1
|
Zhang B, Huang S, Guo Z, Meng Y, Li X, Tian Y, Chen W. Salicylic acid accelerates carbon starvation-induced leaf senescence in Arabidopsis thaliana by inhibiting autophagy through Nonexpressor of pathogenesis-related genes 1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111859. [PMID: 37673221 DOI: 10.1016/j.plantsci.2023.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/09/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
In plants, leaf senescence is regulated by several factors, including age and carbon starvation. The molecular mechanism of age-regulated developmental leaf senescence differs from that of carbon starvation-induced senescence. Salicylic acid (SA) and Nonexpressor of pathogenesis-related genes 1 (NPR1) play important roles in promoting developmental leaf senescence. However, the relationship between SA signaling and carbon starvation-induced leaf senescence is not currently well understood. Here, we used Arabidopsis thaliana as material and found that carbon starvation-induced leaf senescence was accelerated in the SA dihydroxylase mutants s3hs5h compared to the Columbia ecotype (Col). Exogenous SA treatment significantly promoted carbon starvation-induced leaf senescence, especially in NPR1-GFP. Increasing the endogenous SA and overexpression of NPR1 inhibited carbon starvation-induced autophagy. However, mutation of NPR1 delayed carbon starvation-induced leaf senescence, increased autophagosome production and accelerated autophagic degradation of the Neighbor of BRCA1 gene 1 (NBR1). In conclusion, SA promotes carbon starvation-induced leaf senescence by inhibiting autophagy via NPR1.
Collapse
Affiliation(s)
- Baihong Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Shuqin Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zetian Guo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yixuan Meng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xue Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yuzhen Tian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
2
|
Zhang Z, Xu M, Guo Y. Ring/U-Box Protein AtUSR1 Functions in Promoting Leaf Senescence Through JA Signaling Pathway in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:608589. [PMID: 33391323 PMCID: PMC7772223 DOI: 10.3389/fpls.2020.608589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/17/2020] [Indexed: 05/10/2023]
Abstract
Leaf senescence is regulated by a large number of internal and environmental factors. Here, we report that AtUSR1 (U-box Senescence Related 1) which encodes a plant Ring/U-box protein, is involved in age-dependent and dark-induced leaf senescence in Arabidopsis. Expression of AtUSR1 gene in leaves was up-regulated in darkness and during aging. Plants of usr1, an AtUSR1 gene knock-down mutant, showed a significant delay in age-dependent and dark-induced leaf senescence and the delayed senescence phenotype was rescued when the AtUSR1 gene was transferred back to the mutant plants. Meanwhile, overexpression of AtUSR1 caused accelerated leaf senescence. Furthermore, the role of AtUSR1 in regulating leaf senescence is related to MYC2-mediuated jasmonic acid (JA) signaling pathway. MeJA treatments promoted the accumulation of AtUSR1 transcripts and this expression activation was dependent on the function of MYC2, a key transcription factor in JA signaling. Dual-luciferase assay results indicated that MYC2 promoted the expression of AtUSR1. Overexpression of AtUSR1 in myc2 mutant plants showed precocious senescence, while myc2 mutation alone caused a delay in leaf senescence, suggesting that AtUSR1 functions downstream to MYC2 in the JA signaling pathway in promoting leaf senescence.
Collapse
|
3
|
Gujjar RS, Supaibulwatana K. The Mode of Cytokinin Functions Assisting Plant Adaptations to Osmotic Stresses. PLANTS (BASEL, SWITZERLAND) 2019; 8:E542. [PMID: 31779090 PMCID: PMC6963579 DOI: 10.3390/plants8120542] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/15/2023]
Abstract
Plants respond to abiotic stresses by activating a specific genetic program that supports survival by developing robust adaptive mechanisms. This leads to accelerated senescence and reduced growth, resulting in negative agro-economic impacts on crop productivity. Cytokinins (CKs) customarily regulate various biological processes in plants, including growth and development. In recent years, cytokinins have been implicated in adaptations to osmotic stresses with improved plant growth and yield. Endogenous CK content under osmotic stresses can be enhanced either by transforming plants with a bacterial isopentenyl transferase (IPT) gene under the control of a stress inducible promoter or by exogenous application of synthetic CKs. CKs counteract osmotic stress-induced premature senescence by redistributing soluble sugars and inhibiting the expression of senescence-associated genes. Elevated CK contents under osmotic stress antagonize abscisic acid (ABA) signaling and ABA mediated responses, delay leaf senescence, reduce reactive oxygen species (ROS) damage and lipid peroxidation, improve plant growth, and ameliorate osmotic stress adaptability in plants.
Collapse
Affiliation(s)
- Ranjit Singh Gujjar
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Division of Crop Improvement, Indian Institute of Sugarcane Research, Lucknow 226002, India
| | | |
Collapse
|
4
|
Zhuang W, Liu T, Qu S, Cai B, Qin Y, Zhang F, Wang Z. Identification of candidate genes for leaf scorch in Populus deltoids by the whole genome resequencing analysis. Sci Rep 2018; 8:16416. [PMID: 30401919 PMCID: PMC6219557 DOI: 10.1038/s41598-018-33739-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/03/2018] [Indexed: 01/08/2023] Open
Abstract
Leaf scorch exists as a common phenomenon in the development of plant, especially when plants encounter various adversities, which leads to great losses in agricultural production. Both Jinhong poplar (JHP) and Caihong poplar (CHP) (Populus deltoids) are obtained from a bud sport on Zhonghong poplar. Compared with CHP, JHP always exhibits leaf scorch, poor growth, premature leaf discoloration, and even death. In this study, the candidate genes associated with leaf scorch between JHP and CHP were identified by the whole genome resequencing using Illumina HiSeqTM. There were 218,880 polymorphic SNPs and 46,933 indels between JHP and CHP, respectively. Among these, the candidate genes carrying non-synonymous SNPs in coding regions were classified into 6 groups. The expression pattern of these candidate genes was also explored in JHP and CHP among different sampling stages. Combined with the qRT-PCR analysis, the results showed that genes associated with transport of various nutritional elements, senescence and MYB transcription factor might play important roles during the process of leaf scorch in Populus deltoids. Four genes belonging to these three groups carried more than three SNPs in their coding sequence, which might play important roles in leaf scorch. The above results provided candidate genes involved in leaf scorch in Populus deltoids, and made us better understand the molecular regulation mechanism of leaf scorch in Populus deltoids.
Collapse
Affiliation(s)
- Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Tianyu Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Binhua Cai
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yalong Qin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Fengjiao Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
5
|
Genetic and Physio-Biochemical Characterization of a Novel Premature Senescence Leaf Mutant in Rice ( Oryza sativa L.). Int J Mol Sci 2018; 19:ijms19082339. [PMID: 30096885 PMCID: PMC6122088 DOI: 10.3390/ijms19082339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
Premature senescence greatly affects the yield production and the grain quality in plants, although the molecular mechanisms are largely unknown. Here, we identified a novel rice premature senescence leaf 85 (psl85) mutant from ethyl methane sulfonate (EMS) mutagenesis of cultivar Zhongjian100 (the wild-type, WT). The psl85 mutant presented a distinct dwarfism and premature senescence leaf phenotype, starting from the seedling stage to the mature stage, with decreasing level of chlorophyll and degradation of chloroplast, declined photosynthetic capacity, increased content of malonaldehyde (MDA), upregulated expression of senescence-associated genes, and disrupted reactive oxygen species (ROS) scavenging system. Moreover, endogenous abscisic acid (ABA) level was significantly increased in psl85 at the late aging phase, and the detached leaves of psl85 showed more rapid chlorophyll deterioration than that of WT under ABA treatment, indicating that PSL85 was involved in ABA-induced leaf senescence. Genetic analysis revealed that the premature senescence leaf phenotype was controlled by a single recessive nuclear gene which was finally mapped in a 47 kb region on the short arm of chromosome 7, covering eight candidate open reading frames (ORFs). No similar genes controlling a premature senescence leaf phenotype have been identified in the region, and cloning and functional analysis of the gene is currently underway.
Collapse
|
6
|
Zeng DD, Yang CC, Qin R, Alamin M, Yue EK, Jin XL, Shi CH. A guanine insert in OsBBS1 leads to early leaf senescence and salt stress sensitivity in rice (Oryza sativa L.). PLANT CELL REPORTS 2018; 37:933-946. [PMID: 29572657 DOI: 10.1007/s00299-018-2280-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/14/2018] [Indexed: 05/24/2023]
Abstract
A rice receptor-like kinase gene OSBBS1/OsRLCK109 was identified; this gene played vital roles in leaf senescence and the salt stress response. Early leaf senescence can cause negative effects on rice yield, but the underlying molecular regulation is not fully understood. bilateral blade senescence 1 (bbs1), an early leaf senescence mutant with a premature senescence phenotype that occurs mainly performing at the leaf margins, was isolated from a rice mutant population generated by ethylmethane sulfonate (EMS) treatment. The mutant showed premature leaf senescence beginning at the tillering stage and exhibited severe symptoms at the late grain-filling stage. bbs1 showed accelerated dark-induced leaf senescence. The OsBBS1 gene was cloned by a map-based cloning strategy, and a guanine (G) insertion was found in the first exon of LOC_Os03g24930. This gene encodes a receptor-like cytoplasmic kinase and was named OsRLCK109 in a previous study. Transgenic LOC_Os03g24930 knockout plants generated by a CRISPR/Cas9 strategy exhibited similar early leaf senescence phenotypes as did the bbs1 mutant, which confirmed that LOC_Os03g24930 was the OsBBS1 gene. OsBBS1/OsRLCK109 was expressed in all detected tissues and was predominantly expressed in the main vein region of mature leaves. The expression of OsBBS1 could be greatly induced by salt stress, and the bbs1 mutant exhibited hypersensitivity to salt stress. In conclusion, this is the first identification of OsRLCKs participating in leaf senescence and playing critical roles in the salt stress response in rice (Oryza sativa L.).
Collapse
Affiliation(s)
- Dong-Dong Zeng
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, China
| | - Cheng-Cong Yang
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, China
| | - Ran Qin
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, China
| | - Md Alamin
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, China
| | - Er-Kui Yue
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Li Jin
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Hai Shi
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Li Z, Woo HR, Guo H. Genetic redundancy of senescence-associated transcription factors in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:811-823. [PMID: 29309664 DOI: 10.1093/jxb/erx345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/29/2017] [Indexed: 05/25/2023]
Abstract
Leaf senescence is a genetically programmed process that constitutes the last stage of leaf development, and involves massive changes in gene expression. As a result of the intensive efforts that have been made to elucidate the molecular genetic mechanisms underlying leaf senescence, 184 genes that alter leaf senescence phenotypes when mutated or overexpressed have been identified in Arabidopsis thaliana over the past two decades. Concurrently, experimental evidence on functional redundancy within senescence-associated genes (SAGs) has increased. In this review, we focus on transcription factors that play regulatory roles in Arabidopsis leaf senescence, and describe the relationships among gene duplication, gene expression level, and senescence phenotypes. Previous findings and our re-analysis demonstrate the widespread existence of duplicate SAG pairs and a correlation between gene expression levels in duplicate genes and senescence-related phenotypic severity of the corresponding mutants. We also highlight effective and powerful tools that are available for functional analyses of redundant SAGs. We propose that the study of duplicate SAG pairs offers a unique opportunity to understand the regulation of leaf senescence and can guide the investigation of the functions of redundant SAGs via reverse genetic approaches.
Collapse
Affiliation(s)
- Zhonghai Li
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hongwei Guo
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Poret M, Chandrasekar B, van der Hoorn RAL, Avice JC. Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:139-153. [PMID: 26993244 DOI: 10.1016/j.plantsci.2016.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
Oilseed rape (Brassica napus L.) is a crop plant characterized by a poor nitrogen (N) use efficiency that is mainly due to low N remobilization efficiency during the sequential leaf senescence of the vegetative stage. As a high leaf N remobilization efficiency was strongly linked to a high remobilization of proteins during leaf senescence of rapeseed, our objective was to identify senescence-associated protease activities implicated in the protein degradation. To reach this goal, leaf senescence processes and protease activities were investigated in a mature leaf becoming senescent in plants subjected to ample or low nitrate supply. The characterization of protease activities was performed by using in vitro analysis of RuBisCO degradation with or without inhibitors of specific protease classes followed by a protease activity profiling using activity-dependent probes. As expected, the mature leaf became senescent regardless of the nitrate treatment, and nitrate limitation enhanced the senescence processes associated with an enhanced degradation of soluble proteins. The characterization of protease activities revealed that: (i) aspartic proteases and the proteasome were active during senescence regardless of nitrate supply, and (ii) the activities of serine proteases and particularly cysteine proteases (Papain-like Cys proteases and vacuolar processing enzymes) increased when protein remobilization associated with senescence was accelerated by nitrate limitation. Short statement: Serine and particularly cysteine proteases (both PLCPs and VPEs) seem to play a crucial role in the efficient protein remobilization when leaf senescence of oilseed rape was accelerated by nitrate limitation.
Collapse
Affiliation(s)
- Marine Poret
- Université de Caen Normandie, F-14032 Caen, France; UCBN, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France; INRA, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France.
| | - Balakumaran Chandrasekar
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom; The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany.
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom.
| | - Jean-Christophe Avice
- Université de Caen Normandie, F-14032 Caen, France; UCBN, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France; INRA, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France.
| |
Collapse
|
9
|
Xie Q, Liang Y, Zhang J, Zheng H, Dong G, Qian Q, Zuo J. Involvement of a Putative Bipartite Transit Peptide in Targeting Rice Pheophorbide a Oxygenase into Chloroplasts for Chlorophyll Degradation during Leaf Senescence. J Genet Genomics 2016; 43:145-54. [DOI: 10.1016/j.jgg.2015.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/27/2015] [Accepted: 09/15/2015] [Indexed: 11/15/2022]
|
10
|
Borrell AK, Mullet JE, George-Jaeggli B, van Oosterom EJ, Hammer GL, Klein PE, Jordan DR. Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6251-63. [PMID: 25381433 PMCID: PMC4223986 DOI: 10.1093/jxb/eru232] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stay-green sorghum plants exhibit greener leaves and stems during the grain-filling period under water-limited conditions compared with their senescent counterparts, resulting in increased grain yield, grain mass, and lodging resistance. Stay-green has been mapped to a number of key chromosomal regions, including Stg1, Stg2, Stg3, and Stg4, but the functions of these individual quantitative trait loci (QTLs) remain unclear. The objective of this study was to show how positive effects of Stg QTLs on grain yield under drought can be explained as emergent consequences of their effects on temporal and spatial water-use patterns that result from changes in leaf-area dynamics. A set of four Stg near-isogenic lines (NILs) and their recurrent parent were grown in a range of field and semicontrolled experiments in southeast Queensland, Australia. These studies showed that the four Stg QTLs regulate canopy size by: (1) reducing tillering via increased size of lower leaves, (2) constraining the size of the upper leaves; and (3) in some cases, decreasing the number of leaves per culm. In addition, they variously affect leaf anatomy and root growth. The multiple pathways by which Stg QTLs modulate canopy development can result in considerable developmental plasticity. The reduction in canopy size associated with Stg QTLs reduced pre-flowering water demand, thereby increasing water availability during grain filling and, ultimately, grain yield. The generic physiological mechanisms underlying the stay-green trait suggest that similar Stg QTLs could enhance post-anthesis drought adaptation in other major cereals such as maize, wheat, and rice.
Collapse
Affiliation(s)
- Andrew K Borrell
- University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Hermitage Research Facility, Warwick, QLD 4370, Australia
| | - John E Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Barbara George-Jaeggli
- Department of Agriculture, Fisheries and Forestry Queensland (DAFFQ), Hermitage Research Facility, Warwick, QLD 4370, Australia
| | | | - Graeme L Hammer
- University of Queensland, QAAFI, Brisbane, QLD 4072, Australia
| | - Patricia E Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - David R Jordan
- University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Hermitage Research Facility, Warwick, QLD 4370, Australia
| |
Collapse
|
11
|
Díaz-Mendoza M, Velasco-Arroyo B, González-Melendi P, Martínez M, Díaz I. C1A cysteine protease-cystatin interactions in leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3825-33. [PMID: 24600023 DOI: 10.1093/jxb/eru043] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Senescence-associated proteolysis in plants is a crucial process to relocalize nutrients from leaves to growing or storage tissues. The massive net degradation of proteins involves broad metabolic networks, different subcellular compartments, and several types of proteases and regulators. C1A cysteine proteases, grouped as cathepsin L-, B-, H-, and F-like according to their gene structures and phylogenetic relationships, are the most abundant enzymes responsible for the proteolytic activity during leaf senescence. Besides, cystatins as specific modulators of C1A peptidase activities exert a complex regulatory role in this physiological process. This overview article covers the most recent information on C1A proteases in leaf senescence in different plant species. Particularly, it is focussed on barley, as the unique species where the whole gene family members of C1A cysteine proteases and cystatins have been analysed.
Collapse
Affiliation(s)
- Mercedes Díaz-Mendoza
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Autovia M40 (Km 38), 28223-Pozuelo de Alarcon, Madrid, Spain
| | - Blanca Velasco-Arroyo
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Autovia M40 (Km 38), 28223-Pozuelo de Alarcon, Madrid, Spain
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Autovia M40 (Km 38), 28223-Pozuelo de Alarcon, Madrid, Spain
| | - Manuel Martínez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Autovia M40 (Km 38), 28223-Pozuelo de Alarcon, Madrid, Spain
| | - Isabel Díaz
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Autovia M40 (Km 38), 28223-Pozuelo de Alarcon, Madrid, Spain
| |
Collapse
|
12
|
OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci U S A 2014; 111:10013-8. [PMID: 24951508 DOI: 10.1073/pnas.1321568111] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It has long been established that premature leaf senescence negatively impacts the yield stability of rice, but the underlying molecular mechanism driving this relationship remains largely unknown. Here, we identified a dominant premature leaf senescence mutant, prematurely senile 1 (ps1-D). PS1 encodes a plant-specific NAC (no apical meristem, Arabidopsis ATAF1/2, and cup-shaped cotyledon2) transcriptional activator, Oryza sativa NAC-like, activated by apetala3/pistillata (OsNAP). Overexpression of OsNAP significantly promoted senescence, whereas knockdown of OsNAP produced a marked delay of senescence, confirming the role of this gene in the development of rice senescence. OsNAP expression was tightly linked with the onset of leaf senescence in an age-dependent manner. Similarly, ChIP-PCR and yeast one-hybrid assays demonstrated that OsNAP positively regulates leaf senescence by directly targeting genes related to chlorophyll degradation and nutrient transport and other genes associated with senescence, suggesting that OsNAP is an ideal marker of senescence onset in rice. Further analysis determined that OsNAP is induced specifically by abscisic acid (ABA), whereas its expression is repressed in both aba1 and aba2, two ABA biosynthetic mutants. Moreover, ABA content is reduced significantly in ps1-D mutants, indicating a feedback repression of OsNAP on ABA biosynthesis. Our data suggest that OsNAP serves as an important link between ABA and leaf senescence. Additionally, reduced OsNAP expression leads to delayed leaf senescence and an extended grain-filling period, resulting in a 6.3% and 10.3% increase in the grain yield of two independent representative RNAi lines, respectively. Thus, fine-tuning OsNAP expression should be a useful strategy for improving rice yield in the future.
Collapse
|
13
|
Salguero-Gómez R, Shefferson RP, Hutchings MJ. Plants do not count… or do they? New perspectives on the universality of senescence. THE JOURNAL OF ECOLOGY 2013; 101:545-554. [PMID: 23853389 PMCID: PMC3708120 DOI: 10.1111/1365-2745.12089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/01/2013] [Indexed: 05/23/2023]
Abstract
1. Senescence, the physiological decline that results in decreasing survival and/or reproduction with age, remains one of the most perplexing topics in biology. Most theories explaining the evolution of senescence (i.e. antagonistic pleiotropy, accumulation of mutations, disposable soma) were developed decades ago. Even though these theories have implicitly focused on unitary animals, they have also been used as the foundation from which the universality of senescence across the tree of life is assumed. 2. Surprisingly, little is known about the general patterns, causes and consequences of whole-individual senescence in the plant kingdom. There are important differences between plants and most animals, including modular architecture, the absence of early determination of cell lines between the soma and gametes, and cellular division that does not always shorten telomere length. These characteristics violate the basic assumptions of the classical theories of senescence and therefore call the generality of senescence theories into question. 3. This Special Feature contributes to the field of whole-individual plant senescence with five research articles addressing topics ranging from physiology to demographic modelling and comparative analyses. These articles critically examine the basic assumptions of senescence theories such as age-specific gene action, the evolution of senescence regardless of the organism's architecture and environmental filtering, and the role of abiotic agents on mortality trajectories. 4.Synthesis. Understanding the conditions under which senescence has evolved is of general importance across biology, ecology, evolution, conservation biology, medicine, gerontology, law and social sciences. The question 'why is senescence universal or why is it not?' naturally calls for an evolutionary perspective. Senescence is a puzzling phenomenon, and new insights will be gained by uniting methods, theories and observations from formal demography, animal demography and plant population ecology. Plants are more amenable than animals to experiments investigating senescence, and there is a wealth of published plant demographic data that enable interpretation of experimental results in the context of their full life cycles. It is time to make plants count in the field of senescence.
Collapse
Affiliation(s)
- Roberto Salguero-Gómez
- Evolutionary Biodemography Laboratory, Max Planck Institute for Demographic ResearchKonrad-Zuße straße 1, 18057, Rostock, Germany
- Centre for Biodiversity and Conservation Science, University of QueenslandGoddard Building #8, St Lucia, Qld, 4072, Australia
| | - Richard P Shefferson
- Odum School of Ecology, University of Georgia140 East Green Street, Athens, GA, 30601, USA
| | - Michael J Hutchings
- School of Life Sciences, University of SussexFalmer, Brighton, Sussex, BN1 9QG, UK
| |
Collapse
|
14
|
Wang Y, Lin A, Loake GJ, Chu C. H2O2-induced leaf cell death and the crosstalk of reactive nitric/oxygen species. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:202-8. [PMID: 23331502 DOI: 10.1111/jipb.12032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In plants, the chloroplast is the main reactive oxygen species (ROS) producing site under high light stress. Catalase (CAT), which decomposes hydrogen peroxide (H2 O2 ), is one of the controlling enzymes that maintains leaf redox homeostasis. The catalase mutants with reduced leaf catalase activity from different plant species exhibit an H2 O2 -induced leaf cell death phenotype. This phenotype was differently affected by light intensity or photoperiod, which may be caused by plant species, leaf redox status or growth conditions. In the rice CAT mutant nitric oxide excess 1 (noe1), higher H2 O2 levels induced the generation of nitric oxide (NO) and higher S-nitrosothiol (SNO) levels, suggesting that NO acts as an important endogenous mediator in H2 O2 -induced leaf cell death. As a free radical, NO could also react with other intracellular and extracellular targets and form a series of related molecules, collectively called reactive nitrogen species (RNS). Recent studies have revealed that both RNS and ROS are important partners in plant leaf cell death. Here, we summarize the recent progress on H2 O2 -induced leaf cell death and the crosstalk of RNS and ROS signals in the plant hypersensitive response (HR), leaf senescence, and other forms of leaf cell death triggered by diverse environmental conditions. [Formula: see text] [ Chengcai Chu (Corresponding author)].
Collapse
Affiliation(s)
- Yiqin Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
15
|
Liu CM. First issue of 2013: what's new for JIPB. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:2-4. [PMID: 23231726 DOI: 10.1111/jipb.12023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|