1
|
Takada K, Oku N, Peach ML, Ransom TT, Henrich CJ, Gustafson KR. Enigmazole Phosphomacrolides from the Marine Sponge Cinachyrella enigmatica. J Org Chem 2023; 88:10996-11002. [PMID: 37471139 DOI: 10.1021/acs.joc.3c00963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Enigmazole B (1) and four new analogues, cis-enigmazole B (2), dehydroenigmazole B (3), enigmimide B (4), and enigmimide A (5), were isolated from the marine sponge Cinachyrella enigmatica. Their planar structures were elucidated by detailed NMR and MS data analyses, which established 1-3 to be oxazole-substituted 18-membered phosphomacrolides, while 4 and 5 were oxazole ring-opened congeners. The relative and absolute configurations in 1 were determined by a combination of chemical transformations and spectroscopic analyses. Photooxidation of the oxazole moiety in 1 gave enigmimide B (4), thus establishing that 4 has the same absolute configuration of 1. Enigmazole B (1) along with analogues 2 and 3 showed cytotoxicity against murine IC-2 mast cells with IC50 values of 3.6-7.0 μM. The enigmimides (4 and 5) and dephosphoenigmazoles did not show cytotoxicity (IC50 > 10 μM), implying that both the oxazole moiety and the phosphate group are necessary for the cytotoxicity of the enigmazole class macrolides.
Collapse
Affiliation(s)
- Kentaro Takada
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Naoya Oku
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Megan L Peach
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Tanya T Ransom
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Curtis J Henrich
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Kirk R Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
2
|
Dahlin JL, Auld DS, Rothenaigner I, Haney S, Sexton JZ, Nissink JWM, Walsh J, Lee JA, Strelow JM, Willard FS, Ferrins L, Baell JB, Walters MA, Hua BK, Hadian K, Wagner BK. Nuisance compounds in cellular assays. Cell Chem Biol 2021; 28:356-370. [PMID: 33592188 PMCID: PMC7979533 DOI: 10.1016/j.chembiol.2021.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/02/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022]
Abstract
Compounds that exhibit assay interference or undesirable mechanisms of bioactivity ("nuisance compounds") are routinely encountered in cellular assays, including phenotypic and high-content screening assays. Much is known regarding compound-dependent assay interferences in cell-free assays. However, despite the essential role of cellular assays in chemical biology and drug discovery, there is considerably less known about nuisance compounds in more complex cell-based assays. In our view, a major obstacle to realizing the full potential of chemical biology will not just be difficult-to-drug targets or even the sheer number of targets, but rather nuisance compounds, due to their ability to waste significant resources and erode scientific trust. In this review, we summarize our collective academic, government, and industry experiences regarding cellular nuisance compounds. We describe assay design strategies to mitigate the impact of nuisance compounds and suggest best practices to efficiently address these compounds in complex biological settings.
Collapse
Affiliation(s)
- Jayme L Dahlin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Douglas S Auld
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Ina Rothenaigner
- Assay Development and Screening Platform, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Steve Haney
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, Gastroenterology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Jarrod Walsh
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park SK10 4TG, UK
| | | | | | | | - Lori Ferrins
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Bruce K Hua
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02140, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02140, USA
| | - Kamyar Hadian
- Assay Development and Screening Platform, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02140, USA
| |
Collapse
|
3
|
Sakurai K, Sakamoto K, Sasaki M, Fuwa H. Unified Total Synthesis of (-)-Enigmazole A and (-)-15-O-Methylenigmazole A. Chem Asian J 2020; 15:3494-3502. [PMID: 32902874 DOI: 10.1002/asia.202001015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 12/29/2022]
Abstract
The total synthesis of cytotoxic marine phosphomacrolides, (-)-enigmazole A and (-)-15-O-methylenigmazole A, is described in detail. The 2,6-cis-substituted tetrahydropyran ring was efficiently elaborated by using a tandem olefin cross-metathesis/intramolecular oxa-Michael addition reaction. The 18-membered macrolactone skeleton was forged via a Au-catalyzed propargylic benzoate rearrangement/macrocyclic ring-closing metathesis sequence. Late-stage diversification of a common intermediate enabled unified total synthesis of (-)-enigmazole A and (-)-15-O-methylenigmazole A.
Collapse
Affiliation(s)
- Keisuke Sakurai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Keita Sakamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.,Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
4
|
Wilson BAP, Thornburg CC, Henrich CJ, Grkovic T, O'Keefe BR. Creating and screening natural product libraries. Nat Prod Rep 2020; 37:893-918. [PMID: 32186299 PMCID: PMC8494140 DOI: 10.1039/c9np00068b] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2020The National Cancer Institute of the United States (NCI) has initiated a Cancer Moonshot program entitled the NCI Program for Natural Product Discovery. As part of this effort, the NCI is producing a library of 1 000 000 partially purified natural product fractions which are being plated into 384-well plates and provided to the research community free of charge. As the first 326 000 of these fractions have now been made available, this review seeks to describe the general methods used to collect organisms, extract those organisms, and create a prefractionated library. Importantly, this review also details both cell-based and cell-free bioassay methods and the adaptations necessary to those methods to productively screen natural product libraries. Finally, this review briefly describes post-screen dereplication and compound purification and scale up procedures which can efficiently identify active compounds and produce sufficient quantities of natural products for further pre-clinical development.
Collapse
Affiliation(s)
- Brice A P Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, USA.
| | | | | | | | | |
Collapse
|
5
|
Heravi MM, Ahmadi T, Ghavidel M, Heidari B, Hamidi H. Recent applications of the hetero Diels–Alder reaction in the total synthesis of natural products. RSC Adv 2015. [DOI: 10.1039/c5ra17488k] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The synthetic utility and potential power of the Diels–Alder (D–A) reaction in organic chemistry is evident.
Collapse
Affiliation(s)
| | | | | | | | - Hoda Hamidi
- Department of Chemistry
- Alzahra University
- Tehran
- Iran
| |
Collapse
|
6
|
Hale KJ, Wang L. A New Stereocontrolled Total Synthesis of the Mast Cell Inhibitory Alkaloid, (+)-Monanchorin, via the Wittig Reaction of a Stabilized Ylide with a Cyclic Guanidine Hemiaminal. Org Lett 2014; 16:2154-7. [DOI: 10.1021/ol500616v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Karl J. Hale
- The School
of Chemistry and
Chemical Engineering and the Centre for Cancer Research and Cell Biology
(CCRCB), Queen’s University Belfast (QUB), Stranmillis Road, Belfast BT95 AJ, Northern Ireland, United Kingdom
| | - Liping Wang
- The School
of Chemistry and
Chemical Engineering and the Centre for Cancer Research and Cell Biology
(CCRCB), Queen’s University Belfast (QUB), Stranmillis Road, Belfast BT95 AJ, Northern Ireland, United Kingdom
| |
Collapse
|
7
|
Henrich CJ, Beutler JA. Matching the power of high throughput screening to the chemical diversity of natural products. Nat Prod Rep 2013; 30:1284-98. [PMID: 23925671 PMCID: PMC3801163 DOI: 10.1039/c3np70052f] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Covering up to 2013. Application of high throughput screening technologies to natural product samples demands alterations in assay design as well as sample preparation in order to yield meaningful hit structures at the end of the campaign.
Collapse
Affiliation(s)
- Curtis J. Henrich
- Basic Science Program, SAIC-Frederick, Inc. Frederick National Lab
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| | - John A. Beutler
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| |
Collapse
|
8
|
Skepper CK, Quach T, Molinski TF. Total synthesis of enigmazole A from Cinachyrella enigmatica. Bidirectional bond constructions with an ambident 2,4-disubstituted oxazole synthon. J Am Chem Soc 2010; 132:10286-92. [PMID: 20590095 DOI: 10.1021/ja1016975] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first total synthesis of the cytotoxic marine macrolide enigmazole A has been completed in 22 steps (longest linear sequence). The sensitive, densely functionalized 2,4-disubstituted oxazole fragment was constructed using an efficient Negishi-type coupling of an oxazol-2-ylzinc reagent formed directly from the parent ethyl 2-iodooxazole-4-carboxylate by zinc insertion. Other key steps include a hetero-Diels-Alder cycloaddition to form the central embedded pyran ring, a Wittig reaction to unite Eastern and Western hemispheres, and a ring size-selective Keck macrolactonization.
Collapse
Affiliation(s)
- Colin K Skepper
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive MC0358, La Jolla, California 92093, USA
| | | | | |
Collapse
|
9
|
Oku N, Takada K, Fuller RW, Wilson JA, Peach ML, Pannell LK, McMahon JB, Gustafson KR. Isolation, structural elucidation, and absolute stereochemistry of enigmazole A, a cytotoxic phosphomacrolide from the Papua New Guinea marine sponge Cinachyrella enigmatica. J Am Chem Soc 2010; 132:10278-85. [PMID: 20590096 PMCID: PMC3850515 DOI: 10.1021/ja1016766] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enigmazole A (1), a novel phosphate-containing macrolide, was isolated from a Papua New Guinea collection of the marine sponge Cinachyrella enigmatica. The structure of 1, including the absolute stereochemistry at all eight chiral centers, was determined by a combination of spectroscopic analyses and a series of microscale chemical derivatization studies. Compound 1 is comprised of an 18-membered phosphomacrolide that contains an embedded exomethylene-substituted tetrahydropyran ring and an acyclic portion that spans an embedded oxazole moiety. Two additional analogues, 15-O-methylenigmazole A and 13-hydroxy-15-O-methylenigmazole A, were also isolated and assigned. The enigmazoles are the first phosphomacrolides from a marine source and 1 exhibited significant cytotoxicity in the NCI 60-cell line antitumor screen, with a mean GI(50) of 1.7 microM.
Collapse
Affiliation(s)
- Naoya Oku
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Building 1052, Room 121, Frederick, Maryland 21701-1201
| | - Kentaro Takada
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Building 1052, Room 121, Frederick, Maryland 21701-1201
| | - Richard W. Fuller
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Building 1052, Room 121, Frederick, Maryland 21701-1201
| | - Jennifer A. Wilson
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Building 1052, Room 121, Frederick, Maryland 21701-1201
| | - Megan L. Peach
- Chemical Biology Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Building 376, Frederick, Maryland, 21702
| | - Lewis K. Pannell
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and DigestiVe and Kidney Diseases, Bethesda, Maryland, 20892
| | - James B. McMahon
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Building 1052, Room 121, Frederick, Maryland 21701-1201
| | - Kirk R. Gustafson
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Building 1052, Room 121, Frederick, Maryland 21701-1201
| |
Collapse
|