1
|
Yu BYK, Tossounian MA, Hristov SD, Lawrence R, Arora P, Tsuchiya Y, Peak-Chew SY, Filonenko V, Oxenford S, Angell R, Gouge J, Skehel M, Gout I. Regulation of metastasis suppressor NME1 by a key metabolic cofactor coenzyme A. Redox Biol 2021; 44:101978. [PMID: 33903070 PMCID: PMC8212152 DOI: 10.1016/j.redox.2021.101978] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/28/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
The metastasis suppressor protein NME1 is an evolutionarily conserved and multifunctional enzyme that plays an important role in suppressing the invasion and metastasis of tumour cells. The nucleoside diphosphate kinase (NDPK) activity of NME1 is well recognized in balancing the intracellular pools of nucleotide diphosphates and triphosphates to regulate cytoskeletal rearrangement and cell motility, endocytosis, intracellular trafficking, and metastasis. In addition, NME1 was found to function as a protein-histidine kinase, 3′-5′ exonuclease and geranyl/farnesyl pyrophosphate kinase. These diverse cellular functions are regulated at the level of expression, post-translational modifications, and regulatory interactions. The NDPK activity of NME1 has been shown to be inhibited in vitro and in vivo under oxidative stress, and the inhibitory effect mediated via redox-sensitive cysteine residues. In this study, affinity purification followed by mass spectrometric analysis revealed NME1 to be a major coenzyme A (CoA) binding protein in cultured cells and rat tissues. NME1 is also found covalently modified by CoA (CoAlation) at Cys109 in the CoAlome analysis of HEK293/Pank1β cells treated with the disulfide-stress inducer, diamide. Further analysis showed that recombinant NME1 is efficiently CoAlated in vitro and in cellular response to oxidising agents and metabolic stress. In vitro CoAlation of recombinant wild type NME1, but not the C109A mutant, results in the inhibition of its NDPK activity. Moreover, CoA also functions as a competitive inhibitor of the NME1 NDPK activity by binding non-covalently to the nucleotide binding site. Taken together, our data reveal metastasis suppressor protein NME1 as a novel binding partner of the key metabolic regulator CoA, which inhibits its nucleoside diphosphate kinase activity via non-covalent and covalent interactions. NME1 is a major CoA-binding protein. CoA can bind NME1 through covalent and non-covalent interactions. NME1 CoAlation is induced by oxidative and metabolic stress in mammalian cells. CoA inhibits the NDPK activity of NME1 in vitro.
Collapse
Affiliation(s)
- Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Stefan Denchev Hristov
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Ryan Lawrence
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Pallavi Arora
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Yugo Tsuchiya
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Sew Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine
| | - Sally Oxenford
- School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Richard Angell
- School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Jerome Gouge
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, United Kingdom
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine.
| |
Collapse
|
2
|
Ozretić P, Hanžić N, Proust B, Sabol M, Trnski D, Radić M, Musani V, Ciribilli Y, Milas I, Puljiz Z, Bosnar MH, Levanat S, Slade N. Expression profiles of p53/p73, NME and GLI families in metastatic melanoma tissue and cell lines. Sci Rep 2019; 9:12470. [PMID: 31462745 PMCID: PMC6713730 DOI: 10.1038/s41598-019-48882-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023] Open
Abstract
Unlike other tumours, TP53 is rarely mutated in melanoma; however, it fails to function as a tumour suppressor. We assume that its functions might be altered through interactions with several families of proteins, including p53/p73, NME and GLI. To elucidate the potential interplay among these families we analysed the expression profiles of aforementioned genes and proteins in a panel of melanoma cell lines, metastatic melanoma specimens and healthy corresponding tissue. Using qPCR a higher level of NME1 gene expression and lower levels of Δ40p53β, ΔNp73, GLI1, GLI2 and PTCH1 were observed in tumour samples compared to healthy tissue. Protein expression of Δ133p53α, Δ160p53α and ΔNp73α isoforms, NME1 and NME2, and N'ΔGLI1, GLI1FL, GLI2ΔN isoforms was elevated in tumour tissue, whereas ∆Np73β was downregulated. The results in melanoma cell lines, in general, support these findings. In addition, we correlated expression profiles with clinical features and outcome. Higher Δ133p53β and p53α mRNA and both GLI1 mRNA and GLI3R protein expression had a negative impact on the overall survival. Shorter overall survival was also connected with lower p53β and NME1 gene expression levels. In conclusion, all examined genes may have implications in melanoma development and functional inactivity of TP53.
Collapse
Affiliation(s)
- Petar Ozretić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Nikolina Hanžić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Bastien Proust
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Maja Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Diana Trnski
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Martina Radić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Vesna Musani
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Yari Ciribilli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Povo (Trento), IT-38123, Italy
| | - Ivan Milas
- Sestre milosrdnice University Hospital Center, Vinogradska cesta 29, HR-10000, Zagreb, Croatia
| | - Zvonimir Puljiz
- Sestre milosrdnice University Hospital Center, Vinogradska cesta 29, HR-10000, Zagreb, Croatia
| | - Maja Herak Bosnar
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Sonja Levanat
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Neda Slade
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
| |
Collapse
|
3
|
Peuchant E, Bats ML, Moranvillier I, Lepoivre M, Guitton J, Wendum D, Lacombe ML, Moreau-Gaudry F, Boissan M, Dabernat S. Metastasis suppressor NM23 limits oxidative stress in mammals by preventing activation of stress-activated protein kinases/JNKs through its nucleoside diphosphate kinase activity. FASEB J 2017; 31:1531-1546. [PMID: 28077425 DOI: 10.1096/fj.201600705r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 12/19/2016] [Indexed: 11/11/2022]
Abstract
NME1 (nonmetastatic expressed 1) gene, which encodes nucleoside diphosphate kinase (NDPK) A [also known as nonmetastatic clone 23 (NM23)-H1 in humans and NM23-M1 in mice], is a suppressor of metastasis, but several lines of evidence-mostly from plants-also implicate it in the regulation of the oxidative stress response. Here, our aim was to investigate the physiologic relevance of NDPK A with respect to the oxidative stress response in mammals and to study its molecular basis. NME1-knockout mice died sooner, suffered greater hepatocyte injury, and had lower superoxide dismutase activity than did wild-type (WT) mice in response to paraquat-induced acute oxidative stress. Deletion of NME1 reduced total NDPK activity and exacerbated activation of the stress-related MAPK, JNK, in the liver in response to paraquat. In a mouse transformed hepatocyte cell line and in primary cultures of normal human keratinocytes, MAPK activation in response to H2O2 and UVB, respectively, was dampened by expression of NM23-M1/NM23-H1, dependent on its NDPK catalytic activity. Furthermore, excess or depletion of NM23-M1/NM23-H1 NDPK activity did not affect the intracellular bulk concentration of nucleoside di- and triphosphates. NME1-deficient mouse embryo fibroblasts grew poorly in culture, were more sensitive to stress than WT fibroblasts, and did not immortalize, which suggested that they senesce earlier than do WT fibroblasts. Collectively, these results indicate that the NDPK activity of NM23-M1/NM23-H1 protects cells from acute oxidative stress by inhibiting activation of JNK in mammal models.-Peuchant, E., Bats, M.-L., Moranvillier, I., Lepoivre, M., Guitton, J., Wendum, D., Lacombe, M.-L., Moreau-Gaudry, F., Boissan, M., Dabernat, S. Metastasis suppressor NM23 limits oxidative stress in mammals by preventing activation of stress-activated protein kinases/JNKs through its nucleoside diphosphate kinase activity.
Collapse
Affiliation(s)
- Evelyne Peuchant
- Collège Santé Université de Bordeaux, Bordeaux, France.,INSERM 1035, Bordeaux, France.,Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Marie-Lise Bats
- Collège Santé Université de Bordeaux, Bordeaux, France.,Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Isabelle Moranvillier
- Collège Santé Université de Bordeaux, Bordeaux, France.,INSERM 1035, Bordeaux, France
| | - Michel Lepoivre
- Université Paris Sud, Commissariat à l'Énergie Atomique et aux Énergies, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 9198, Orsay, France
| | - Jérôme Guitton
- Hospices Civils de Lyon, Pierre Bénite, France.,Université de Lyon, Lyon, France
| | - Dominique Wendum
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, INSERM, Unité Mixte de Recherche S938, Saint-Antoine Research Center, Paris, France.,Laboratoire d'Anatomie Pathologique, Hôpital Saint-Antoine, Paris, France
| | - Marie-Lise Lacombe
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, INSERM, Unité Mixte de Recherche S938, Saint-Antoine Research Center, Paris, France
| | - François Moreau-Gaudry
- Collège Santé Université de Bordeaux, Bordeaux, France.,INSERM 1035, Bordeaux, France.,Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Mathieu Boissan
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, INSERM, Unité Mixte de Recherche S938, Saint-Antoine Research Center, Paris, France; .,Service de Biochimie et Hormonologie, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sandrine Dabernat
- Collège Santé Université de Bordeaux, Bordeaux, France; .,INSERM 1035, Bordeaux, France.,Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| |
Collapse
|
4
|
Lei K, Li YL, Wang Y, Wen J, Wu HZ, Yu DY, Li WF. Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice. J Zhejiang Univ Sci B 2016; 16:487-95. [PMID: 26055910 DOI: 10.1631/jzus.b1400342] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
While a high-fat diet (HFD) is assumed to be related to fat-mediated oxidative stress decreasing antioxidant enzyme activity, probiotics are believed to have positive effects on the regulation of HFD-induced obesity as well as lipid metabolism, energy homeostasis, and anti-oxidation. Because Bacillus subtilis B10 has beneficial effects on the abnormal lipid metabolism and the oxidative stress in HFD-induced obese mice, ICR mice were randomly assigned into an HFD group and the HFD was supplemented with 0.1% (w/w) Bacillus subtilis B10 (HFD+B10 group). Thereafter, 30-d treatments were run, and then hepatic lipid level and antioxidant status were measured. The expression of genes related to lipid metabolism and oxidative stress in the liver was determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). We found that HFD-induced obese mice treated with B10 showed a decrease in weight gain, serum glucose activity as well as hepatic triglyceride (TG), glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) activities. In addition, the gene expressions of antioxidant genes, glutathione reductase (GR), xanthine oxidase (XO), heat-shock protein 90 (Hsp90), and lipid synthesis gene 3β-hydroxysteroid-∆24 reductase (DHCR24) in the HFD+B10 group were down-regulated, suggesting alleviation of oxidative stress, while the lipolysis gene 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), energy metabolism gene peroxisome proliferator-activated receptor α (PPARα) and the gene encoding tumor-suppressor protein p53 were up-regulated. The regulatory and positive effect of dietary supplementation of probiotic B10 suggests that it has a beneficial effect on the homeostasis of the lipid metabolism and on alleviating oxidative stress in HFD-induced obese mice.
Collapse
Affiliation(s)
- Kai Lei
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Tong Y, Yung LY, Wong YH. Metastasis suppressors Nm23H1 and Nm23H2 differentially regulate neoplastic transformation and tumorigenesis. Cancer Lett 2015; 361:207-17. [PMID: 25748386 DOI: 10.1016/j.canlet.2015.02.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 11/30/2022]
Abstract
Nm23H1 and H2 are prototypical metastasis suppressors with diverse functions, but recent studies suggest that they may also regulate tumorigenesis. Here, we employed both cellular and in vivo assays to examine the effect of Nm23H1 and H2 on tumorigenesis induced by oncogenic Ras and/or p53 deficiency. Co-expression of Nm23H1 but not H2 in NIH3T3 cells effectively suppressed neoplastic transformation and tumorigenesis induced by the oncogenic H-Ras G12V mutant. Overexpression of Nm23H1 but not H2 also inhibited tumorigenesis by human cervical cancer HeLa cells with p53 deficiency. However, in human non-small-cell lung carcinoma H1299 cells harboring N-Ras Q61K oncogenic mutation and p53 deletion, overexpression of Nm23H1 did not affect tumorigenesis in nude mice assays, while overexpression of Nm23H2 enhanced tumor growth with elevated expression of the c-Myc proto-oncogene. Collectively, these results suggest that Nm23H1 and H2 have differential abilities to modulate tumorigenesis.
Collapse
Affiliation(s)
- Yao Tong
- Division of Life Sciences, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Lisa Y Yung
- Division of Life Sciences, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yung H Wong
- Division of Life Sciences, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
6
|
Liu SM, Chen W, Wang J. Distinguishing between cancer cell differentiation and resistance induced by all-trans retinoic acid using transcriptional profiles and functional pathway analysis. Sci Rep 2014; 4:5577. [PMID: 24993014 PMCID: PMC4894425 DOI: 10.1038/srep05577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/18/2014] [Indexed: 11/03/2022] Open
Abstract
All-trans retinoic acid (ATRA) induces differentiation in various cell types and has been investigated extensively for its effective use in cancer prevention and treatment. Relapsed or refractory disease that is resistant to ATRA is a clinically significant problem. To identify the molecular mechanism that bridges ATRA differentiation and resistance in cancer, we selected the multidrug-resistant leukemia cell line HL-60[R] by exposing it to ATRA, followed by sequential increases of one-half log concentration. A cytotoxicity analysis revealed that HL-60[R] cells were highly resistant to ATRA, doxorubicin, and etoposide. A comparative genome hybridization analysis of HL-60[R] cells identified gains of 4q34, 9q12, and 19q13 and a loss of Yq12 compared with in the parental HL-60 cell line. Transcriptional profiles and functional pathway analyses further demonstrated that 7 genes (FEN1, RFC5, EXO1, XRCC5, PARP1, POLR2F, and GTF2H3) that were relatively up-regulated in HL-60[R] cells and repressed in cells with ATRA-induced differentiation were related to mismatch repair in eukaryotes, DNA double-strand break repair, and nucleotide excision repair pathways. Our results suggest that transcriptional time series profiles and a functional pathway analysis of drug resistance and ATRA-induced cell differentiation will be useful for identifying promyelocytic leukemia patients who are eligible for new therapeutic strategies.
Collapse
Affiliation(s)
- Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Weiping Chen
- Microarray Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jin Wang
- Department of Translational Molecular Pathology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Teoh J, Boulos S, Chieng J, Knuckey NW, Meloni BP. Erythropoietin increases neuronal NDPKA expression, and NDPKA up-regulation as well as exogenous application protects cortical neurons from in vitro ischemia-related insults. Cell Mol Neurobiol 2014; 34:379-92. [PMID: 24395206 PMCID: PMC11488961 DOI: 10.1007/s10571-013-0023-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/17/2013] [Indexed: 11/24/2022]
Abstract
Using proteomics, we identified nucleoside diphosphate kinase A (NDPKA; also known as NME/NM23 nucleoside diphosphate kinase 1: NME1) to be up-regulated in primary cortical neuronal cultures by erythropoietin (EPO) preconditioning. To investigate a neuroprotective role of NDPKA in neurons, we used a RNAi construct to knock-down and an adenoviral vector to overexpress the protein in cortical neuronal cultures prior to exposure to three ischemia-related injury models; excitotoxicity (L-glutamic acid), oxidative stress (hydrogen peroxide), and in vitro ischemia (oxygen-glucose deprivation). NDPKA down-regulation had no effect on neuronal viability following injury. By contrast, NDPKA up-regulation increased neuronal survival in all three-injury models. Similarly, treatment with NDPKA recombinant protein increased neuronal survival, but only against in vitro ischemia and excitotoxicity. These findings indicate that the NDPKA protein may confer a neuroprotective advantage following injury. Furthermore, as exogenous NDPKA protein was neuroprotective, it suggests that a cell surface receptor may be activated by NDPKA leading to a protective cell-signaling response. Taken together both NDPKAs intracellular and extracellular neuroprotective actions suggest that the protein is a legitimate therapeutic target for the design of drugs to limit neuronal death following stroke and other forms of brain injury.
Collapse
Affiliation(s)
- Jonathan Teoh
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009 Australia
- Western Australian Neuroscience Research Institute, A Block, 4th Floor, QEII Medical Centre, Verdun St, Nedlands, WA 6009 Australia
| | - Sherif Boulos
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009 Australia
- Western Australian Neuroscience Research Institute, A Block, 4th Floor, QEII Medical Centre, Verdun St, Nedlands, WA 6009 Australia
| | - Joanne Chieng
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009 Australia
- Western Australian Neuroscience Research Institute, A Block, 4th Floor, QEII Medical Centre, Verdun St, Nedlands, WA 6009 Australia
| | - Neville W. Knuckey
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009 Australia
- Western Australian Neuroscience Research Institute, A Block, 4th Floor, QEII Medical Centre, Verdun St, Nedlands, WA 6009 Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, WA Australia
| | - Bruno P. Meloni
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009 Australia
- Western Australian Neuroscience Research Institute, A Block, 4th Floor, QEII Medical Centre, Verdun St, Nedlands, WA 6009 Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, WA Australia
| |
Collapse
|
8
|
Li L, Huang S, Zhu X, Zhou Z, Liu Y, Qu S, Guo Y. Identification of Radioresistance-Associated Proteins in Human Nasopharyngeal Carcinoma Cell Lines by Proteomic Analysis. Cancer Biother Radiopharm 2013; 28:380-4. [PMID: 23464856 DOI: 10.1089/cbr.2012.1348] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ling Li
- Department of Radiation Oncology, Cancer Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Regional Cancer Hospital, Nanning, P.R. China
| | - Shiting Huang
- Department of Radiation Oncology, Cancer Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Regional Cancer Hospital, Nanning, P.R. China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Cancer Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Regional Cancer Hospital, Nanning, P.R. China
| | - Zhirui Zhou
- Department of Radiation Oncology, Cancer Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Regional Cancer Hospital, Nanning, P.R. China
| | - Yan Liu
- Department of Radiation Oncology, Cancer Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Regional Cancer Hospital, Nanning, P.R. China
| | - Song Qu
- Department of Radiation Oncology, Cancer Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Regional Cancer Hospital, Nanning, P.R. China
| | - Ya Guo
- Department of Radiation Oncology, Cancer Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Regional Cancer Hospital, Nanning, P.R. China
| |
Collapse
|
9
|
Leopoldino AM, Squarize CH, Garcia CB, Almeida LO, Pestana CR, Sobral LM, Uyemura SA, Tajara EH, Silvio Gutkind J, Curti C. SET protein accumulates in HNSCC and contributes to cell survival: antioxidant defense, Akt phosphorylation and AVOs acidification. Oral Oncol 2012; 48:1106-13. [PMID: 22739068 DOI: 10.1016/j.oraloncology.2012.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/27/2012] [Accepted: 05/09/2012] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Determination of the SET protein levels in head and neck squamous cell carcinoma (HNSCC) tissue samples and the SET role in cell survival and response to oxidative stress in HNSCC cell lineages. MATERIALS AND METHODS SET protein was analyzed in 372 HNSCC tissue samples by immunohistochemistry using tissue microarray and HNSCC cell lineages. Oxidative stress was induced with the pro-oxidant tert-butylhydroperoxide (50 and 250μM) in the HNSCC HN13 cell lineage either with (siSET) or without (siNC) SET knockdown. Cell viability was evaluated by trypan blue exclusion and annexin V/propidium iodide assays. It was assessed caspase-3 and -9, PARP-1, DNA fragmentation, NM23-H1, SET, Akt and phosphorylated Akt (p-Akt) status. Acidic vesicular organelles (AVOs) were assessed by the acridine orange assay. Glutathione levels and transcripts of antioxidant genes were assayed by fluorometry and real time PCR, respectively. RESULTS SET levels were up-regulated in 97% tumor tissue samples and in HNSCC cell lineages. SiSET in HN13 cells (i) promoted cell death but did not induced caspases, PARP-1 cleavage or DNA fragmentation, and (ii) decreased resistance to death induced by oxidative stress, indicating SET involvement through caspase-independent mechanism. The red fluorescence induced by siSET in HN13 cells in the acridine orange assay suggests SET-dependent prevention of AVOs acidification. NM23-H1 protein was restricted to the cytoplasm of siSET/siNC HN13 cells under oxidative stress, in association with decrease of cleaved SET levels. In the presence of oxidative stress, siNC HN13 cells showed lower GSH antioxidant defense (GSH/GSSG ratio) but higher expression of the antioxidant genes PRDX6, SOD2 and TXN compared to siSET HN13 cells. Still under oxidative stress, p-Akt levels were increased in siNC HN13 cells but not in siSET HN13, indicating its involvement in HN13 cell survival. Similar results for the main SET effects were observed in HN12 and CAL 27 cell lineages, except that HN13 cells were more resistant to death. CONCLUSION SET is potential (i) marker for HNSCC associated with cancer cell resistance and (ii) new target in cancer therapy.
Collapse
Affiliation(s)
- Andréia M Leopoldino
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café, s/n, 14040-930 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Phark S, Park SY, Choi S, Zheng Z, Cho E, Lee M, Lim JY, Seo JB, Won NH, Jung WW, Sul D. Toxicological biomarkers of 2,3,4,7,8-pentachlorodibenzofuran in proteins secreted by HepG2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:656-66. [DOI: 10.1016/j.bbapap.2012.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/20/2012] [Accepted: 01/22/2012] [Indexed: 01/08/2023]
|
11
|
Kowluru A, Klumpp S, Krieglstein J. Protein histidine [de]phosphorylation in insulin secretion: abnormalities in models of impaired insulin secretion. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:383-90. [PMID: 21626002 DOI: 10.1007/s00210-011-0616-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 02/18/2011] [Indexed: 12/20/2022]
Abstract
In the majority of cell types, including the islet β-cell, transduction of extracellular signals involves ligand binding to a receptor, often followed by the activation G proteins and their effector modules. The islet β-cell is unusual in that glucose lacks an extracellular receptor. Instead, events consequent to glucose metabolism promote insulin secretion via the generation of diffusible second messengers and mobilization of calcium. A selective increase in intracellular calcium has been shown to regulate the phosphorylation status key islet proteins thereby facilitating insulin secretion. In addition to classical protein kinases [e.g., protein kinases A and C], recent studies from our laboratory have focused on the expression and function of various forms of NDPK/nm23-like histidine kinases in clonal β-cells, normal rodent, and human islets. Further, we recently reported localization of a cytosolic protein histidine phosphatase [PHP] in INS 832/13 cells, normal rat islets, and human islets. siRNA-mediated knock down of nm23-H1 and PHP in insulin-secreting INS 832/13 cells significantly attenuated glucose-induced insulin secretion. We also observed significant alterations in the expression and function of nm23-H1/PHP in β-cells chronically exposed to elevated levels of glucose and saturated fatty acids, such as palmitate (i.e., glucolipotoxicity). Similar changes were also noted in islets from the Goto-Kakizaki and Zucker Diabetic Fatty rats, two known models for type 2 diabetes. It is concluded that protein histidine phosphorylation-dephosphorylation cycles play novel regulatory roles in G protein-mediated physiological insulin secretion and that abnormalities in this signaling axis lead to impaired insulin secretion in glucolipotoxicity and type 2 diabetes.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, John D. Dingell VA Medical Center, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
12
|
Choudhuri T, Murakami M, Kaul R, Sahu SK, Mohanty S, Verma SC, Kumar P, Robertson ES. Nm23-H1 can induce cell cycle arrest and apoptosis in B cells. Cancer Biol Ther 2010; 9:1065-78. [PMID: 20448457 DOI: 10.4161/cbt.9.12.11995] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nm23-H1 is a well-known tumor metastasis suppressor, which functions as a nucleoside-diphosphate kinase converting nucleoside diphosphates to nucleoside triphosphates with an expense of ATP. It regulates a variety of cellular activities, including proliferation, development, migration and differentiation known to be modulated by a series of complex signaling pathway. Few studies have addressed the mechanistic action of Nm23-H1 in the context of these cellular processes. To determine the downstream pathways modulated by Nm23-H1, we expressed Nm23-H1 in a Burkitt lymphoma derived B-cell line BJAB and performed pathway specific microarray analysis. The genes with significant changes in expression patterns were clustered in groups which are responsible for regulating cell cycle, p53 activities and apoptosis. We found a general reduction of cell cycle regulatory proteins including cyclins and cyclin dependent kinase inhibitors (anti proliferation), and upregulation of apoptotic genes which included caspase 3, 9 and Bcl-x. Nm23-H1 was also found to upregulate p53 and downregulate p21 expression. A number of these genes were validated by real time PCR and results from promoter assays indicated that Nm23-H1 expression downregulated cyclin D1 in a dose responsive manner. Further, we show that Nm23-H1 forms a complex with the cellular transcription factor AP1 to modulate cyclin D1 expression levels. BJAB cells expressing Nm23-H1 showed reduced proliferation rate and were susceptible to increased apoptosis which may in part be due to a direct interaction between Nm23-H1 and p53. These results suggest that Nm23-H1 may have a role in the regulation of cell cycle and apoptosis in human B-cells.
Collapse
Affiliation(s)
- Tathagata Choudhuri
- Division of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | | | | | | | | | | | | | | |
Collapse
|