2
|
Singh S, Maurya AK, Meena A, Mishra N, Luqman S. Narirutin downregulates lipoxygenase-5 expression and induces G0/G1 arrest in triple-negative breast carcinoma cells. Biochim Biophys Acta Gen Subj 2023; 1867:130340. [PMID: 36868290 DOI: 10.1016/j.bbagen.2023.130340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) accounts for 20% of breast cancer that does not express HER2, progesterone and estrogen receptors. It is associated with a high mortality rate, morbidity, metastasis, recurrence, poor prognosis and resistance to chemotherapy. Lipoxygenase-5 (LOX-5), cyclooxygenase-2 (COX-2), cathepsin-D (CATD), ornithine decarboxylase (ODC) and dihydrofolate reductase (DHFR) are involved in breast cancer carcinogenesis; hence, there is a pressing need to identify novel chemicals that targets these enzymes. Narirutin, a flavanone glycoside abundantly present in citrus fruits, is reported to have immune-modulatory, anti-allergic and antioxidant potential. Still, the cancer chemopreventive mechanism against TNBC has not been explored. METHODS In vitro experiments, enzyme activity, expression analysis, molecular docking and MD simulation were carried out. RESULTS Narirutin suppressed the growth of MDA-MB-231 and MCF-7 in a dose-proportional manner. The pronounced effect with >50% inhibition was observed in SRB and MTT assays for MDAMB-231 cells. Unexpectedly, narirutin suppressed the proliferation of normal cells (24.51%) at 100 μM. Further, narirutin inhibits the activity of LOX-5 in cell-free (18.18 ± 3.93 μM) and cell-based (48.13 ± 7.04 μM) test systems while moderately affecting COX-2, CATD, ODC and DHFR activity. Moreover, narirutin revealed a down-regulation of LOX-5 expression with a fold change of 1.23. Besides, MD simulation experiments confirm that narirutin binding forms a stable complex with LOX-5 and improves the stability and compactness of LOX-5. In addition, the prediction analysis demonstrates that narirutin could not cross the blood-brain barrier and did not act as an inhibitor of different CYPs. CONCLUSIONS AND SIGNIFICANCE Narirutin could be a potent cancer chemopreventive lead for TNBC, further paving the way for synthesizing novel analogues.
Collapse
Affiliation(s)
- Shilpi Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Akhilesh Kumar Maurya
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Cífková E, Brumarová R, Ovčačíková M, Dobešová D, Mičová K, Kvasnička A, Vaňková Z, Šiller J, Sákra L, Friedecký D, Holčapek M. Lipidomic and metabolomic analysis reveals changes in biochemical pathways for non-small cell lung cancer tissues. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159082. [PMID: 34793969 DOI: 10.1016/j.bbalip.2021.159082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/23/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
Lung cancer represents one of the leading worldwide causes of cancer death, but the pathobiochemistry of this disease is still not fully understood. Here we characterize the lipidomic and metabolomic profiles of the tumor and surrounding normal tissues for 23 patients with non-small cell lung cancer. In total, 500 molecular species were identified and quantified by a combination of the lipidomic shotgun tandem mass spectrometry (MS/MS) analysis and the targeted metabolomic approach using liquid chromatography (LC) - MS/MS. The statistical evaluation includes multivariate and univariate methods with the emphasis on paired statistical approaches. Our research revealed significant changes in several biochemical pathways related to the central carbon metabolism, acylcarnitines, dipeptides as well as the disruption in the lipid metabolism observed mainly for glycerophospholipids, sphingolipids, and cholesteryl esters.
Collapse
Affiliation(s)
- Eva Cífková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic
| | - Radana Brumarová
- Palacký University Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Magdaléna Ovčačíková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic
| | - Dana Dobešová
- Palacký University Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Kateřina Mičová
- Palacký University Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Aleš Kvasnička
- Palacký University Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Zuzana Vaňková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic
| | - Jiří Šiller
- Regional Hospital Pardubice, Surgery Clinic, Kyjevská 44, 53203 Pardubice, Czech Republic
| | - Lukáš Sákra
- Regional Hospital Pardubice, Surgery Clinic, Kyjevská 44, 53203 Pardubice, Czech Republic
| | - David Friedecký
- Palacký University Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, 77900 Olomouc, Czech Republic.
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 53210 Pardubice, Czech Republic.
| |
Collapse
|
4
|
Gamble LD, Purgato S, Henderson MJ, Di Giacomo S, Russell AJ, Pigini P, Murray J, Valli E, Milazzo G, Giorgi FM, Cowley M, Ashton LJ, Bhalshankar J, Schleiermacher G, Rihani A, Van Maerken T, Vandesompele J, Speleman F, Versteeg R, Koster J, Eggert A, Noguera R, Stallings RL, Tonini GP, Fong K, Vaksman Z, Diskin SJ, Maris JM, London WB, Marshall GM, Ziegler DS, Hogarty MD, Perini G, Norris MD, Haber M. A G316A Polymorphism in the Ornithine Decarboxylase Gene Promoter Modulates MYCN-Driven Childhood Neuroblastoma. Cancers (Basel) 2021; 13:cancers13081807. [PMID: 33918978 PMCID: PMC8069650 DOI: 10.3390/cancers13081807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 01/13/2023] Open
Abstract
Simple Summary Neuroblastoma is a devasting childhood cancer in which multiple copies (amplification) of the cancer-causing gene MYCN strongly predict poor outcome. Neuroblastomas are reliant on high levels of cellular components called polyamines for their growth and malignant behavior, and the gene regulating polyamine synthesis is called ODC1. ODC1 is often coamplified with MYCN, and in fact is regulated by MYCN, and like MYCN is prognostic of poor outcome. Here we studied a naturally occurring genetic variant or polymorphism that occurs in the ODC1 gene, and used gene editing to demonstrate the functional importance of this variant in terms of ODC1 levels and growth of neuroblastoma cells. We showed that this variant impacts the ability of MYCN to regulate ODC1, and that it also influences outcome in neuroblastoma, with the rarer variant associated with a better survival. This study addresses the important topic of genetic polymorphisms in cancer. Abstract Ornithine decarboxylase (ODC1), a critical regulatory enzyme in polyamine biosynthesis, is a direct transcriptional target of MYCN, amplification of which is a powerful marker of aggressive neuroblastoma. A single nucleotide polymorphism (SNP), G316A, within the first intron of ODC1, results in genotypes wildtype GG, and variants AG/AA. CRISPR-cas9 technology was used to investigate the effects of AG clones from wildtype MYCN-amplified SK-N-BE(2)-C cells and the effect of the SNP on MYCN binding, and promoter activity was investigated using EMSA and luciferase assays. AG clones exhibited decreased ODC1 expression, growth rates, and histone acetylation and increased sensitivity to ODC1 inhibition. MYCN was a stronger transcriptional regulator of the ODC1 promoter containing the G allele, and preferentially bound the G allele over the A. Two neuroblastoma cohorts were used to investigate the clinical impact of the SNP. In the study cohort, the minor AA genotype was associated with improved survival, while poor prognosis was associated with the GG genotype and AG/GG genotypes in MYCN-amplified and non-amplified patients, respectively. These effects were lost in the GWAS cohort. We have demonstrated that the ODC1 G316A polymorphism has functional significance in neuroblastoma and is subject to allele-specific regulation by the MYCN oncoprotein.
Collapse
Affiliation(s)
- Laura D. Gamble
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
| | - Stefania Purgato
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Michelle J. Henderson
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
| | - Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Amanda J. Russell
- Cancer Research Program, The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
| | - Paolo Pigini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Jayne Murray
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
| | - Emanuele Valli
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Federico M. Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Mark Cowley
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
| | - Lesley J. Ashton
- Research Portfolio, University of Sydney, Sydney, NSW 2008, Australia;
| | - Jaydutt Bhalshankar
- SIREDO, Department of Paediatric, Adolescents and Young Adults Oncology and INSERM U830, Institut Curie, 26 rue d’Ulm, 75005 Paris, France; (J.B.); (G.S.)
| | - Gudrun Schleiermacher
- SIREDO, Department of Paediatric, Adolescents and Young Adults Oncology and INSERM U830, Institut Curie, 26 rue d’Ulm, 75005 Paris, France; (J.B.); (G.S.)
| | - Ali Rihani
- Center for Medical Genetics, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; (A.R.); (T.V.M.); (J.V.); (F.S.)
| | - Tom Van Maerken
- Center for Medical Genetics, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; (A.R.); (T.V.M.); (J.V.); (F.S.)
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; (A.R.); (T.V.M.); (J.V.); (F.S.)
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; (A.R.); (T.V.M.); (J.V.); (F.S.)
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1100 Amsterdam, The Netherlands; (R.V.); (J.K.)
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1100 Amsterdam, The Netherlands; (R.V.); (J.K.)
| | - Angelika Eggert
- Department of Pediatric Hematology, Oncology and SCT, Charité-University Hospital Berlin, Campus Virchow-Klinikum, 10117 Berlin, Germany;
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia, 46010 Valencia, Spain;
- CIBERONC-INCLIVA, Biomedical Health Research Institute, 46010 Valencia, Spain
| | - Raymond L. Stallings
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland;
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy;
| | - Kwun Fong
- Thoracic Research Centre, University of Queensland, The Prince Charles Hospital, Brisbane, QLD 4032, Australia;
| | - Zalman Vaksman
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Z.V.); (S.J.D.); (J.M.M.); (M.D.H.)
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sharon J. Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Z.V.); (S.J.D.); (J.M.M.); (M.D.H.)
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Z.V.); (S.J.D.); (J.M.M.); (M.D.H.)
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wendy B. London
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Glenn M. Marshall
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
- Kids Cancer Centre, Sydney Children’s Hospital, High St, Randwick, NSW 2031, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
- Kids Cancer Centre, Sydney Children’s Hospital, High St, Randwick, NSW 2031, Australia
| | - Michael D. Hogarty
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Z.V.); (S.J.D.); (J.M.M.); (M.D.H.)
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Murray D. Norris
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
- Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michelle Haber
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
- Correspondence: ; Tel.: +61-(02)-9385-2170
| |
Collapse
|
6
|
Chelouah S, Monod-Wissler C, Bailly C, Barret JM, Guilbaud N, Vispé S, Käs E. An integrated Drosophila model system reveals unique properties for F14512, a novel polyamine-containing anticancer drug that targets topoisomerase II. PLoS One 2011; 6:e23597. [PMID: 21853156 PMCID: PMC3154508 DOI: 10.1371/journal.pone.0023597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/21/2011] [Indexed: 11/19/2022] Open
Abstract
F14512 is a novel anti-tumor molecule based on an epipodophyllotoxin core coupled to a cancer-cell vectoring spermine moiety. This polyamine linkage is assumed to ensure the preferential uptake of F14512 by cancer cells, strong interaction with DNA and potent inhibition of topoisomerase II (Topo II). The antitumor activity of F14512 in human tumor models is significantly higher than that of other epipodophyllotoxins in spite of a lower induction of DNA breakage. Hence, the demonstrated superiority of F14512 over other Topo II poisons might not result solely from its preferential uptake by cancer cells, but could also be due to unique effects on Topo II interactions with DNA. To further dissect the mechanism of action of F14512, we used Drosophila melanogaster mutants whose genetic background leads to an easily scored phenotype that is sensitive to changes in Topo II activity and/or localization. F14512 has antiproliferative properties in Drosophila cells and stabilizes ternary Topo II/DNA cleavable complexes at unique sites located in moderately repeated sequences, suggesting that the drug specifically targets a select and limited subset of genomic sequences. Feeding F14512 to developing mutant Drosophila larvae led to the recovery of flies expressing a striking phenotype, "Eye wide shut," where one eye is replaced by a first thoracic segment. Other recovered F14512-induced gain- and loss-of-function phenotypes similarly correspond to precise genetic dysfunctions. These complex in vivo results obtained in a whole developing organism can be reconciled with known genetic anomalies and constitute a remarkable instance of specific alterations of gene expression by ingestion of a drug. "Drosophila-based anticancer pharmacology" hence reveals unique properties for F14512, demonstrating the usefulness of an assay system that provides a low-cost, rapid and effective complement to mammalian models and permits the elucidation of fundamental mechanisms of action of candidate drugs of therapeutic interest in humans.
Collapse
Affiliation(s)
- Sonia Chelouah
- Université de Toulouse, UPS, Université Paul Sabatier, Laboratoire de Biologie Moléculaire Eucaryote; Toulouse; France
- CNRS, Centre National de la Recherche Scientifique, UMR5099, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
| | - Caroline Monod-Wissler
- Université de Toulouse, UPS, Université Paul Sabatier, Laboratoire de Biologie Moléculaire Eucaryote; Toulouse; France
- CNRS, Centre National de la Recherche Scientifique, UMR5099, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
| | - Christian Bailly
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
| | - Jean-Marc Barret
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
| | - Nicolas Guilbaud
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
| | - Stéphane Vispé
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, France
- * E-mail: (EK); (SV)
| | - Emmanuel Käs
- Université de Toulouse, UPS, Université Paul Sabatier, Laboratoire de Biologie Moléculaire Eucaryote; Toulouse; France
- CNRS, Centre National de la Recherche Scientifique, UMR5099, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
- * E-mail: (EK); (SV)
| |
Collapse
|