Horticulture, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Chaolan Tang
- Department of Horticulture, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.X.); (L.L.); (X.M.); (F.L.); (C.T.); (Z.L.); (B.L.); (T.Z.); (X.L.); (Y.C.); (M.T.); (S.X.)
- National Centre for Citrus Improvement, Changsha 410128, China
| | - Zehang Li
- Department of Horticulture, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.X.); (L.L.); (X.M.); (F.L.); (C.T.); (Z.L.); (B.L.); (T.Z.); (X.L.); (Y.C.); (M.T.); (S.X.)
- National Centre for Citrus Improvement, Changsha 410128, China
| | - Biwen Lü
- Department of Horticulture, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.X.); (L.L.); (X.M.); (F.L.); (C.T.); (Z.L.); (B.L.); (T.Z.); (X.L.); (Y.C.); (M.T.); (S.X.)
- National Centre for Citrus Improvement, Changsha 410128, China
| | - Tie Zhou
- Department of Horticulture, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.X.); (L.L.); (X.M.); (F.L.); (C.T.); (Z.L.); (B.L.); (T.Z.); (X.L.); (Y.C.); (M.T.); (S.X.)
- National Centre for Citrus Improvement, Changsha 410128, China
| | - Xuefei Lian
- Department of Horticulture, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.X.); (L.L.); (X.M.); (F.L.); (C.T.); (Z.L.); (B.L.); (T.Z.); (X.L.); (Y.C.); (M.T.); (S.X.)
- National Centre for Citrus Improvement, Changsha 410128, China
| | - Yuanyuan Chang
- Department of Horticulture, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.X.); (L.L.); (X.M.); (F.L.); (C.T.); (Z.L.); (B.L.); (T.Z.); (X.L.); (Y.C.); (M.T.); (S.X.)
- National Centre for Citrus Improvement, Changsha 410128, China
| | - Mengjing Tang
- Department of Horticulture, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.X.); (L.L.); (X.M.); (F.L.); (C.T.); (Z.L.); (B.L.); (T.Z.); (X.L.); (Y.C.); (M.T.); (S.X.)
- National Centre for Citrus Improvement, Changsha 410128, China
| | - Shenxi Xie
- Department of Horticulture, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.X.); (L.L.); (X.M.); (F.L.); (C.T.); (Z.L.); (B.L.); (T.Z.); (X.L.); (Y.C.); (M.T.); (S.X.)
- National Centre for Citrus Improvement, Changsha 410128, China
| | - Xiaopeng Lu
- Department of Horticulture, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (J.X.); (L.L.); (X.M.); (F.L.); (C.T.); (Z.L.); (B.L.); (T.Z.); (X.L.); (Y.C.); (M.T.); (S.X.)
- National Centre for Citrus Improvement, Changsha 410128, China
- Correspondence: ; Tel./Fax: +86-0731-84618171
| |
Collapse
|
2
|
Rodriguez-Villalon A. Wiring a plant: genetic networks for phloem formation in Arabidopsis thaliana roots. THE NEW PHYTOLOGIST 2016; 210:45-50. [PMID: 26171671 DOI: 10.1111/nph.13527] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/25/2015] [Indexed: 05/07/2023]
Abstract
In plants, phloem conduits form a specialized vascular network mediating the exchange of nutrients and signaling molecules between distantly separated organs. To become effective transport elements, protophloem cells undergo a rather unique, differentiation program that involves nucleus degradation, organelle rearrangement and cell wall thickening. Yet, protophloem sieve elements remain alive because their essential metabolic functions are supported by their neighboring companion cells. In spite of the importance of the phloem, the molecular mechanisms orchestrating protophloem specification and differentiation remain still poorly understood. In this review, I provide a summary of recent discoveries regarding morphogenetic events that determine phloem formation, and also a discussion of the systemic effects on root architecture derived from impaired protophloem differentiation programs.
Collapse
Affiliation(s)
- Antia Rodriguez-Villalon
- Department of Biology, Swiss Federal Institute of Technology (ETH-Z), CH-8092, Zurich, Switzerland
| |
Collapse
|
3
|
Zhang M, Li S, Nie L, Chen Q, Xu X, Yu L, Fu C. Two jasmonate-responsive factors, TcERF12 and TcERF15, respectively act as repressor and activator of tasy gene of taxol biosynthesis in Taxus chinensis. PLANT MOLECULAR BIOLOGY 2015; 89:463-73. [PMID: 26445975 DOI: 10.1007/s11103-015-0382-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/19/2015] [Indexed: 05/10/2023]
Abstract
Methyl jasmonate (MeJA) is one of the most effective inducers of taxol biosynthetic genes, particularly the tasy gene. However, the mechanism underlying the regulation of tasy by MeJA is still unknown. In this study, a 550-bp 5'-flanking sequence was obtained and confirmed as the promoter of the tasy gene. Deletion analysis revealed that the fragment containing a GCC-box from -150 to -131 was the crucial jasmonate (JA)-responsive element, designated as JRE. Using JRE as bait, two binding proteins, namely TcERF12 and TcERF15, were discovered. Sequence alignment and phylogenetic analysis showed that TcERF12 was related to the repressor AtERF3, while TcERF15 was more related to the activator ORA59; these are typical GCC-box-binding ethylene-responsive factors. Both could significantly respond to MeJA for 10 and 4.5 times, respectively, in 0.5 h. When the two TcERFs were overexpressed in Taxus cells, tasy gene expression decreased by 2.1 times in TcERF12-overexpressing cells, but increased by 2.5 times in TcERF15-overexpressing cells. Results indicated that TcERF12 and TcERF15 were negative and positive regulators, respectively, in the JA signal transduction to the tasy gene by binding the GCC-box in the JRE of the tasy promoter. Our results promote further research on regulatory mechanisms of taxol biosynthesis.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Shutao Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Lin Nie
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Qingpu Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Xiangping Xu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China.
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China.
| | - Chunhua Fu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China.
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
4
|
Massange-Sanchez JA, Palmeros-Suarez PA, Martinez-Gallardo NA, Castrillon-Arbelaez PA, Avilés-Arnaut H, Alatorre-Cobos F, Tiessen A, Délano-Frier JP. The novel and taxonomically restricted Ah24 gene from grain amaranth (Amaranthus hypochondriacus) has a dual role in development and defense. FRONTIERS IN PLANT SCIENCE 2015; 6:602. [PMID: 26300899 PMCID: PMC4524895 DOI: 10.3389/fpls.2015.00602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 07/21/2015] [Indexed: 05/03/2023]
Abstract
Grain amaranths tolerate stress and produce highly nutritious seeds. We have identified several (a)biotic stress-responsive genes of unknown function in Amaranthus hypochondriacus, including the so-called Ah24 gene. Ah24 was expressed in young or developing tissues; it was also strongly induced by mechanical damage, insect herbivory and methyl jasmonate and in meristems and newly emerging leaves of severely defoliated plants. Interestingly, an in silico analysis of its 1304 bp promoter region showed a predominance of regulatory boxes involved in development, but not in defense. The Ah24 cDNA encodes a predicted cytosolic protein of 164 amino acids, the localization of which was confirmed by confocal microscopy. Additional in silico analysis identified several other Ah24 homologs, present almost exclusively in plants belonging to the Caryophyllales. The possible function of this gene in planta was examined in transgenic Ah24 overexpressing Arabidopsis thaliana and Nicotiana tabacum plants. Transformed Arabidopsis showed enhanced vegetative growth and increased leaf number with no penalty in one fitness component, such as seed yield, in experimental conditions. Transgenic tobacco plants, which grew and reproduced normally, had increased insect herbivory resistance. Modified vegetative growth in transgenic Arabidopsis coincided with significant changes in the expression of genes controlling phytohormone synthesis or signaling, whereas increased resistance to insect herbivory in transgenic tobacco coincided with higher jasmonic acid and proteinase inhibitor activity levels, plus the accumulation of nicotine and several other putative defense-related metabolites. It is proposed that the primary role of the Ah24 gene in A. hypochondriacus is to contribute to a rapid recovery post-wounding or defoliation, although its participation in defense against insect herbivory is also plausible.
Collapse
Affiliation(s)
- Julio A. Massange-Sanchez
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| | - Paola A. Palmeros-Suarez
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| | - Norma A. Martinez-Gallardo
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| | - Paula A. Castrillon-Arbelaez
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| | - Hamlet Avilés-Arnaut
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo LeónSan Nicolás de los Garza, México
| | | | - Axel Tiessen
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| | - John P. Délano-Frier
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad IrapuatoIrapuato, México
| |
Collapse
|
5
|
Song Y. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:106-13. [PMID: 24237670 DOI: 10.1111/jipb.12131] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/06/2013] [Indexed: 05/10/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) was the first synthetic herbicide to be commercially developed and has commonly been used as a broadleaf herbicide for over 60 years. It is a selective herbicide that kills dicots without affecting monocots and mimics natural auxin at the molecular level. Physiological responses of dicots sensitive to auxinic herbicides include abnormal growth, senescence, and plant death. The identification of auxin receptors, auxin transport carriers, transcription factors response to auxin, and cross-talk among phytohormones have shed light on the molecular action mode of 2,4-D as a herbicide. Here, the molecular action mode of 2,4-D is highlighted according to the latest findings, emphasizing the physiological process, perception, and signal transduction under herbicide treatment.
Collapse
Affiliation(s)
- Yaling Song
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, the Chinese Academy of Sciences, Mengla, 666303, China
| |
Collapse
|
6
|
Bartels S, Lori M, Mbengue M, van Verk M, Klauser D, Hander T, Böni R, Robatzek S, Boller T. The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern-triggered immune responses. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5309-21. [PMID: 24151300 DOI: 10.1093/jxb/ert330] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In Arabidopsis thaliana, the endogenous danger peptides, AtPeps, have been associated with plant defences reminiscent of those induced in pattern-triggered immunity. AtPeps are perceived by two homologous receptor kinases, PEPR1 and PEPR2, and are encoded in the C termini of the PROPEP precursors. Here, we report that, contrary to the seemingly redundant AtPeps, the PROPEPs fall at least into two distinct groups. As revealed by promoter-β-glucuronidase studies, expression patterns of PROPEP1-3, -5, and -8 partially overlapped and correlated with those of the PEPR1 and -2 receptors, whereas those of PROPEP4 and -7 did not share any similarities with the former. Moreover, bi-clustering analysis indicated an association of PROPEP1, -2, and -3 with plant defence, whereas PROPEP5 expression was related to patterns of plant reproduction. In addition, at the protein level, PROPEPs appeared to be distinct. PROPEP3::YFP (fused to yellow fluorescent protein) was present in the cytosol, but, in contrast to previous predictions, PROPEP1::YFP and PROPEP6::YFP localized to the tonoplast. Together with the expression patterns, this could point to potentially non-redundant roles among the members of the PROPEP family. By contrast, their derived AtPeps, including the newly reported AtPep8, when applied exogenously, provoked activation of defence-related responses in a similar manner, suggesting a high level of functional redundancy between the AtPeps. Taken together, our findings reveal an apparent antagonism between AtPep redundancy and PROPEP variability, and indicate new roles for PROPEPs besides plant immunity.
Collapse
Affiliation(s)
- Sebastian Bartels
- Zürich-Basel Plant Science Center, University of Basel, Department of Environmental Sciences, Botany, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Huda KMK, Banu MSA, Pathi KM, Tuteja N. Reproductive organ and vascular specific promoter of the rice plasma membrane Ca2+ATPase mediates environmental stress responses in plants. PLoS One 2013; 8:e57803. [PMID: 23469243 PMCID: PMC3585799 DOI: 10.1371/journal.pone.0057803] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/25/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Plasma membrane Ca(2+)ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca(2+)) from the cell, hence regulating Ca(2+) level within cells. Though plant Ca(2+)ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied. RESULTS The 1478 bp promoter sequence of rice plasma membrane Ca(2+)ATPase contains cis-acting elements responsive to stresses and plant hormones. To identify the functional region, serial deletions of the promoter were fused with the GUS sequence and four constructs were obtained. These were differentially activated under NaCl, PEG cold, methyl viologen, abscisic acid and methyl jasmonate treatments. We demonstrated that the rice plasma membrane Ca(2+)ATPase promoter is responsible for vascular-specific and multiple stress-inducible gene expression. Only full-length promoter showed specific GUS expression under stress conditions in floral parts. High GUS activity was observed in roots with all the promoter constructs. The -1478 to -886 bp flanking region responded well upon treatment with salt and drought. Only the full-length promoter presented cold-induced GUS expression in leaves, while in shoots slight expression was observed for -1210 and -886 bp flanking region. The -1210 bp deletion significantly responded to exogenous methyl viologen and abscisic acid induction. The -1210 and -886 bp flanking region resulted in increased GUS activity in leaves under methyl jasmonate treatments, whereas in shoots the -886 bp and -519 bp deletion gave higher expression. Salicylic acid failed to induce GUS activities in leaves for all the constructs. CONCLUSIONS The rice plasma membrane Ca(2+)ATPase promoter is a reproductive organ-specific as well as vascular-specific. This promoter contains drought, salt, cold, methyl viologen, abscisic acid and methyl jasmonate related cis-elements, which regulated gene expression. Overall, the tissue-specificity and inducible nature of this promoter could grant wide applicability in plant biotechnology.
Collapse
Affiliation(s)
- Kazi Md. Kamrul Huda
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Mst. Sufara Akhter Banu
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Krishna Mohan Pathi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
8
|
Jirschitzka J, Mattern DJ, Gershenzon J, D'Auria JC. Learning from nature: new approaches to the metabolic engineering of plant defense pathways. Curr Opin Biotechnol 2012; 24:320-8. [PMID: 23141769 DOI: 10.1016/j.copbio.2012.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/12/2012] [Accepted: 10/18/2012] [Indexed: 12/31/2022]
Abstract
Biotechnological manipulation of plant defense pathways can increase crop resistance to herbivores and pathogens while also increasing yields of medicinal, industrial, flavor and fragrance compounds. The most successful achievements in engineering defense pathways can be attributed to researchers striving to imitate natural plant regulatory mechanisms. For example, the introduction of transcription factors that control several genes in one pathway is often a valuable strategy to increase flux in that pathway. The use of multi-gene cassettes which mimic natural gene clusters can facilitate coordinated regulation of a pathway and speed transformation efforts. The targeting of defense pathway genes to organs and tissues in which the defensive products are typically made and stored can also increase yield as well as defensive potential.
Collapse
Affiliation(s)
- Jan Jirschitzka
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | | | | | | |
Collapse
|