1
|
Zhang Y, Huang Q, Xu Q, Jia C, Xia Y. Pimavanserin tartrate induces apoptosis and cytoprotective autophagy and synergizes with chemotherapy on triple negative breast cancer. Biomed Pharmacother 2023; 168:115665. [PMID: 37832400 DOI: 10.1016/j.biopha.2023.115665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Triple negative breast cancer (TNBC) poses a significant clinical challenge due to its lack of targeted therapy options and the frequent development of chemotherapy resistance. Metastasis remains a primary cause of mortality in late-stage TNBC patients, underscoring the urgent need for alternative treatments. Repurposing existing drugs offers a promising strategy for the discovery of novel therapies. In this study, we investigated the potential of pimavanserin tartrate (PVT) as a treatment for TNBC. While previous studies have highlighted PVT's anticancer effects in various cancer types, its activity in TNBC remains unclear. Our investigation aimed to elucidate the anticancer effects and underlying mechanisms of PVT in TNBC. We evaluated the impact of PVT and combination treatments involving PVT on TNBC cell viability, apoptosis, autophagy, and associated signaling pathways. Our findings revealed that PVT may induce mitochondria-dependent intrinsic apoptosis and caused cytoprotective autophagy via the PI3K/Akt/mTOR pathway in TNBC cells in vitro. Notably, our study demonstrated strong synergistic anti-TNBC effects when combining PVT with doxorubicin. We also found PVT showed some efficacies to inhibit TNBC tumor growth in vivo. These results provided valuable insights into the potential of PVT as an anti-TNBC therapeutic and a possible option for enhancing the sensitivity of TNBC cells to conventional chemotherapy drugs. Further studies are needed to determine the activity and mechanism of PVT in inhibiting TNBC.
Collapse
Affiliation(s)
- Yiqian Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qisi Xu
- School of Food and Bioengineering, Xihua University, Chengdu 610041, China
| | - Chengsen Jia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China.
| |
Collapse
|
2
|
Imani MM, Shalchi M, Ahmadabadi G, Sadeghi M. Evaluation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in human cases with orofacial clefts: A systematic review. Int Orthod 2023; 21:100781. [PMID: 37301105 DOI: 10.1016/j.ortho.2023.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION The interaction between several cell populations or many genes and the coordination of multiple signal transmission pathways can lead to defects such as orofacial clefts (OFCs). Herein, a systematic review was designed to evaluate a group of important biomarkers (matrix metalloproteinases [MMPs] and tissue inhibitors of metalloproteinases [TIMPs]) in human cases with OFCs. MATERIAL AND METHODS Four databases including PubMed, Scopus, Web of Science, and Cochrane Library databases were searched until March 10, 2023, without any restriction. STRING, the protein-protein interaction (PPI) network software, was applied to investigate the functional interactions among the examined genes. The effect sizes including odds ratio (OR) dealing with a 95% confidence interval (CI), were extracted by the Comprehensive Meta-Analysis version 2.0 (CMA 2.0) software. RESULTS Thirty-one articles were entered into the systematic review that four articles were analyzed in the meta-analysis. Single studies reported that several polymorphisms of MMPs (rs243865, rs9923304, rs17576, rs6094237, rs7119194, and rs7188573); and TIMPs (rs8179096, rs7502916, rs4789936, rs6501266, rs7211674, rs7212662, and rs242082) had an association with OFC risk. There was no significant difference for MMP-3 rs3025058 polymorphism in allelic (OR: 0.832; P=0.490), dominant (OR: 1.177; P=0.873), and recessive (OR: 0.363; P=0.433) models and MMP-9 rs17576 polymorphism in an allelic model (OR: 0.885; P=0.107) between the OFC cases and the controls. Based on immunohistochemistry reports, three MMPs (MMP-2, MMP-8, and MMP-9) and TIMP-2 had significant correlations with several other biomarkers in OFC cases. CONCLUSIONS MMPs and TIMPs can impact the tissue and cells affected by OFCs and the process of apoptosis. The interaction between some biomarkers with MMPs and TIMPs (e.g., TGFb1) in OFCs can be interesting for future research.
Collapse
Affiliation(s)
- Mohammad Moslem Imani
- Department of Orthodontics, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Majid Shalchi
- Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Masoud Sadeghi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Li Y, Tong R, Li Z, Zhang X, Pan L, Li Y, Zhang N. Toxicological mechanism of ammonia-N on haematopoiesis and apoptosis of haemocytes in Litopenaeus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163039. [PMID: 36966842 DOI: 10.1016/j.scitotenv.2023.163039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Ammonia, as an important pollutant, contributed to the reduction of immunity, disruption of physiology in animals. RNA interference (RNAi) was performed to understand the function of astakine (AST) in haematopoiesis and apoptosis in Litopenaeus vannamei under ammonia-N exposure. Shrimps were exposed to 20 mg/L ammonia-N from 0 to 48 h with injection of 20 μg AST dsRNA. Further, shrimps were exposed to 0, 2, 10 and 20 mg/L ammonia-N also from 0 to 48 h. The results showed that the total haemocytes count (THC) decreased under ammonia-N stress and the knockdown of AST resulted in a further decrease of THC, suggesting that 1) the proliferation was decreased through the reduction of AST and Hedgehog, the differentiation was interfered by Wnt4, Wnt5 and Notch, and the migration was inhibited by the decrease of VEGF; 2) oxidative stress was induced under ammonia-N stress, leading to the increase of DNA damage with the up-regulated gene expression of death receptor, mitochondrial and endoplasmic reticulum stress pathways; 3) the changes of THC resulted from the decrease of proliferation, differentiation and migration of haematopoiesis cells and the increase of apoptosis of haemocytes. This study helps to deepen our understanding of risk management in shrimp aquaculture.
Collapse
Affiliation(s)
- Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
4
|
Gupta J, Abdulsahib WK, Turki Jalil A, Saadi Kareem D, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. Prostate Cancer and microRNAs: New insights into Apoptosis. Pathol Res Pract 2023; 245:154436. [PMID: 37062208 DOI: 10.1016/j.prp.2023.154436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Prostate cancer (PCa) is known as one of the most prevalent malignancies globally and is not yet curable owing to its progressive nature. It has been well documented that Genetic and epigenetic alterations maintain mandatory roles in PCa development. Apoptosis, a form of programmed cell death, has been shown to be involved in a number of physiological processes. Apoptosis disruption is considered as one of the main mechanism involved in lots of pathological conditions, especially malignancy. There is ample of evidence in support of the fact that microRNAs (miRNAs) have crucial roles in several cellular biological processes, including apoptosis. Escaping from apoptosis is a common event in malignancy progression. Emerging evidence revealed miRNAs capabilities to act as apoptotic or anti-apoptotic factors by altering the expression levels of tumor inhibitor or oncogene genes. In the present narrative review, we described in detail how apoptosis dysfunction could be involved in PCa processes and additionally, the mechanisms behind miRNAs affect the apoptosis pathways in PCa. Identifying the mechanisms behind the effects of miRNAs and their targets on apoptosis can provide scientists new targets for PCa treatment.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Singh S, Rani H, Sharma N, Behl T, Zahoor I, Makeen HA, Albratty M, Alhazm HA, Aleya L. Targeting multifunctional magnetic nanowires for drug delivery in cancer cell death: an emerging paradigm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57219-57235. [PMID: 37010687 DOI: 10.1007/s11356-023-26650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Apoptosis, often known as programmed cell death is a mechanism used by numerous species to maintain tissue homeostasis. The process leading to cell death is complicated because it requires the stimulation of caspases. According to several studies, nanowires have important medical benefits, can kill cells by adhering to cancer cells, destroying them, and killing the entire cell using a triple attack that integrates vibration, heat, and drug delivery to trigger apoptosis. The sewage effluents and industrial, fertilizer and organic wastes decomposition can produce elevated levels of chemicals in the environment which may interrupt the cell cycle and activate apoptosis. The purpose of this review is to give a thorough summary of the evidence that is currently available on apoptosis. Current review discussed topics like the morphological and biochemical alterations that occur during apoptosis, as well as the various mechanisms that cause cell death, including the intrinsic (or mitochondrial), extrinsic (or death receptor), and intrinsic endoplasmic reticulum pathway. The apoptosis reduction in cancer development is mediated by (i) an imbalance between pro- and anti-apoptotic proteins, such as members of the B-cell lymphoma-2 (BCL2) family of proteins, tumour protein 53 and inhibitor of apoptosis proteins, (ii) a reduction in caspase activity, and (iii) impaired death receptor signalling. This review does an excellent task of outlining the function of nanowires in both apoptosis induction and targeted drug delivery for cancer cells. A comprehensive summary of the relevance of nanowires synthesised for the purpose of inducing apoptosis in cancer cells has been compiled collectively.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hema Rani
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, 141104, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Tapan Behl
- School of Health Sciences &Technology, University of Petroleum and Energy Studies, Bidholi, Uttarakhand, 248007, Dehradun, India
| | - Ishrat Zahoor
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazm
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| |
Collapse
|
6
|
Gil-Kulik P, Leśniewski M, Bieńko K, Wójcik M, Więckowska M, Przywara D, Petniak A, Kondracka A, Świstowska M, Szymanowski R, Wilińska A, Wiliński M, Płachno BJ, Kostuch M, Rahnama-Hezavach M, Szuta M, Kwaśniewska A, Bogucka-Kocka A, Kocki J. Influence of Perinatal Factors on Gene Expression of IAPs Family and Main Factors of Pluripotency: OCT4 and SOX2 in Human Breast Milk Stem Cells-A Preliminary Report. Int J Mol Sci 2023; 24:ijms24032476. [PMID: 36768802 PMCID: PMC9917041 DOI: 10.3390/ijms24032476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Due to their therapeutic potential, mesenchymal stem cells are the subject of intensive research on the use of their potential in the treatment of, among others, neurodegenerative diseases or immunological diseases. They are among the newest in the field of medicine. The presented study aimed to evaluate the expression of eight genes from the IAP family and the gene regulating IAP-XAF1-in stem cells derived from human milk, using the qPCR method. The relationships between the expression of genes under study and clinical data, such as maternal age, maternal BMI, week of pregnancy in which the delivery took place, bodyweight of the newborn, the number of pregnancies and deliveries, and the time elapsed since delivery, were also analyzed. The research was carried out on samples of human milk collected from 42 patients hospitalized in The Clinic of Obstetrics and Perinatology of the Independent Public Clinical Hospital No. 4, in Lublin. The conducted research confirmed the expression of the following genes in the tested material: NAIP, BIRC2, BIRC3, BIRC5, BIRC6, BIRC8, XIAP, XAF1, OCT4 and SOX2. Moreover, several dependencies of the expression of individual genes on the maternal BMI (BIRC5, XAF1 and NAIP), the time since childbirth (BIRC5, BIRC6, XAF1 and NAIP), the number of pregnancies and deliveries (BIRC2, BIRC5, BIRC6 and XAF1), the manner of delivery (XAF1 and OCT4), preterm labor (BIRC6 and NAIP) were demonstrated. Additionally, we found positive relationships between gene expression of BIRC7, BIRC8 and XAF1 and the main factors of pluripotency: SOX2 and OCT4. This work is the first to investigate the expression of genes from the IAPs family in mother's milk stem cells.
Collapse
Affiliation(s)
- Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Michał Leśniewski
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Karolina Bieńko
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Monika Wójcik
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Marta Więckowska
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Dominika Przywara
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 11 Staszica Str., 20-081 Lublin, Poland
| | - Małgorzata Świstowska
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Rafał Szymanowski
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Agnieszka Wilińska
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Mateusz Wiliński
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland
| | - Marzena Kostuch
- Department of Neonatology, Independent Public Clinical Hospital No. 4, 8 Jaczewskiego St., 20-954 Lublin, Poland
| | - Mansur Rahnama-Hezavach
- Chair and Department of Dental Surgery, Medical University of Lublin, 6 Chodzki St., 20-093 Lublin, Poland
| | - Mariusz Szuta
- Chair of Oral Surgery, Jagiellonian University Medical College, 4 Montelupich St., 31-155 Kraków, Poland
| | - Anna Kwaśniewska
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 11 Staszica Str., 20-081 Lublin, Poland
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20–093 Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
- Correspondence:
| |
Collapse
|
7
|
OSW-1 induces apoptosis and cyto-protective autophagy, and synergizes with chemotherapy on triple negative breast cancer metastasis. Cell Oncol (Dordr) 2022; 45:1255-1275. [PMID: 36155886 DOI: 10.1007/s13402-022-00716-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. As yet, chemotherapy with drugs such as doxorubicin is the main treatment strategy. However, drug resistance and dose-dependent toxicities restrict their clinical use. Natural products are major sources of anti-tumor drugs. OSW-1 is a natural compound with strong anti-cancer effects in several types of cancer, but its effects on the efficacy of chemotherapy in TNBC and its underlying mechanism remain unclear. METHODS The inhibitory activities of OSW-1 and its combination with several chemotherapy drugs were tested using in vitro assays and in vivo subcutaneous and metastatic mouse TNBC models. The effects of the mono- and combination treatments on TNBC cell viability, apoptosis, autophagy and related signaling pathways were assessed using MTT, flow cytometry, RNA sequencing and immunology-based assays. In addition, the in vivo inhibitory effects of OSW-1 and (combined) chemotherapies were evaluated in subcutaneous and metastatic mouse tumor models. RESULTS We found that OSW-1 induces Ca2+-dependent mitochondria-dependent intrinsic apoptosis and cyto-protective autophagy through the PI3K-Akt-mTOR pathway in TNBC cells in vitro. We also found that OSW-1 and doxorubicin exhibited strong synergistic anti-TNBC capabilities both in vivo and in vitro. Combination treatment strongly inhibited spontaneous and experimental lung metastases in 4T1 mouse models. In addition, the combination strategy of OSW-1 + Carboplatin + Docetaxel showed an excellent anti-metastatic effect in vivo. CONCLUSIONS Our data revealed the mode of action and molecular mechanism underlying the effect of OSW-1 against TNBC, and provided a useful guidance for improving the sensitivity of TNBC cells to conventional chemotherapeutic drugs, which warrants further investigation.
Collapse
|
8
|
Cetraro P, Plaza-Diaz J, MacKenzie A, Abadía-Molina F. A Review of the Current Impact of Inhibitors of Apoptosis Proteins and Their Repression in Cancer. Cancers (Basel) 2022; 14:1671. [PMID: 35406442 PMCID: PMC8996962 DOI: 10.3390/cancers14071671] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The Inhibitor of Apoptosis (IAP) family possesses the ability to inhibit programmed cell death through different mechanisms; additionally, some of its members have emerged as important regulators of the immune response. Both direct and indirect activity on caspases or the modulation of survival pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), have been implicated in mediating its effects. As a result, abnormal expression of inhibitor apoptosis proteins (IAPs) can lead to dysregulated apoptosis promoting the development of different pathologies. In several cancer types IAPs are overexpressed, while their natural antagonist, the second mitochondrial-derived activator of caspases (Smac), appears to be downregulated, potentially contributing to the acquisition of resistance to traditional therapy. Recently developed Smac mimetics counteract IAP activity and show promise in the re-sensitization to apoptosis in cancer cells. Given the modest impact of Smac mimetics when used as a monotherapy, pairing of these compounds with other treatment modalities is increasingly being explored. Modulation of molecules such as tumor necrosis factor-α (TNF-α) present in the tumor microenvironment have been suggested to contribute to putative therapeutic efficacy of IAP inhibition, although published results do not show this consistently underlining the complex interaction between IAPs and cancer.
Collapse
Affiliation(s)
- Pierina Cetraro
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Armilla, 18016 Granada, Spain;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Alex MacKenzie
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Francisco Abadía-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Armilla, 18016 Granada, Spain
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
9
|
Faruk M, Ibrahim S, Aminu SM, Adamu A, Abdullahi A, Suleiman AM, Rafindadi AH, Mohammed A, Iliyasu Y, Idoko J, Saidu R, Randawa AJ, Musa HS, Ntekim A, Shah KZ, Abubakar S, Adoke KU, Manko M, Awasum CA. Prognostic significance of BIRC7/Livin, Bcl-2, p53, Annexin V, PD-L1, DARC, MSH2 and PMS2 in colorectal cancer treated with FOLFOX chemotherapy with or without aspirin. PLoS One 2021; 16:e0245581. [PMID: 33465114 PMCID: PMC7815153 DOI: 10.1371/journal.pone.0245581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Evasion of apoptosis is associated with treatment resistance and metastasis in colorectal cancer (CRC). Various cellular processes are associated with evasion of apoptosis. These include overexpression of pro-apoptotic proteins (including p53 and PD-L1), anti-apoptotic proteins (BIRC7/Livin and Bcl-2), chemokine receptors (including DARC), and dysregulation of DNA mismatch repair proteins (including MSH2 and PMS2). The aim of this study was to determine the effect of folinic acid, 5-FU and oxaliplatin (FOLFOX) as a single agent and aspirin plus FOLFOX in various combinations on the aforementioned proteins in human CRC, SW480 cell line and rat models of N-Methyl-N-Nitrosourea (NMU)-induced CRC. In addition, effects of the NMU-induced CRC and chemotherapeutic regimens on haematological and biochemical parameters in the rat models were studied. Immunohistochemistry, immunofluorescence and immunoblot techniques were used to study the expression pattern of the related proteins in the human CRC cells pre- and post-treatment. Double contrast barium enema, post-mortem examination and histological analyses were used to confirm tumour growth and the effect of the treatment in vivo in rat models. Notably, we found in human mucinous CRC, a significant increase in expression of the BIRC7/Livin post-FOLFOX treatment compared with pre-treatment (p = 0.0001). This increase provides new insights into the prognostic role of BIRC7/Livin in evasion of apoptosis and facilitation of treatment resistance, local recurrence and metastasis particularly among mucinous CRCs post-FOLFOX chemotherapy. These poor prognostic features in the CRC may be further compounded by the significant suppression of DARC, PD-L1, PMS2 and overexpression of MSH2 and anti-apoptotic Bcl-2 and p53 proteins observed in our study (p < 0.05). Importantly, we found a significant reduction in expression of BIRC7/Livin and reactivation of DARC and PD-L1 with a surge in Annexin V expression in rat models of CRC cells post-treatment with a sequential dose of aspirin plus FOLFOX compared with other treatments in vivo (p <0.05). The mechanistic rational of these effects underscores the importance of expanded concept of possible aspirin combination therapy with FOLFOX sequentially in future CRC management. Validation of our findings through randomized clinical trials of aspirin plus FOLFOX sequentially in patients with CRC is therefore warranted.
Collapse
Affiliation(s)
- Mohammed Faruk
- Department of Pathology, Faculty of Basic Clinical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
- * E-mail:
| | - Sani Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Surajo Mohammed Aminu
- Department of Haematology and Blood Transfusion, Faculty of Basic Clinical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Ahmed Adamu
- Department of Surgery, Faculty of Basic Clinical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Adamu Abdullahi
- Department of Radiotherapy and Oncology, College of Medical Sciences, Faculty of Basic Clinical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Aishatu Maude Suleiman
- Department of Haematology and Blood Transfusion, Faculty of Basic Clinical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Abdulmumini Hassan Rafindadi
- Department of Pathology, Faculty of Basic Clinical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Abdullahi Mohammed
- Department of Pathology, Faculty of Basic Clinical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Yawale Iliyasu
- Department of Pathology, Faculty of Basic Clinical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - John Idoko
- Department of Pathology, Faculty of Basic Clinical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Rakiya Saidu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Ilorin, Ilorin, Nigeria
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Abdullahi Jibril Randawa
- Department of Obstetrics and Gynaecology, Faculty of Clinical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Halimatu Sadiya Musa
- Department of Veterinary Surgery and Radiology, Veterinary Teaching Hospital, Ahmadu Bello University Zaria, Zaria, Nigeria
| | - Atara Ntekim
- Department of Radiation Oncology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Sani Abubakar
- Department of Pathology, Aminu Kano University Teaching Hospital, Kano, Nigeria
| | - Kasimu Umar Adoke
- Department of Pathology, Federal Medical Centre, Birnin Kebbi, Nigeria
| | - Muhammad Manko
- Department of Medicine, Faculty of Clinical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Cheh Agustin Awasum
- Department of Veterinary Surgery and Radiology, Veterinary Teaching Hospital, Ahmadu Bello University Zaria, Zaria, Nigeria
| |
Collapse
|
10
|
An Updated Review of Smac Mimetics, LCL161, Birinapant, and GDC-0152 in Cancer Treatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010335] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitor of apoptosis proteins (IAPs) are suggested as therapeutic targets for cancer treatment. Smac/DIABLO is a natural IAP antagonist in cells; therefore, Smac mimetics have been developed for cancer treatment in the past decade. In this article, we review the anti-cancer potency and novel molecular targets of LCL161, birinapant, and GDC-0152. Preclinical studies demonstrated that Smac mimetics not only induce apoptosis but also arrest cell cycle, induce necroptosis, and induce immune storm in vitro and in vivo. The safety and tolerance of Smac mimetics are evaluated in phase 1 and phase 2 clinical trials. In addition, the combination of Smac mimetics and chemotherapeutic compounds was reported to improve anti-cancer effects. Interestingly, the novel anti-cancer molecular mechanism of action of Smac mimetics was reported in recent studies, suggesting that many unknown functions of Smac mimetics still need to be revealed. Exploring these currently unknown signaling pathways is important to provide hints for the modification and combination therapy of further compounds.
Collapse
|
11
|
Scorpion Toxins and Ion Channels: Potential Applications in Cancer Therapy. Toxins (Basel) 2020; 12:toxins12050326. [PMID: 32429050 PMCID: PMC7290751 DOI: 10.3390/toxins12050326] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022] Open
Abstract
Apoptosis, a genetically directed process of cell death, has been studied for many years, and the biochemical mechanisms that surround it are well known and described. There are at least three pathways by which apoptosis occurs, and each pathway depends on extra or intracellular processes for activation. Apoptosis is a vital process, but disturbances in proliferation and cell death rates can lead to the development of diseases like cancer. Several compounds, isolated from scorpion venoms, exhibit inhibitory effects on different cancer cells. Indeed, some of these compounds can differentiate between healthy and cancer cells within the same tissue. During the carcinogenic process, morphological, biochemical, and biological changes occur that enable these compounds to modulate cancer but not healthy cells. This review highlights cancer cell features that enable modulation by scorpion neurotoxins. The properties of the isolated scorpion neurotoxins in cancer cells and the potential uses of these compounds as alternative treatments for cancer are discussed.
Collapse
|
12
|
Increased Expression of BIRC2, BIRC3, and BIRC5 from the IAP Family in Mesenchymal Stem Cells of the Umbilical Cord Wharton's Jelly (WJSC) in Younger Women Giving Birth Naturally. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9084730. [PMID: 32322338 PMCID: PMC7168741 DOI: 10.1155/2020/9084730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
The knowledge of factors affecting the viability as well as proliferation and therapeutic potential of perinatal stem cells is of great importance for the decisions concerning their collection, multiplication, and storing. The aim of this work is to evaluate the expression of the BIRC2, BIRC3, and BIRC5 genes at the level of transcription in mesenchymal stem cells derived from the umbilical cord Wharton's jelly. The study examined the relationship between the expression level of the studied genes and selected biophysical parameters of umbilical blood: pH, pCO2, pO2, and cHCO3. Moreover, the relationship between the pregnant age, the type of delivery (natural delivery or cesarean section), and the level of expression of the BIRC2, BIRC3, and BIRC5 genes was assessed. The research was carried out on mesenchymal stem cells derived from the umbilical cord Wharton's jelly (WJSC) taken from 55 women immediately after delivery. Expression of the examined genes was assessed with the qPCR method using commercially available reagent kits. On the basis of the conducted research, it was demonstrated that WJSCs collected from younger women giving birth naturally, and in the acidic environment of the umbilical cord blood, are characterized by a higher expression of the BIRC2, BIRC3, and BIRC5 genes. It was shown that the expression of the BIRC2 and BIRC3 genes in Wharton's jelly mesenchymal stem cells declines with the mother's age. Our research suggests that stem cells collected from younger women giving birth naturally can be more resistant to apoptosis and show a more stem cell-like character, which can increase their therapeutic potential and clinical utility, but this conclusion needs to be approved in the next studies.
Collapse
|
13
|
Wang P, Wang J, Su Y, Liu Z, Mao Y. Air Exposure Affects Physiological Responses, Innate Immunity, Apoptosis and DNA Methylation of Kuruma Shrimp, Marsupenaeus japonicus. Front Physiol 2020; 11:223. [PMID: 32226395 PMCID: PMC7081841 DOI: 10.3389/fphys.2020.00223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Air exposure stress is a common phenomenon for commercial crustacean species in aquaculture and during waterless transportation. However, the antioxidant responses to air exposure discussed in previous studies may be insufficient to present the complexities involved in this process. The comprehensive immune responses, especially considering the immune genes, cell apoptosis, and epigenetic changes, are still unknown. Accordingly, we investigated the multifaceted responses of Marsupenaeus japonicus to air exposure. The results showed that the expression profiles of the apoptosis genes (e.g., IAP, TXNIP, caspase, and caspase-3) and the hypoxia-related genes (e.g., hsp70, hif-1α, and HcY) were all dramatically induced in the hepatopancreas and gills of M. japonicus. Heart rates, T-AOC (total antioxidant capacity) and lactate contents showed time-dependent changes upon air exposure. Air exposure significantly induced apoptosis in hepatopancreas and gills. Compared with the control group, the apoptosis index (AI) of the 12.5 h experimental group increased significantly (p < 0.05) in the hepatopancreas and gills. Most individuals in the experimental group (EG, 12.5 h) had lower methylation ratios than the control group (CG). Air exposure markedly reduced the full-methylation and total-methylation ratios (31.39% for the CG and 26.46% for the EG). This study provided a comprehensive understanding of the antioxidant responses of M. japonicus considering its physiology, innate immunity, apoptosis, and DNA methylation levels, and provided theoretical guidance for waterless transportation.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixin Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Samarkhazan NS, Yekta R, Sayadi M, Tackallou SH, Safaralizadeh R, Mahdavi M. 2-NDC from dithiocarbamates improves ATRA efficiency and ROS-induced apoptosis via downregulation of Bcl2 and Survivin in human acute promyelocytic NB4 cells. Hum Exp Toxicol 2020; 39:960-972. [PMID: 32096428 DOI: 10.1177/0960327120905958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although it has been widely considered that all-trans retinoic acid (ATRA) is an efficient therapeutic agent for acute promyelocytic leukemia (APL), there is an urgent need for extending and examining new therapeutics in medicine. Dithiocarbamates (DTCs) are one of the recent important chemical synthetic compounds used in cancer therapy. The aim of this study was to evaluate the apoptosis-inducing effect of 2-nitro-1-phenylethylpiperidine-1-carbodithioate (2-NDC) as an active derivative from DTCs, in combination with ATRA on human APL NB4 cells. The viability of treated NB4 cells was measured by 3-(4,5-dimethyltiazol-2-yl)-2,5-diphenyltetrazolium bromide assay in various concentrations (10-120 µM). The proapoptotic effects of 2-NDC were investigated by acridine orange/ethidium bromide staining, DNA ladder formation, and flow cytometry. We also assessed the oxidative stress-inducing effect of 2-NDC and in combination with ATRA on the NB4 cells. The alteration in gene expression levels of Bax, Bcl2, and Survivin was measured through a real-time polymerase chain reaction. Furthermore, we redetected the interaction between 2-NDC and antiapoptotic proteins Bcl2 and Survivin via molecular docking. We found that 2-NDC induced apoptosis in NB4 cells in a time-dosage-dependent manner. Also, 2-NDC triggered apoptosis by expanding intracellular reactive oxygen species, combined with ATRA. Bax/Bcl2 ratio was modulated and Survivin was downregulated in NB4 cells upon 2-NDC treatment. Molecular docking studies indicated that 2-NDC binds to the baculovirus inhibitor of apoptosis protein repeat domain of Survivin and Bcl homology 3 domain of Bcl2 with various affinities. Based on the present observations, it seems that this derivative can be estimated as an appropriate candidate for future pharmaceutical evaluations.
Collapse
Affiliation(s)
- N S Samarkhazan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - R Yekta
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - M Sayadi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - S H Tackallou
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - R Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - M Mahdavi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
15
|
Junaid M, Akter Y, Afrose SS, Tania M, Khan MA. Apoptotic Cell Death: Important Cellular Process as Chemotherapeutic Target. DRUG TARGETS IN CELLULAR PROCESSES OF CANCER: FROM NONCLINICAL TO PRECLINICAL MODELS 2020:65-88. [DOI: 10.1007/978-981-15-7586-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
16
|
Singh S, Ng J, Nayak D, Sivaraman J. Structural insights into a HECT-type E3 ligase AREL1 and its ubiquitination activities in vitro. J Biol Chem 2019; 294:19934-19949. [PMID: 31732561 PMCID: PMC6937569 DOI: 10.1074/jbc.ra119.010327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/07/2019] [Indexed: 01/07/2023] Open
Abstract
The HECT E3 ligase family comprises three subfamilies: NEDD4 E3 ubiquitin protein ligase (NEDD4), HECT and RLD domain-containing E3 ubiquitin protein ligase (HERC), and "other." Most previous studies have focused on the NEDD4 subfamily. Apoptosis-resistant E3 ligase 1 (AREL1) belongs to "other" subfamily HECT that inhibits apoptosis by ubiquitinating and degrading proapoptotic proteins. Here, we report the crystal structure of the extended HECT domain of AREL1 (amino acids (aa) 436-823) at 2.4 Å resolution and its ubiquitination of the proapoptotic protein second mitochondria-derived activator of caspase (SMAC). We found that the extended HECT domain adopts an inverted, T-shaped, bilobed conformation and harbors an additional loop (aa 567-573) absent in all other HECT members. We also show that the N-terminal extended region (aa 436-482) preceding the HECT domain is indispensable for its stability and activity and that without this region, the HECT domain becomes inactive. AREL1 ubiquitinated SMAC, primarily on Lys62 and Lys191 We solved the crystal structure of the tetrameric form of SMAC to 2.8 Å resolution, revealing the Lys62 and Lys191 locations. The AREL1 HECT domain assembled Lys33-, Lys48-, and Lys63-linked polyubiquitin chains. Moreover, E701A substitution in the AREL1 HECT domain substantially increased its autopolyubiquitination and SMAC ubiquitination activity, whereas deletion of the last three amino acids at the C terminus completely abrogated AREL1 autoubiquitination and reduced SMAC ubiquitination. Finally, an AREL1-specific ubiquitin variant inhibited SMAC ubiquitination in vitro Our findings may assist in the development of AREL1 inhibitors that block its anti-apoptotic activity in cancer.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543 Singapore
| | - Joel Ng
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543 Singapore
| | - Digant Nayak
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543 Singapore
| | - J. Sivaraman
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543 Singapore, To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Vania L, Morris G, Otgaar TC, Bignoux MJ, Bernert M, Burns J, Gabathuse A, Singh E, Ferreira E, Weiss SFT. Patented therapeutic approaches targeting LRP/LR for cancer treatment. Expert Opin Ther Pat 2019; 29:987-1009. [PMID: 31722579 DOI: 10.1080/13543776.2019.1693543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The ubiquitously expressed 37 kDa/67 kDa high-affinity laminin receptor (laminin receptor precursor/laminin receptor, LRP/LR) is a protein found to play several roles within cells. The receptor is located in the nucleus, cytosol and the cell surface. LRP/LR mediates cell proliferation, cell adhesion and cell differentiation. As a result, it is seen to enhance tumor angiogenesis as well as invasion and adhesion, key steps in the metastatic cascade of cancer. Recent findings have shown that LRP/LR is involved in the maintenance of cell viability through apoptotic evasion, allowing for tumor progression. Thus, several patented therapeutic approaches targeting the receptor for the prevention and treatment of cancer have emerged.Areas covered: The several roles that LRP/LR plays in cancer progression as well as an overview of the current therapeutic patented strategies targeting LRP/LR and cancer to date.Expert opinion: Small molecule inhibitors, monoclonal antibodies and small interfering RNAs might act used as powerful tools in preventing tumor angiogenesis and metastasis through the induction of apoptosis and telomere erosion in several cancers. This review offers an overview of the roles played by LRP/LR in cancer progression, while providing novel patented approaches targeting the receptor as potential therapeutic routes for the treatment of cancer as well as various other diseases.
Collapse
Affiliation(s)
- Leila Vania
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Gavin Morris
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Tyrone C Otgaar
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Monique J Bignoux
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Martin Bernert
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Jessica Burns
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Anne Gabathuse
- Wits Commercial Enterprise, The Commercial Development Hub, Johannesburg, Republic of South Africa
| | - Elvira Singh
- School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| |
Collapse
|
18
|
Choo Z, Loh AHP, Chen ZX. Destined to Die: Apoptosis and Pediatric Cancers. Cancers (Basel) 2019; 11:cancers11111623. [PMID: 31652776 PMCID: PMC6893512 DOI: 10.3390/cancers11111623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 01/10/2023] Open
Abstract
Apoptosis (programmed cell death) is a systematic and coordinated cellular process that occurs in physiological and pathophysiological conditions. Sidestepping or resisting apoptosis is a distinct characteristic of human cancers including childhood malignancies. This review dissects the apoptosis pathways implicated in pediatric tumors. Understanding these pathways not only unraveled key molecules that may serve as potential targets for drug discovery, but also molecular nodes that integrate with other signaling networks involved in processes such as development. This review presents current knowledge of the complex regulatory system that governs apoptosis with respect to other processes in pediatric cancers, so that fresh insights may be derived regarding treatment resistance or for more effective treatment options.
Collapse
Affiliation(s)
- Zhang'e Choo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| | - Amos Hong Pheng Loh
- VIVA-KKH Pediatric Brain and Solid Tumor Program, KK Women's and Children's Hospital, Singapore 229899, Singapore.
- Department of Pediatric Surgery, KK Women's and Children's Hospital, Singapore 229899, Singapore.
| | - Zhi Xiong Chen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- VIVA-KKH Pediatric Brain and Solid Tumor Program, KK Women's and Children's Hospital, Singapore 229899, Singapore.
- National University Cancer Institute, Singapore, Singapore 119074, Singapore.
| |
Collapse
|
19
|
Laroui N, Coste M, Lichon L, Bessin Y, Gary-Bobo M, Pratviel G, Bonduelle C, Bettache N, Ulrich S. Combination of photodynamic therapy and gene silencing achieved through the hierarchical self-assembly of porphyrin-siRNA complexes. Int J Pharm 2019; 569:118585. [DOI: 10.1016/j.ijpharm.2019.118585] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022]
|
20
|
Olajuyin AM, Olajuyin AK, Wang Z, Zhao X, Zhang X. CD146 T cells in lung cancer: its function, detection, and clinical implications as a biomarker and therapeutic target. Cancer Cell Int 2019; 19:247. [PMID: 31572064 PMCID: PMC6761715 DOI: 10.1186/s12935-019-0969-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
CD146 alternatively called melanoma cell adhesion molecule (MCAM), is a biomarker and therapeutic target of clinical significance. It is found on different cells including the endothelial cells and lymphocytes which participate in heterotypic and homotypic ligand-receptor. This review concentrated on the CD146 expression T cells (or lymphocytes) centering on Treg in lung cancer. Here, we have also considered the vigorous investigation of CD146 mainly acknowledged new roles, essential mechanisms and clinical implications of CD146 in cancer. CD146 has progressively become a significant molecule, particularly recognized as a novel biomarker, prognosis and therapy for cancer. Hence, targeting CD146 expression by utilization of methanol extracts of Calotropis procera leaf may be useful for the treatment of carcinogenesis.
Collapse
Affiliation(s)
- Ayobami Matthew Olajuyin
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Adefunke Kafayat Olajuyin
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Ziqi Wang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Xingru Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| |
Collapse
|
21
|
Yang ZM, Yang MF, Yu W, Tao HM. Molecular mechanisms of estrogen receptor β-induced apoptosis and autophagy in tumors: implication for treating osteosarcoma. J Int Med Res 2019; 47:4644-4655. [PMID: 31526167 PMCID: PMC6833400 DOI: 10.1177/0300060519871373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The estrogen receptors α (ERα) and β (ERβ) are located in the nucleus and bind to estrogen to initiate transcription of estrogen-responsive genes. In a variety of tumor cells, ERβ has been shown to be a tumor suppressor. In particular, ERβ has anti-proliferative effects in osteosarcoma cells. Additionally, ERβ has been proven to regulate the apoptosis-related molecules IAP, BAX, caspase-3, and PARP, and to act on the NF-κB/BCL-2 pathway to induce apoptosis in tumors. Moreover, ERβ can regulate the expression of the autophagy associated markers LC3-I/LC-3II and p62 and induce autophagy in tumors by inhibiting the PI3K/AKT/mTOR pathway and activating the AMPK pathway. Here, we review the molecular mechanisms by which ERβ induces apoptosis and autophagy in a variety of tumors to further delineate more specific molecular mechanisms underlying osteosarcoma tumorigenesis and pathogenesis. Considering the broad involvement of ERβ in apoptosis, autophagy, and their interaction, it is plausible that the critical role of ERβ in inhibiting the proliferation and metastasis of osteosarcoma cells is closely related to its regulation of apoptosis and autophagy.
Collapse
Affiliation(s)
- Zheng-Ming Yang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min-Fei Yang
- Department of Emergency, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui-Min Tao
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Wang Y, Zhou S, Liu T, Chen M, Li W, Zhang X. The transcriptomic responses of the ark shell, Anadara broughtonii, to sulfide and hypoxia exposure. Mol Biol Rep 2019; 46:4245-4257. [DOI: 10.1007/s11033-019-04879-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/14/2019] [Indexed: 01/15/2023]
|
23
|
Mahmoudi MB, Farashahi Yazd E, Gharibdoost F, Sheikhha MH, Karimizadeh E, Jamshidi A, Mahmoudi M. Overexpression of apoptosis-related protein, survivin, in fibroblasts from patients with systemic sclerosis. Ir J Med Sci 2019; 188:1443-1449. [PMID: 30761457 DOI: 10.1007/s11845-019-01978-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND/OBJECTIVES Recent studies suggest that, in addition to activation and hypersecretion of matrix components, fibroblasts from patients with systemic sclerosis (SSc) are resistant to apoptosis. Previous studies have shown that survivin, a member of inhibition of apoptosis (IAP) family, plays an important role in apoptosis resistance. Accordingly, we decided to study the expression of the most important members of IAP family in SSc fibroblasts, which can block apoptosis either by binding and inhibiting caspases or through caspase-independent mechanisms. METHOD Skin biopsy samples were obtained from 19 patients with diffuse cutaneous SSc (DcSSc) and 16 healthy controls. Dermal fibroblasts were cultured and the total RNA was isolated from cells followed by cDNA synthesis. Real-time PCR was performed using SYBR Green PCR master mix and specific primers for cIAP1, cIAP2, XIAP, and Survivin mRNA quantification. RESULTS A significantly increased expression level of Survivin was observed in fibroblasts from SSc patients compared to controls (2.26-fold, P = 0.04). However, mRNA expression of cIAP1, cIAP2, and XIAP did not change significantly between cases and controls. CONCLUSIONS Our results showed that survivin is upregulated in SSc skin fibroblast which may lead to resistance to apoptosis. Further studies should be performed to reveal the role of survivin in apoptosis pathway of SSc fibroblasts.
Collapse
Affiliation(s)
- Mohammad Bagher Mahmoudi
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Farashahi Yazd
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hasan Sheikhha
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Karimizadeh
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Assessment of Relationship Between Expression of Survivin Protein and Histopathology Diagnosis and Malignancy Severity in Colon Specimen. J Gastrointest Cancer 2019; 51:76-82. [PMID: 30714071 DOI: 10.1007/s12029-019-00206-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Leung DTH, Rainczuk A, Nguyen T, Stephens A, Silke J, Fuller PJ, Chu S. Targeting XIAP and PPARγ in Granulosa Cell Tumors Alters Metabolic Signaling. J Proteome Res 2019; 18:1691-1702. [DOI: 10.1021/acs.jproteome.8b00917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dilys T. H. Leung
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| | - Adam Rainczuk
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| | - Trang Nguyen
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| | - Andrew Stephens
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Peter J. Fuller
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| | - Simon Chu
- Department of Molecular and Translational Science, Hudson Institute of Medical Research and the Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
26
|
Barrera-Vázquez OS, Cancio-Lonches C, Hernández-González O, Chávez-Munguia B, Villegas-Sepúlveda N, Gutiérrez-Escolano AL. The feline calicivirus leader of the capsid protein causes survivin and XIAP downregulation and apoptosis. Virology 2018; 527:146-158. [PMID: 30529563 DOI: 10.1016/j.virol.2018.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 01/29/2023]
Abstract
Calicivirus infection causes intrinsic apoptosis, leading to viral propagation in the host. During murine norovirus infection, a reduction in the anti-apoptotic protein survivin has been documented. Here we report that in feline calicivirus infection, a downregulation of the anti-apoptotic proteins survivin and XIAP occur, which correlates with the translocation of the pro-apoptotic protein Smac/DIABLO from the mitochondria to the cytoplasm and the activation of caspase-3. Inhibition of survivin degradation by lactacystin treatment caused a delay in apoptosis progression, reducing virus release, without affecting virus production. However, the overexpression of survivin caused a negative effect in viral progeny production. Overexpression of the leader of the capsid protein (LC), but not of the protease-polymerase NS6/7, results in the downregulation of survivin and XIAP, caspase activation and mitochondrial damage. These results indicate that LC is responsible for the induction of apoptosis in transfected cells and most probably in FCV infection.
Collapse
Affiliation(s)
- Oscar Salvador Barrera-Vázquez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F CP 07360, Mexico
| | - Clotilde Cancio-Lonches
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F CP 07360, Mexico
| | - Olivia Hernández-González
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F CP 07360, Mexico
| | - Bibiana Chávez-Munguia
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F CP 07360, Mexico
| | - Nicolás Villegas-Sepúlveda
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Ana Lorena Gutiérrez-Escolano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F CP 07360, Mexico..
| |
Collapse
|
27
|
Rosner A, Kravchenko O, Rinkevich B. IAP genes partake weighty roles in the astogeny and whole body regeneration in the colonial urochordate Botryllus schlosseri. Dev Biol 2018; 448:320-341. [PMID: 30385275 DOI: 10.1016/j.ydbio.2018.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/29/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Inhibitors of Apoptosis Protein (IAP) genes participate in processes like apoptosis, proliferation, innate immunity, inflammation, cell motility, differentiation and in malignancies. Here we reveal 25 IAP genes in the tunicate Botryllus schlosseri's genome and their functions in two developmental biology phenomena, a new mode of whole body regeneration (WBR) induced by budectomy, and blastogenesis, the four-staged cycles of botryllid ascidian astogeny. IAP genes that were specifically upregulated during these developmental phenomena were identified, and protein expression patterns of one of these genes, IAP28, were followed. Most of the IAP genes upregulation recorded at blastogenetic stages C/D was in concert with the upregulation at 100 μM H2O2 apoptotic-induced treatment and in parallel to expressions of AIF1, Bax, Mcl1, caspase 2 and two orthologues of caspase 7. Wnt agonist altered the takeover duration along with reduced IAP expressions, and displacement of IAP28+ phagocytes. WBR was initiated solely at blastogenetic stage D, where zooidal absorption was attenuated and regeneration centers were formed either from remains of partially absorbed zooids or from deformed ampullae. Subsequently, bud-bearing zooids developed, in concert with a massive IAP28-dependent phagocytic wave that eliminated the old zooids, then proceeded with the establishment of morphologically normal-looking colonies. IAP4, IAP14 and IAP28 were also involved in WBR, in conjunction with the expression of the pro-survival PI3K-Akt pathway. IAPs function deregulation by Smac mimetics resulted in severe morphological damages, attenuation in bud growth and differentiation, and in destabilization of colonial coordination. Longtime knockdown of IAP functions prior to the budectomy, resulted in colonial death.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic&Limnological Research Institute, Tel Shikmona, P.O.B. 8030, Haifa 31080, Israel.
| | - Olha Kravchenko
- Israel Oceanographic&Limnological Research Institute, Tel Shikmona, P.O.B. 8030, Haifa 31080, Israel; National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony, Str 17, building 2, of 45, Kyiv 03041, Ukraine
| | - Baruch Rinkevich
- Israel Oceanographic&Limnological Research Institute, Tel Shikmona, P.O.B. 8030, Haifa 31080, Israel
| |
Collapse
|
28
|
Abstract
Inhibitor of apoptosis (IAP) family comprises a group of endogenous proteins that function as main regulators of caspase activity and cell death. They are considered the main culprits in evasion of apoptosis, which is a fundamental hallmark of carcinogenesis. Overexpression of IAP proteins has been documented in various solid and hematological malignancies, rendering them resistant to standard chemotherapeutics and radiation therapy and conferring poor prognosis. This observation has urged their exploitation as therapeutic targets in cancer with promising pre-clinical outcomes. This review describes the structural and functional features of IAP proteins to elucidate the mechanism of their anti-apoptotic activity. We also provide an update on patterns of IAP expression in different tumors, their impact on treatment response and prognosis, as well as the emerging investigational drugs targeting them. This aims at shedding the light on the advances in IAP targeting achieved to date, and encourage further development of clinically applicable therapeutic approaches.
Collapse
Affiliation(s)
- Mervat S Mohamed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
- Department of Chemistry, Biochemistry Speciality, Faculty of Science, Cairo University, Giza, Egypt.
- , Tabuk, Kingdom of Saudi Arabia.
| | - Mai K Bishr
- Department of Radiotherapy, Children's Cancer Hospital Egypt (CCHE), Cairo, Egypt
| | - Fahad M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ayat G Ali
- Department of Biochemistry, El Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
29
|
Mohamed MS, Abdelhamid AO, Almutairi FM, Ali AG, Bishr MK. Induction of apoptosis by pyrazolo[3,4-d]pyridazine derivative in lung cancer cells via disruption of Bcl-2/Bax expression balance. Bioorg Med Chem 2017; 26:623-629. [PMID: 29290491 DOI: 10.1016/j.bmc.2017.12.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023]
Abstract
In the rapidly expanding era of cancer target therapy, regulators of apoptosis are emerging as attractive therapeutic targets. X-linked inhibitor of apoptosis (XIAP) is of specific interest owing to its characteristic overexpression in a wide variety of neoplasms, with a resultant survival advantage for tumor cells and treatment resistance. In this study, we examined three pyrazolo [3,4-d] pyridazine derivatives (PPDs) through molecular modeling and studied their modes of interaction with XIAP-BIR3 domain. PPD-1, which possessed the highest binding affinity with XIAP, was tested on A549 (lung cancer cell line); HCT-116 (colorectal carcinoma cell line); HEPG2 (liver carcinoma cell line), HFB4 (normal human skin melanocyte cell line) and WI-38 (human embryonic lung fibroblasts). In comparison to cisplatin as a positive control, PPD-1 yielded remarkable cytotoxicity on all cancer cell lines, with the highest anti-tumor activity on A549 and a favorable therapeutic ratio. Flow cytometry studies concluded that PPD-1 treatment induces Sub G1 and G2/M cell cycle arrest and apoptosis. The percentage of apoptotic cells in PPD-1 treated A549 cells was considerably higher than that in untreated cells (10.06% vs 0.57%, respectively). To further investigate the mechanism of induction of apoptosis by PPD-1, Real time-PCR was used to quantify the expression levels of key apoptotic regulators. Significant overexpression of the effector capsase-3, pro-apoptotic bax and tumor suppressor gene p53 were noted as compared to untreated cells (7.19 folds, 7.28 folds, and 5.08 folds, respectively). Moreover, PPD-1 inhibited the expression of the anti-apoptotic bcl-2 gene to 0.22 folds. These findings demonstrate that PPD-1 treatment disrupts the Bcl-2/BAX balance in lung cancer cell lines, leading to apoptosis induction possibly through intrinsic mitochondria-dependent pathway. These novel insights elucidate the mechanism of PPD-1 cytotoxicity in lung cancer cell lines and offer a promising therapeutic approach that needs further study.
Collapse
Affiliation(s)
- Mervat S Mohamed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Saudi Arabia; Department of Chemistry, Biochemistry Speciality, Faculty of Science, Cairo University, Egypt.
| | - Abdou O Abdelhamid
- Department of Chemistry, Organic Chemistry Speciality, Faculty of Science, Cairo University, Egypt
| | - Fahad M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Saudi Arabia
| | - Ayat G Ali
- Department of Biochemistry, El Sahel Teaching Hospital, Cairo, Egypt
| | - Mai K Bishr
- Department of Radiotherapy, Children's Cancer Hospital Egypt (CCHE), Cairo, Egypt
| |
Collapse
|
30
|
Jin XJ, Cai PS, Zhu SP, Wang LJ, Zhu H. Negative correlation between X-linked inhibitors of apoptosis and second mitochondria-derived activator of caspase expression levels in cervical carcinoma and cervical intraepithelial neoplasia. Oncol Lett 2017; 14:5340-5346. [PMID: 29113168 PMCID: PMC5661384 DOI: 10.3892/ol.2017.6878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/13/2017] [Indexed: 11/25/2022] Open
Abstract
X-linked inhibitors of apoptosis (XIAP) and second mitochondria-derived activator of caspase (Smac) have been widely reported to serve roles in the development of cervical carcinoma. The present study analyzed the associations between the expression levels of XIAP and Smac in normal cervical epithelium, cervical intraepithelial neoplasia (CIN) and cervical carcinoma. Immunohistochemistry staining of formalin-fixed, paraffin-embedded tissue sections was performed in order to analyze the expression levels of XIAP and Smac in 15 cases of normal cervical tissues, 69 cases of CIN and 76 cases of cervical carcinoma. All the tissue samples were confirmed by pathological diagnosis. The association of XIAP and Smac expression levels was analyzed using one-way analysis of variance, χ2 tests and Spearman's ρ for the nonparametric bi-variant correlation analysis. Overall survival was determined using the log-rank test and Kaplan-Meier survival curves. The expression level of XIAP was increased in CIN and cervical carcinoma tissues compared with normal cervical tissues, whereas Smac demonstrated a converse expression pattern to XIAP in these tissues. The positive staining level of XIAP protein was increased in grade 3 CIN compared with that in grade 1–2 CIN, and was significantly higher in the less-differentiated tissue of cervical carcinoma compared with the well- or medium-differentiated tissues (P<0.05). The staining level was also significantly increased in cervical carcinoma with stage 2b-3 compared with tissues from stage 1–2a carcinoma (P<0.05). The expression levels of Smac were in opposition to these results. XIAP was associated with pelvic lymph node metastasis, whereas no association was identified with Smac expression. The expression level of XIAP was significantly and negatively associated with cell survival time in cervical carcinoma, whereas the expression level of Smac was significantly and positively associated with cell survival time in cervical carcinoma. Therefore, XIAP and Smac may participate in the development of cervical cancer. The expression levels of XIAP and Smac were significantly and inversely associated. This may be useful in early diagnosis, evaluation of surgery and chemotherapy and the prognosis of cervical carcinoma.
Collapse
Affiliation(s)
- Xue-Jing Jin
- Departments of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Ping-Sheng Cai
- Departments of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Shu-Pin Zhu
- Departments of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Li-Jie Wang
- Departments of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, P.R. China
| | - Hua Zhu
- Departments of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
31
|
Yang M, Liu B, Jin L, Tao H, Yang Z. Estrogen receptor β exhibited anti-tumor effects on osteosarcoma cells by regulating integrin, IAP, NF-kB/BCL-2 and PI3K/Akt signal pathway. J Bone Oncol 2017; 9:15-20. [PMID: 29071206 PMCID: PMC5651467 DOI: 10.1016/j.jbo.2017.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
This study aimed to investigate the effects of Estrogen receptor β (ERβ) on osteosarcoma cells, and explore the regulatory mechanisms involved in this process. Osteosarcoma U2-OS cells consisted four groups, and treated by E2, E2 + LY294002 (ERβ agonists), E2 + ERβ siRNA, E2 + ERβ siRNA + LY294002, respectively. Cell counting kit 8 (CCK-8) assay was performed to detect the cell viability of U2-OS cells in each group. The effects of ERβ on the migration and invasion ability of U2-OS cells were examined by wound healing assay and transwell cell culture chamber, respectively. The expression of Inhibitor of apoptosis protein (IAP) and integrin α5 in U2-OS cells of each group was detected by quantitative RT-PCR, and the expression of phosphorylated p65 (p-p65), p-AKT and Bcl-2 was detected by western blotting. The cell viability, migration and invasion ability of U2-OS cells were significantly increased by ERβ siRNA, but inhibited by ERβ agonists LY294002 (p < 0.05). ERβ siRNA significantly downregulated Integrin α5 and unregulated IAP in U2-OS cells (p < 0.05). The expression of p-p65, p-AKT and Bcl-2 was significantly reduced by LY294002, but increased by ERβ siRNA (p < 0.05). In conclusion, ERβ exhibited obvious anti-tumor effects on osteosarcoma cells by regulating integrin, IAP, NF-kBBCL-2 and PI3K/Akt signal pathway.
Collapse
Affiliation(s)
- Minfei Yang
- Emergency Department, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Bing Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Libin Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Huimin Tao
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Zhengming Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province 310009, China
| |
Collapse
|
32
|
Kędzierska H, Piekiełko-Witkowska A. Splicing factors of SR and hnRNP families as regulators of apoptosis in cancer. Cancer Lett 2017; 396:53-65. [PMID: 28315432 DOI: 10.1016/j.canlet.2017.03.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022]
Abstract
SR and hnRNP proteins were initially discovered as regulators of alternative splicing: the process of controlled removal of introns and selective joining of exons through which multiple transcripts and, subsequently, proteins can be expressed from a single gene. Alternative splicing affects genes involved in all crucial cellular processes, including apoptosis. During cancerogenesis impaired apoptotic control facilitates survival of cells bearing molecular aberrations, contributing to their unrestricted proliferation and chemoresistance. Apparently, SR and hnRNP proteins regulate all levels of expression of apoptotic genes, including transcription initiation and elongation, alternative splicing, mRNA stability, translation, and protein degradation. The frequently disturbed expressions of SR/hnRNP proteins in cancers lead to impaired functioning of target apoptotic genes, including regulators of the extrinsic (Fas, caspase-8, caspase-2, c-FLIP) and the intrinsic pathway (Apaf-1, caspase-9, ICAD), genes encoding Bcl-2 proteins, IAPs, and p53 tumor suppressor. Prototypical members of SR/hnRNP families, SRSF1 and hnRNP A1, promote synthesis of anti-apoptotic splice variants of Bcl-x and Mcl-1, which results in attenuation of programmed cell death in breast cancer and chronic myeloid leukemia. SR/hnRNP proteins significantly affect responses to chemotherapy, acting as mediators or modulators of drug-induced apoptosis. Aberrant expression of SRSF1 and hnRNP K can interfere with tumor responses to chemotherapy in pancreatic and liver cancers. Currently, a number of splicing factor inhibitors is being tested in pre-clinical and clinical trials. In this review we discuss recent findings on the role of SR and hnRNP proteins in apoptotic control in cancer cells as well as their significance in anticancer treatments.
Collapse
Affiliation(s)
- Hanna Kędzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
33
|
Papademetrio DL, Lompardía SL, Simunovich T, Costantino S, Mihalez CY, Cavaliere V, Álvarez É. Inhibition of Survival Pathways MAPK and NF-kB Triggers Apoptosis in Pancreatic Ductal Adenocarcinoma Cells via Suppression of Autophagy. Target Oncol 2017; 11:183-95. [PMID: 26373299 DOI: 10.1007/s11523-015-0388-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a survival rate of 4-6 months from diagnosis. PDAC is the fourth leading cause of cancer-related death in the Western world, with a mortality rate of 10 cases per 100,000 population. Chemotherapy constitutes only a palliative strategy, with limited effects on life expectancy. AIMS To investigate the biological response of PDAC to mitogen-activated protein kinase (MAPK) and NF-kappaB (NF-kB) inhibitors and the role of autophagy in the modulation of these signaling pathways in order to address the challenge of developing improved medical protocols for patients with PDAC. METHODS Two ATCC cell lines, MIAPaCa-2 and PANC-1, were used as PDAC models. Cells were exposed to inhibitors of MAPK or NF-kB survival pathways alone or after autophagy inhibition. Several aspects were analyzed, as follows: cell proliferation, by [(3)H]TdR incorporation; cell death, by TUNEL assay, regulation of autophagy by LC3-II expression level and modulation of pro-and anti-apoptotic proteins by Western blot. RESULTS We demonstrated that the inhibition of the MAPK and NF-kB survival pathways with U0126 and caffeic acid phenethyl ester (CAPE), respectively, produced strong inhibition of pancreatic tumor cell growth without inducing apoptotic death. Interestingly, U0126 and CAPE induced apoptosis after autophagy inhibition in a caspase-dependent manner in MIA PaCa-2 cells and in a caspase-independent manner in PANC-1 cells. CONCLUSIONS Here we present evidence that allows us to consider a combined therapy regimen comprising an autophagy inhibitor and a MAPK or NF-kB pathway inhibitor as a possible treatment strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Daniela Laura Papademetrio
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
- IDEHU, CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| | - Silvina Laura Lompardía
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- IDEHU, CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Tania Simunovich
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Susana Costantino
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- IDEHU, CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Cintia Yamila Mihalez
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- IDEHU, CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Cavaliere
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Élida Álvarez
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
- IDEHU, CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Khalili S, Mohammadpour H, Shokrollahi Barough M, Kokhaei P. ILP-2 modeling and virtual screening of an FDA-approved library:a possible anticancer therapy. Turk J Med Sci 2016; 46:1135-43. [PMID: 27513416 DOI: 10.3906/sag-1503-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 10/25/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM The members of the inhibitors of apoptosis protein (IAP) family inhibit diverse components of the caspase signaling pathway, notably caspase 3, 7, and 9. ILP-2 (BIRC-8) is the most recently identified member of the IAPs, mainly interacting with caspase 9. This interaction would eventually lead to death resistance in the case of cancerous cells. Therefore, structural modeling of ILP-2 and finding applicable inhibitors of its interaction with caspase 9 are a compelling challenge. MATERIALS AND METHODS Three main protein modeling approaches along with various model refinement measures were harnessed to achieve a reliable 3D model, using state-of-the-art software. Thereafter, the selected model was employed to perform virtual screening of an FDA approved library. RESULTS A model built by a combinatorial approach (homology and ab initio approaches) was chosen as the best model. Model refinement processes successfully bolstered the model quality. Virtual screening of the compound library introduced several high affinity inhibitor candidates that interact with functional residues of ILP2. CONCLUSION Given the 3D structure of the ILP2 molecule, we found promising inhibitory molecules. In addition to high affinity towards the ILP2 molecule, these molecules interact with residues that play pivotal rules in ILP2-caspase interaction. These molecules would inhibit ILP2-caspase interaction and consequently would lead to reactivated cell apoptosis through the caspases pathway.
Collapse
Affiliation(s)
- Saeed Khalili
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hemn Mohammadpour
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Parviz Kokhaei
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK),Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
35
|
Yang S, Li SS, Yang XM, Yin DH, Wang L. Embelin prevents LMP1-induced TRAIL resistance via inhibition of XIAP in nasopharyngeal carcinoma cells. Oncol Lett 2016; 11:4167-4176. [PMID: 27313761 DOI: 10.3892/ol.2016.4522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 03/15/2016] [Indexed: 01/21/2023] Open
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in the majority of tumor cells, whilst sparing normal cells. However, the potential use of TRAIL in the treatment of cancer is limited by the inevitable emergence of drug resistance. The present study reports the upregulation of latent membrane protein 1 (LMP1)-induced TRAIL resistance via the enhanced expression of X-linked inhibitor of apoptosis protein (XIAP) in nasopharyngeal carcinoma (NPC) cells. LMP1-positive NPC cells were indicated to be more sensitive to TRAIL compared with LMP1-negative NPC cells in three NPC cell lines. CNE-1 is a LMP1-negative NPC cell line that was transfected with pGL6-LMP1; following which, sensitivity to TRAIL decreased. LMP1-induced TRAIL resistance was associated with the decreased cleavage of caspase-8,-3 and -9, BH3 interacting domain death agonist (Bid) and mitochondrial depolarization, without any effects on the expression of the death receptors, B-cell lymphoma (Bcl)-2 and Bcl-extra long. Knockdown of XIAP with small interfering RNA increased caspase-3 and -9 and Bid cleavage, and prevented LMP1-induced TRAIL resistance. Furthermore, embelin, the inhibitor of XIAP, prevented LMP1-induced TRAIL resistance in the Epstein-Barr virus (EBV)-positive CNE-1-LMP1 and C666-1 NPC cell lines. However, embelin did not enhance TRAIL-induced apoptosis in NP-69, which was used as a benign nasopharyngeal epithelial cell line. These data show that LMP1 inhibits TRAIL-mediated apoptosis by upregulation of XIAP. Embelin may be used in an efficacious and safe manner to prevent LMP1-induced TRAIL resistance. The present study may have implications for the development and validation of novel strategies to prevent TRAIL resistance in EBV-positive NPC.
Collapse
Affiliation(s)
- Shu Yang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Shi-Sheng Li
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xin-Ming Yang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Dan-Hui Yin
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lin Wang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
36
|
Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev 2016; 16:2129-44. [PMID: 25824729 DOI: 10.7314/apjcp.2015.16.6.2129] [Citation(s) in RCA: 394] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Programmed cell death (PCD) or apoptosis is a mechanism which is crucial for all multicellular organisms to control cell proliferation and maintain tissue homeostasis as well as eliminate harmful or unnecessary cells from an organism. Defects in the physiological mechanisms of apoptosis may contribute to different human diseases like cancer. Identification of the mechanisms of apoptosis and its effector proteins as well as the genes responsible for apoptosis has provided a new opportunity to discover and develop novel agents that can increase the sensitivity of cancer cells to undergo apoptosis or reset their apoptotic threshold. These novel targeted therapies include those targeting anti-apoptotic Bcl-2 family members, p53, the extrinsic pathway, FLICE-inhibitory protein (c-FLIP), inhibitor of apoptosis (IAP) proteins, and the caspases. In recent years a number of these novel agents have been assessed in preclinical and clinical trials. In this review, we introduce some of the key regulatory molecules that control the apoptotic pathways, extrinsic and intrinsic death receptors, discuss how defects in apoptotic pathways contribute to cancer, and list several agents being developed to target apoptosis.
Collapse
Affiliation(s)
- Samira Goldar
- Department of Biochemistry and Clinical Labratorary, Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | |
Collapse
|
37
|
Talbott RL, Borzilleri RM, Chaudhry C, Fargnoli J, Shen H, Fairchild C, Barnhart B, Ortega M, McDonagh TE, Vuppugalla R, Vite GD, Hunt JT, Gottardis M, Naglich JG. Pharmacology of smac mimetics; chemotype differentiation based on physical association with caspase regulators and cellular transport. Exp Cell Res 2015; 338:251-60. [PMID: 26302264 DOI: 10.1016/j.yexcr.2015.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 01/08/2023]
Abstract
Cellular levels of inhibitor of apoptosis (IAP) proteins are elevated in multiple human cancers and their activities often play a part in promoting cancer cell survival by blocking apoptotic pathways, controlling signal transduction pathways and contributing to resistance. These proteins function through interactions of their BIR (baculoviral IAP repeat) protein domains with pathway components and these interactions are endogenously antagonized by Smac/Diablo (second mitochondrial activator of caspases/direct IAP binding protein with low isoelectric point). This report describes development of synthetic smac mimetics (SM) and compares their binding, antiproliferative and anti-tumor activities. All dimeric antagonists inhibit in vitro smac tetrapeptide binding to recombinant IAP proteins, rescue IAP-bound caspase-3 activity and show anti-proliferative activity against human A875 melanoma cells. One heterodimeric SM, SM3, binds tightly to IAP proteins in vitro and slowly dissociates (greater than two hours) from these protein complexes compared to the other antagonists. In addition, in vitro SM anti-proliferation potency is influenced by ABCB1 transporter (ATP-binding cassette, sub-family B; MDR1, P-gp) activities and one antagonist, SM5, does not appear to be an ABCB1 efflux pump substrate. All dimeric smac mimetics inhibit the growth of human melanoma A875 tumors implanted in athymic mice at well-tolerated doses. One antagonist, SM4, shows broad spectrum in vivo anti-tumor activity and modulates known pharmacodynamic markers of IAP antagonism. These data taken together demonstrate the range of diverse dimeric IAP antagonist activities and supports their potential as anticancer agents.
Collapse
Affiliation(s)
- Randy L Talbott
- Bristol-Myers Squibb Research, PO Box 4000, Princeton, NJ 08543-4000, USA.
| | | | - Charu Chaudhry
- Bristol-Myers Squibb Research, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Joseph Fargnoli
- Bristol-Myers Squibb Research, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Henry Shen
- Bristol-Myers Squibb Research, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Craig Fairchild
- Bristol-Myers Squibb Research, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Bryan Barnhart
- Bristol-Myers Squibb Research, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Marie Ortega
- Bristol-Myers Squibb Research, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Thomas E McDonagh
- Bristol-Myers Squibb Research, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Ragini Vuppugalla
- Bristol-Myers Squibb Research, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Gregory D Vite
- Bristol-Myers Squibb Research, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - John T Hunt
- Bristol-Myers Squibb Research, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Marco Gottardis
- Bristol-Myers Squibb Research, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Joseph G Naglich
- Bristol-Myers Squibb Research, PO Box 4000, Princeton, NJ 08543-4000, USA
| |
Collapse
|
38
|
Connors WH, Hale SP, Terrett NK. DNA-encoded chemical libraries of macrocycles. Curr Opin Chem Biol 2015; 26:42-7. [DOI: 10.1016/j.cbpa.2015.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/21/2015] [Accepted: 02/02/2015] [Indexed: 01/02/2023]
|
39
|
Seigal BA, Connors WH, Fraley A, Borzilleri RM, Carter PH, Emanuel SL, Fargnoli J, Kim K, Lei M, Naglich JG, Pokross ME, Posy SL, Shen H, Surti N, Talbott R, Zhang Y, Terrett NK. The discovery of macrocyclic XIAP antagonists from a DNA-programmed chemistry library, and their optimization to give lead compounds with in vivo antitumor activity. J Med Chem 2015; 58:2855-61. [PMID: 25695766 DOI: 10.1021/jm501892g] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Affinity selection screening of macrocycle libraries derived from DNA-programmed chemistry identified XIAP BIR2 and BIR3 domain inhibitors that displace bound pro-apoptotic caspases. X-ray cocrystal structures of key compounds with XIAP BIR2 suggested potency-enhancing structural modifications. Optimization of dimeric macrocycles with similar affinity for both domains were potent pro-apoptotic agents in cancer cell lines and efficacious in shrinking tumors in a mouse xenograft model.
Collapse
Affiliation(s)
- Benjamin A Seigal
- †Ensemble Therapeutics Corp, 99 Erie Street, Cambridge, Massachusetts 02139, United States
| | - William H Connors
- †Ensemble Therapeutics Corp, 99 Erie Street, Cambridge, Massachusetts 02139, United States
| | - Andrew Fraley
- †Ensemble Therapeutics Corp, 99 Erie Street, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nicholas K Terrett
- †Ensemble Therapeutics Corp, 99 Erie Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
40
|
Yi XP, Han T, Li YX, Long XY, Li WZ. Simultaneous silencing of XIAP and survivin causes partial mesenchymal-epithelial transition of human pancreatic cancer cells via the PTEN/PI3K/Akt pathway. Mol Med Rep 2015; 12:601-8. [PMID: 25707849 DOI: 10.3892/mmr.2015.3380] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 01/21/2015] [Indexed: 11/05/2022] Open
Abstract
Pancreatic cancer has one of the highest mortality rates among malignant tumors and is characterized by rapid invasion, early metastasis and chemoresistance. X-linked inhibitor of apoptosis (XIAP) and survivin are two of the most important members of the IAP family. Previous studies have shown that XIAP and survivin were overexpressed in pancreatic cancer and were closely associated with cell proliferation and chemoresistance to gemcitabine. In the present study, stable inhibition of XIAP and survivin in Panc-1 cells was performed using lentivirus-carried short hairpin RNAs. The expression of XIAP, survivin, E-cadherin, Slug, phosphatase and tensin homolog (PTEN) and phosphorylated Akt was then measured. In addition, cell proliferation, apoptosis, invasion and migration were assessed. The results showed that stable inhibition of XIAP and survivin expression in Panc-1 cells significantly reduced cell proliferation, increased apoptosis and partially reversed the epithelial-mesenchymal transition (EMT). Furthermore, the results of the present study demonstrated that the partial reversal of the EMT was accompanied by inhibited cell invasion and migration as well as increased chemosensitivity to gemcitabine in pancreatic cancer cells; this was indicated to be mediated via the PTEN/phosphatidylinositol 3-kinase/Akt signaling pathway. In conclusion, these results suggested that simultaneous inhibition of XIAP and survivin may be a promising strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xiao-Ping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Tong Han
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi-Xiong Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xue-Ying Long
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wen-Zheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
41
|
Sura R, Settivari RS, LeBaron MJ, Craig Rowlands J, Carney EW, Bhaskar Gollapudi B. A critical assessment of the methodologies to investigate the role of inhibition of apoptosis in rodent hepatocarcinogenesis. Toxicol Mech Methods 2015; 25:192-200. [DOI: 10.3109/15376516.2015.1007541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
42
|
Li G, Chang H, Zhai YP, Xu W. Targeted silencing of inhibitors of apoptosis proteins with siRNAs: a potential anti-cancer strategy for hepatocellular carcinoma. Asian Pac J Cancer Prev 2014; 14:4943-52. [PMID: 24175757 DOI: 10.7314/apjcp.2013.14.9.4943] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies, with a very poor prognosis. Despite significant improvements in diagnosis and treatment in recent years, the long-term therapeutic efficacy is poor, partially due to tumor metastasis, recurrence, and resistance to chemo- or radio-therapy. Recently, it was found that a major feature of tumors is a combination of unrestrained cell proliferation and impaired apoptosis. There are now 8 recognized members of the IAP-family: NAIP, c-IAP1, c-IAP2, XIAP, Survivin, Bruce, Livin and ILP-2. These proteins all contribute to inhibition of apoptosis, and provide new potential avenues of cancer treatment. As a powerful tool to suppress gene expression in mammalian cells, RNAi species for inhibiting IAP genes can be directed against cancers. This review will provide a brief introduction to recent developments of the application IAP-siRNA in tumor studies, with the aim of inspiring future treatment of HCC.
Collapse
Affiliation(s)
- Gang Li
- Department of General Surgery, Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China E-mail :
| | | | | | | |
Collapse
|
43
|
Evaluation of immune and apoptosis related gene responses using an RNAi approach in vaccinated Penaeus monodon during oral WSSV infection. Mar Genomics 2014; 18 Pt A:55-65. [DOI: 10.1016/j.margen.2014.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/10/2023]
|
44
|
Ji C, Wu H, Wei L, Zhao J. iTRAQ-based quantitative proteomic analyses on the gender-specific responses in mussel Mytilus galloprovincialis to tetrabromobisphenol A. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:30-40. [PMID: 25456217 DOI: 10.1016/j.aquatox.2014.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 06/04/2023]
Abstract
Tetrabromobisphenol A (TBBPA) accounts for the largest production of brominated flame-retardants (BFRs) along the Laizhou Bay in China and is the most widely used BFR in industrial products. It can induce diverse toxicities including hepatotoxicity, nephrotoxicity, neurotoxicity and endocrine disrupting effects in mammalian and fish models. In this work, we applied iTRAQ-based proteomics to investigate the gender-specific responses in mussel Mytilus galloprovincialis to TBBPA. Thirty-one proteins were differentially expressed in hepatopancreas between male and female mussels, which clearly indicated the biological differences between male and female mussels at the protein level. After exposure of TBBPA (18.4 nmol/L) for one month, a total of 60 proteins were differentially expressed in response to the TBBPA treatment in mussel hepatopancreas, among which 33 and 29 proteins were significantly altered in TBBPA-treated male and female mussel samples, respectively. Only two of the 60 proteins were commonly altered in both male and female mussel samples exposed to TBBPA. Based on KEGG analysis, these differentially expressed proteins of TBBPA-induced effects were assigned to several groups, including cytoskeleton, reproduction and development, metabolism, signal transduction, gene expression, stress response and apoptosis. Overall, results indicated that TBBPA exposure could induce apoptosis, oxidative and immune stresses and disruption in energy, protein and lipid metabolisms in both male and female mussels with different mechanisms. This work suggested that the gender differences should be considered in ecotoxicoproteomics.
Collapse
Affiliation(s)
- Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, P. R. China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, P. R. China.
| | - Lei Wei
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, P. R. China; The University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, P. R. China
| |
Collapse
|
45
|
Hsieh CH, Lin YJ, Wu CP, Lee HT, Shyu WC, Wang CC. Livin contributes to tumor hypoxia-induced resistance to cytotoxic therapies in glioblastoma multiforme. Clin Cancer Res 2014; 21:460-70. [PMID: 25370472 DOI: 10.1158/1078-0432.ccr-14-0618] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor hypoxia is one of the crucial microenvironments to promote therapy resistance (TR) in glioblastoma multiforme (GBM). Livin, a member of the family of inhibitor of apoptosis proteins, contributes antiapoptosis. However, the role of tumor hypoxia in Livin regulation and its impact on TR are unclear. EXPERIMENTAL DESIGN Livin expression and apoptosis for tumor hypoxic cells derived from human glioblastoma xenografts or in vitro hypoxic stress-treated glioblastoma cells were determined by Western blotting, immunofluorescence imaging, and annexin V staining assay. The mechanism of hypoxia-induced Livin induction was investigated by chromatin immunoprecipitation assay and reporter assay. Genetic and pharmacologic manipulation of Livin was utilized to investigate the role of Livin on tumor hypoxia-induced TR in vitro or in vivo. RESULTS The upregulation of Livin expression and downregulation of caspase activity were observed under cycling and chronic hypoxia in glioblastoma cells and xenografts, concomitant with increased TR to ionizing radiation and temozolomide. However, knockdown of Livin inhibited these effects. Moreover, hypoxia activated Livin transcription through the binding of hypoxia-inducible factor-1α to the Livin promoter. The targeted inhibition of Livin by the cell-permeable peptide (TAT-Lp15) in intracerebral glioblastoma-bearing mice demonstrated a synergistic suppression of tumor growth and increased the survival rate in standard-of-care treatment with radiation plus temozolomide. CONCLUSIONS These findings indicate a novel pathway that links upregulation of Livin to tumor hypoxia-induced TR in GBM and suggest that targeting Livin using cell-permeable peptide may be an effective therapeutic strategy for tumor microenvironment-induced TR.
Collapse
Affiliation(s)
- Chia-Hung Hsieh
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. Department of Medical Research, China Medical University Hospital, Taichung, Taiwan. Department of Biomedical Informatics, Asia University, Taichung, Taiwan.
| | - Yu-Jung Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chung-Pu Wu
- Department of Physiology and Pharmacology, Chang Gung University, Tao-Yuan, Taiwan
| | - Hsu-Tung Lee
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Woei-Cherng Shyu
- Department of Neurology, Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan. Graduate Institute of Immunology, China Medical University, Taichung, Taiwan.
| | - Chi-Chung Wang
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei, Taiwan.
| |
Collapse
|
46
|
Adamkov M, Furjelová M, Horáček J, Benčat M, Kružliak P. Relationship of mismatch repair proteins and survivin in colon polyps and carcinomas. Acta Histochem 2014; 116:1007-14. [PMID: 24852932 DOI: 10.1016/j.acthis.2014.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/24/2022]
Abstract
Mismatch repair genes (MMR) play an essential role in DNA repair. MMR mutations predominantly in MLH1, MSH2, MSH6, PMS2, and rarely in PMS1, may cause the production of abnormally short or inactivated proteins. The antiapoptotic protein survivin functions in the inhibition of apoptosis, regulation of cell division and also enhances angiogenesis. Both MMRP and survivin are considered to be powerful prognostic parameters. This study was designed to determine the relationship between MMRP and survivin in colon lesions. The study included 113 cases of colon carcinoma and 51 cases of colon polyps. Survivin expression and MMRP status were assessed by immunohistochemistry. In each section, expression, intensity of immunostaining and percentage of labeled cells were analyzed. In carcinomas, immunoreaction was detected in 100/113 cases for MLH1 (88.5%), 112/113 cases for MSH2 (99.1%), 110/113 cases for MSH6 (97.3%), and 103/113 cases for PMS2 (91.2%). Survivin was shown in 47/113 cases (41.6%). The statistical analysis confirmed a significant correlation between the expression of MMRP and survivin in the assessed parameters. All 51 polyp samples were positive for MLH1, MSH2, MSH6 and PMS2. Only 8 of those (15.7%) were positive for survivin. Statistically significant differences were observed between the expression of MMRP and survivin. In conclusion, this study revealed that MMRP may suppress the antiapoptotic function of survivin through p53 inactivation of its promoter in grade 1 and grade 2 colon carcinomas.
Collapse
|
47
|
Mohana-Kumaran N, Hill DS, Allen JD, Haass NK. Targeting the intrinsic apoptosis pathway as a strategy for melanoma therapy. Pigment Cell Melanoma Res 2014; 27:525-39. [PMID: 24655414 DOI: 10.1111/pcmr.12242] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/17/2014] [Indexed: 01/02/2023]
Abstract
Melanoma drug resistance is often attributed to abrogation of the intrinsic apoptosis pathway. Targeting regulators of apoptosis is thus considered a promising approach to sensitizing melanomas to treatment. The development of small-molecule inhibitors that mimic natural antagonists of either antiapoptotic members of the BCL-2 family or the inhibitor of apoptosis proteins (IAPs), known as BH3- or SMAC-mimetics, respectively, are helping us to understand the mechanisms behind apoptotic resistance. Studies using BH3-mimetics indicate that the antiapoptotic BCL-2 protein MCL-1 and its antagonist NOXA are particularly important regulators of BCL-2 family signaling, while SMAC-mimetic studies show that both XIAP and the cIAPs must be targeted to effectively induce apoptosis of cancer cells. Although most solid tumors, including melanoma, are insensitive to these mimetic drugs as single agents, combinations with other therapeutics have yielded promising results, and tests combining them with BRAF-inhibitors, which have already revolutionized melanoma treatment, are a clear priority.
Collapse
Affiliation(s)
- Nethia Mohana-Kumaran
- The Centenary Institute, Newtown, NSW, Australia; School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | | | | |
Collapse
|
48
|
Wu P, Shi KJ, An JJ, Ci YL, Li F, Hui KY, Yang Y, Xu CM. The LEF1/CYLD axis and cIAPs regulate RIP1 deubiquitination and trigger apoptosis in selenite-treated colorectal cancer cells. Cell Death Dis 2014; 5:e1085. [PMID: 24577083 PMCID: PMC3944232 DOI: 10.1038/cddis.2014.13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 01/11/2023]
Abstract
Inhibitor-of-apoptosis protein (IAP) inhibitors have been reported to synergistically reduce cell viability in combination with a variety of chemotherapeutic drugs via targeted cellular IAP (cIAP) depletion. Here, we found that cIAP silencing sensitised colorectal cancer (CRC) cells to selenite-induced apoptosis. Upon selenite treatment, the K63-linked ubiquitin chains on receptor-interacting protein 1 (RIP1) were removed, leading to the formation of the death-inducing complex and subsequent caspase-8 activation. Although the ubiquitinases cIAP1 and cIAP2 were significantly downregulated after a 24-h selenite treatment, cylindromatosis (CYLD) deubiquitinase protein levels were marginally upregulated. Chromatin immunoprecipitation assays revealed that lymphoid enhancer factor-1 (LEF1) dissociated from the CYLD promoter upon selenite treatment, thus abolishing suppression of CYLD gene expression. We corroborated these findings in a CRC xenograft animal model using immunohistochemistry. Collectively, our findings demonstrate that selenite caused CYLD upregulation via LEF1 and cIAP downregulation, both of which contribute to the degradation of ubiquitin chains on RIP1 and subsequent caspase-8 activation and apoptosis. Importantly, our results identify a LEF1-binding site in the CYLD promoter as a potential target for combinational therapy as an alternative to cIAPs.
Collapse
Affiliation(s)
- P Wu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - K J Shi
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - J J An
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Y L Ci
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - F Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - K Y Hui
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Y Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - C M Xu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
49
|
Zhao Z, Yang C, Wang L, Li L, Zhao T, Hu L, Rong R, Xu M, Zhu T. The regulatory T cell effector soluble fibrinogen-like protein 2 induces tubular epithelial cell apoptosis in renal transplantation. Exp Biol Med (Maywood) 2014; 239:193-201. [PMID: 24414480 DOI: 10.1177/1535370213514921] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acute rejection (AR) hinders renal allograft survival. Tubular epithelial cell (TEC) apoptosis contributes to premature graft loss in AR, while the mechanism remains unclear. Soluble fibrinogen-like protein 2 (sFGL2), a novel effector of regulatory T cells (Treg), induces apoptosis to mediate tissue injury. We previously found that serum sFGL2 significantly increased in renal allograft rejection patients. In this study, the role of sFGL2 in AR was further investigated both in vivo and in vitro. The serum level of sFGL2 and the percentage of CD4(+)CD25(+)Foxp3(+) Treg in the peripheral blood were measured in renal allograft recipients with AR or stable renal function (n = 30 per group). The human TEC was stimulated with sFGL2, tumor necrosis factor (TNF)-α, or phosphate buffered saline and investigated for apoptosis in vitro. Apoptosis-associated genes expression in TEC was further assessed. Approval for this study was obtained from the Ethics Committee of Fudan University. Our results showed that the serum level of sFGL2, correlated with Treg in the peripheral blood, was significantly increased in the AR patients. In vitro, sFGL2 remarkably induced TEC apoptosis, with a significant up-regulation of proapoptotic genes, including CASP-3, CASP-8, CASP-9, CASP-10, TRADD, TNFSF10, FADD, FAS, FASLG, BAK1, BAD, BAX, and NF-KB1. However, no significant changes were observed in the expression of antiapoptotic genes, including CARD-18, NAIP, BCL2, IKBKB, and TBK1. Therefore, sFGL2, an effector of Treg, induces TEC apoptosis. Our study suggests that sFGL2 is a potential mediator in the pathogenesis of allograft rejection and provides novel insights into the role of Treg in AR.
Collapse
Affiliation(s)
- Zitong Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Exposure to the neurotoxic dinoflagellate, Alexandrium catenella, induces apoptosis of the hemocytes of the oyster, Crassostrea gigas. Mar Drugs 2013; 11:4799-814. [PMID: 24317471 PMCID: PMC3877888 DOI: 10.3390/md11124799] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/31/2013] [Accepted: 11/06/2013] [Indexed: 11/16/2022] Open
Abstract
This study assessed the apoptotic process occurring in the hemocytes of the Pacific oyster, Crassostrea gigas, exposed to Alexandrium catenella, a paralytic shellfish toxins (PSTs) producer. Oysters were experimentally exposed during 48 h to the toxic algae. PSTs accumulation, the expression of 12 key apoptotic-related genes, as well as the variation of the number of hemocytes in apoptosis was measured at time intervals during the experiment. Results show a significant increase of the number of hemocytes in apoptosis after 29 h of exposure. Two pro-apoptotic genes (Bax and Bax-like) implicated in the mitochondrial pathway were significantly upregulated at 21 h followed by the overexpression of two caspase executor genes (caspase-3 and caspase-7) at 29 h, suggesting that the intrinsic pathway was activated. No modulation of the expression of genes implicated in the cell signaling Fas-Associated protein with Death Domain (FADD) and initiation-phase (caspase-2) was observed, suggesting that only the extrinsic pathway was not activated. Moreover, the clear time-dependent upregulation of five (Bcl2, BI-1, IAP1, IAP7B and Hsp70) inhibitors of apoptosis-related genes associated with the return to the initial number of hemocytes in apoptosis at 48 h of exposure suggests the involvement of strong regulatory mechanisms of apoptosis occurring in the hemocytes of the Pacific oyster.
Collapse
|