1
|
Nag S, Banerjee C, Goyal M, Siddiqui AA, Saha D, Mazumder S, Debsharma S, Pramanik S, Saha SJ, De R, Bandyopadhyay U. Plasmodium falciparum Alba6 exhibits DNase activity and participates in stress response. iScience 2024; 27:109467. [PMID: 38558939 PMCID: PMC10981135 DOI: 10.1016/j.isci.2024.109467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/12/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Alba domain proteins, owing to their functional plasticity, play a significant role in organisms. Here, we report an intrinsic DNase activity of PfAlba6 from Plasmodium falciparum, an etiological agent responsible for human malignant malaria. We identified that tyrosine28 plays a critical role in the Mg2+ driven 5'-3' DNase activity of PfAlba6. PfAlba6 cleaves both dsDNA as well as ssDNA. We also characterized PfAlba6-DNA interaction and observed concentration-dependent oligomerization in the presence of DNA, which is evident from size exclusion chromatography and single molecule AFM-imaging. PfAlba6 mRNA expression level is up-regulated several folds following heat stress and treatment with artemisinin, indicating a possible role in stress response. PfAlba6 has no human orthologs and is expressed in all intra-erythrocytic stages; thus, this protein can potentially be a new anti-malarial drug target.
Collapse
Affiliation(s)
- Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Manish Goyal
- Department of Molecular & Cell Biology, School of Dental Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Department of Zoology, Raja Peary Mohan College, 1 Acharya Dhruba Pal Road, Uttarpara, West Bengal 712258, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shubhra Jyoti Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, West Bengal 700135, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Division of Molecular Medicine, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal 700091, India
| |
Collapse
|
2
|
Asif M, Almehmadi M, Alsaiari AA, Allahyani M. Diverse Pharmacological Potential of different Substituted Pyrazole Derivatives. Curr Org Synth 2024; 21:858-888. [PMID: 37861007 DOI: 10.2174/0115701794260444230925095804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
The chemistry of heterocyclic compounds has been a topic of research interest. Some five-membered heterocyclic compounds have been the subject of extensive research due to their different types of pharmacological effects. The five-membered nitrogen-containing heterocyclic compounds pyrazole, pyrazoline, and pyrazolone derivatives have a lot of interest in the fields of medical and agricultural chemistry due to their diverse spectrum of therapeutic activities. Various substituted pyrazole, pyrazoline, and pyrazolone compounds exhibited diverse pharmacological effects like Anti-microbial, anti-inflammatory, anti-tubercular, anti-fungal, anti-malarial, anti-diabetic, diuretic, anti-depressant, anticonvulsant, antioxidant, anti-leishmanial, antidiabetic, and antiviral, etc. In recent decades, the synthesis of numerous pyrazole, pyrazoline, and pyrazolone derivatives by different synthetic methods as well as research into their chemical and biological behavior have become more important. This review focuses on synthetic methods of the pyrazole, pyrazoline, and pyrazolone derivatives, which have significant biological properties and a variety of applications.
Collapse
Affiliation(s)
- Mohammad Asif
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, 226003, Uttar Pradesh, India
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
3
|
Alaithan H, Kumar N, Islam MZ, Liappis AP, Nava VE. Novel Therapeutics for Malaria. Pharmaceutics 2023; 15:1800. [PMID: 37513987 PMCID: PMC10383744 DOI: 10.3390/pharmaceutics15071800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Malaria is a potentially fatal disease caused by protozoan parasites of the genus Plasmodium. It is responsible for significant morbidity and mortality in endemic countries of the tropical and subtropical world, particularly in Africa, Southeast Asia, and South America. It is estimated that 247 million malaria cases and 619,000 deaths occurred in 2021 alone. The World Health Organization's (WHO) global initiative aims to reduce the burden of disease but has been massively challenged by the emergence of parasitic strains resistant to traditional and emerging antimalarial therapy. Therefore, development of new antimalarial drugs with novel mechanisms of action that overcome resistance in a safe and efficacious manner is urgently needed. Based on the evolving understanding of the physiology of Plasmodium, identification of potential targets for drug intervention has been made in recent years, resulting in more than 10 unique potential anti-malaria drugs added to the pipeline for clinical development. This review article will focus on current therapies as well as novel targets and therapeutics against malaria.
Collapse
Affiliation(s)
- Haitham Alaithan
- Veterans Affairs Medical Center, Washington, DC 20422, USA
- Department of Medicine, George Washington University, Washington, DC 20037, USA
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute of Public Health, George Washington University, Washington, DC 20037, USA
| | - Mohammad Z Islam
- Department of Pathology and Translational Pathology, Louisiana State University Health Science Center, Shreveport, LA 71103, USA
| | - Angelike P Liappis
- Veterans Affairs Medical Center, Washington, DC 20422, USA
- Department of Medicine, George Washington University, Washington, DC 20037, USA
| | - Victor E Nava
- Veterans Affairs Medical Center, Washington, DC 20422, USA
- Department of Pathology, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
4
|
Recent approaches in the drug research and development of novel antimalarial drugs with new targets. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:1-27. [PMID: 36692468 DOI: 10.2478/acph-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
Malaria is a serious worldwide medical issue that results in substantial annual death and morbidity. The availability of treatment alternatives is limited, and the rise of resistant parasite types has posed a significant challenge to malaria treatment. To prevent a public health disaster, novel antimalarial agents with single-dosage therapies, extensive curative capability, and new mechanisms are urgently needed. There are several approaches to developing antimalarial drugs, ranging from alterations of current drugs to the creation of new compounds with specific targeting abilities. The availability of multiple genomic techniques, as well as recent advancements in parasite biology, provides a varied collection of possible targets for the development of novel treatments. A number of promising pharmacological interference targets have been uncovered in modern times. As a result, our review concentrates on the most current scientific and technical progress in the innovation of new antimalarial medications. The protein kinases, choline transport inhibitors, dihydroorotate dehydrogenase inhibitors, isoprenoid biosynthesis inhibitors, and enzymes involved in the metabolism of lipids and replication of deoxyribonucleic acid, are among the most fascinating antimalarial target proteins presently being investigated. The new cellular targets and drugs which can inhibit malaria and their development techniques are summarised in this study.
Collapse
|
5
|
Mishra A, Jha V, Rajak H. Molecular structural investigations of quinoxaline derivatives through 3D-QSAR, molecular docking, ADME prediction and pharmacophore modeling studies for the search of novel antimalarial agent. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Belete TM. Recent Progress in the Development of New Antimalarial Drugs with Novel Targets. Drug Des Devel Ther 2020; 14:3875-3889. [PMID: 33061294 PMCID: PMC7519860 DOI: 10.2147/dddt.s265602] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
Malaria is a major global health problem that causes significant mortality and morbidity annually. The therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains, which causes a major obstacle to malaria control. To prevent a potential public health emergency, there is an urgent need for new antimalarial drugs, with single-dose cures, broad therapeutic potential, and novel mechanism of action. Antimalarial drug development can follow several approaches ranging from modifications of existing agents to the design of novel agents that act against novel targets. Modern advancement in the biology of the parasite and the availability of the different genomic techniques provide a wide range of novel targets in the development of new therapy. Several promising targets for drug intervention have been revealed in recent years. Therefore, this review focuses on the progress made on the latest scientific and technological advances in the discovery and development of novel antimalarial agents. Among the most interesting antimalarial target proteins currently studied are proteases, protein kinases, Plasmodium sugar transporter inhibitor, aquaporin-3 inhibitor, choline transport inhibitor, dihydroorotate dehydrogenase inhibitor, isoprenoid biosynthesis inhibitor, farnesyltransferase inhibitor and enzymes are involved in lipid metabolism and DNA replication. This review summarizes the novel molecular targets and their inhibitors for antimalarial drug development approaches.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
7
|
Luan F, Han K, Li M, Zhang T, Liu D, Yu L, Lv H. Ethnomedicinal Uses, Phytochemistry, Pharmacology, and Toxicology of Species from the GenusAjugaL.: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:959-1003. [PMID: 31416340 DOI: 10.1142/s0192415x19500502] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present review is aimed at providing a comprehensive summary of the botanical characteristics, ethnomedicinal uses, phytochemical, pharmacological, and toxicological studies of the genus Ajuga L. The extensive literature survey revealed Ajuga L. species to be a group of important medicinal plants used for the ethnomedical treatment of rheumatism, fever, gout, sclerosis, analgesia, inflammation, hypertension, hyperglycemia, joint pain, palsy, amenorrhea, etc., although only a few reports address the clinical use and toxicity of these plants. Currently, more than 280 chemical constituents have been isolated and characterized from these plants. Among these constituents, neo-clerodane diterpenes and diterpenoids, phytoecdysteroids, flavonoids, and iridoids are the major bioactive compounds, possessing wide-reaching biological activities both in vivo and in vitro, including anti-inflammatory, antinociceptive, antitumor, anti-oxidant, antidiabetic, antimicrobial, antifeedant, antidiarrhoeal, hypolipidemic, diuretic, hypoglycaemic, immunomodulatory, vasorelaxant, larvicidal, antimutagenic, and neuroprotective activity. This review is aimed at summarizing the current knowledge of the ethnomedicinal uses, phytochemistry, biological activities, and toxicities of the genus Ajuga L. to reveal its therapeutic potentials, offering opportunities for future researches. Therefore, more focus should be paid to gathering information about their toxicology data, quality-control measures, and the clinical application of the bioactive ingredients from Ajuga L. species.
Collapse
Affiliation(s)
- Fei Luan
- Department of Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi’an 710100, P. R. China
| | - Keqing Han
- Department of Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi’an 710100, P. R. China
| | - Maoxing Li
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Key Laboratory of the Prevention and Treatment for Injury in Plateau of PLA, Lanzhou 730050, P. R. China
| | - Ting Zhang
- Department of Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi’an 710100, P. R. China
| | - Daoheng Liu
- Department of Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi’an 710100, P. R. China
| | - Linhong Yu
- Department of Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi’an 710100, P. R. China
| | - Haizhen Lv
- Department of Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi’an 710100, P. R. China
| |
Collapse
|
8
|
Limudomporn P, Moonsom S, Leartsakulpanich U, Suntornthiticharoen P, Petmitr S, Weinfeld M, Chavalitshewinkoon-Petmitr P. Characterization of Plasmodium falciparum ATP-dependent DNA helicase RuvB3. Malar J 2016; 15:526. [PMID: 27809838 PMCID: PMC5093981 DOI: 10.1186/s12936-016-1573-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is one of the most serious and widespread parasitic diseases affecting humans. Because of the spread of resistance in both parasites and the mosquito vectors to anti-malarial drugs and insecticides, controlling the spread of malaria is becoming difficult. Thus, identifying new drug targets is urgently needed. Helicases play key roles in a wide range of cellular activities involving DNA and RNA transactions, making them attractive anti-malarial drug targets. METHODS ATP-dependent DNA helicase gene (PfRuvB3) of Plasmodium falciparum strain K1, a chloroquine and pyrimethamine-resistant strain, was inserted into pQE-TriSystem His-Strep 2 vector, heterologously expressed and affinity purified. Identity of recombinant PfRuvB3 was confirmed by western blotting coupled with tandem mass spectrometry. Helicase and ATPase activities were characterized as well as co-factors required for optimal function. RESULTS Recombinant PfRuvB3 has molecular size of 59 kDa, showing both DNA helicase and ATPase activities. Its helicase activity is dependent on divalent cations (Cu2+, Mg2+, Ni+2 or Zn+2) and ATP or dATP but is inhibited by high NaCl concentration (>100 mM). PfPuvB3 is unable to act on blunt-ended duplex DNA, but manifests ATPase activity in the presence of either single- or double-stranded DNA. PfRuvB3.is inhibited by doxorubicin, daunorubicin and netropsin, known DNA helicase inhibitors. CONCLUSIONS Purified recombinant PfRuvB3 contains both DNA helicase and ATPase activities. Differences in properties of RuvB between the malaria parasite obtained from the study and human host provide an avenue leading to the development of novel drugs targeting specifically the malaria form of RuvB family of DNA helicases.
Collapse
Affiliation(s)
- Paviga Limudomporn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Saengduen Moonsom
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Pahonyothin Rd, Pathumthani, 12120, Thailand
| | - Pattra Suntornthiticharoen
- Department of Biomedical Sciences, Faculty of Science, Rangsit University, Lak Hok, Pathumthani, 12000, Thailand
| | - Songsak Petmitr
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Michael Weinfeld
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | | |
Collapse
|
9
|
Conn JE, Norris DE, Donnelly MJ, Beebe NW, Burkot TR, Coulibaly MB, Chery L, Eapen A, Keven JB, Kilama M, Kumar A, Lindsay SW, Moreno M, Quinones M, Reimer LJ, Russell TL, Smith DL, Thomas MB, Walker ED, Wilson ML, Yan G. Entomological Monitoring and Evaluation: Diverse Transmission Settings of ICEMR Projects Will Require Local and Regional Malaria Elimination Strategies. Am J Trop Med Hyg 2015; 93:28-41. [PMID: 26259942 PMCID: PMC4574272 DOI: 10.4269/ajtmh.15-0009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/20/2015] [Indexed: 01/29/2023] Open
Abstract
The unprecedented global efforts for malaria elimination in the past decade have resulted in altered vectorial systems, vector behaviors, and bionomics. These changes combined with increasingly evident heterogeneities in malaria transmission require innovative vector control strategies in addition to the established practices of long-lasting insecticidal nets and indoor residual spraying. Integrated vector management will require focal and tailored vector control to achieve malaria elimination. This switch of emphasis from universal coverage to universal coverage plus additional interventions will be reliant on improved entomological monitoring and evaluation. In 2010, the National Institutes for Allergies and Infectious Diseases (NIAID) established a network of malaria research centers termed ICEMRs (International Centers for Excellence in Malaria Research) expressly to develop this evidence base in diverse malaria endemic settings. In this article, we contrast the differing ecology and transmission settings across the ICEMR study locations. In South America, Africa, and Asia, vector biologists are already dealing with many of the issues of pushing to elimination such as highly focal transmission, proportionate increase in the importance of outdoor and crepuscular biting, vector species complexity, and "sub patent" vector transmission.
Collapse
Affiliation(s)
- Jan E. Conn
- *Address correspondence to Jan E. Conn, Griffin Laboratory, The Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159. E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sahu NK, Sharma MC, Mourya V, Kohli D. QSAR studies of some side chain modified 7-chloro-4-aminoquinolines as antimalarial agents. ARAB J CHEM 2014. [DOI: 10.1016/j.arabjc.2010.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Yadav MK, Singh A, Swati D. A knowledge-based approach for identification of drugs against vivapain-2 protein of Plasmodium vivax through pharmacophore-based virtual screening with comparative modelling. Appl Biochem Biotechnol 2014; 173:2174-88. [PMID: 24970047 DOI: 10.1007/s12010-014-1023-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 06/19/2014] [Indexed: 01/07/2023]
Abstract
Malaria is one of the most infectious diseases in the world. Plasmodium vivax, the pathogen causing endemic malaria in humans worldwide, is responsible for extensive disease morbidity. Due to the emergence of resistance to common anti-malarial drugs, there is a continuous need to develop a new class of drugs for this pathogen. P. vivax cysteine protease, also known as vivapain-2, plays an important role in haemoglobin hydrolysis and is considered essential for the survival of the parasite. The three-dimensional (3D) structure of vivapain-2 is not predicted experimentally, so its structure is modelled by using comparative modelling approach and further validated by Qualitative Model Energy Analysis (QMEAN) and RAMPAGE tools. The potential binding site of selected vivapain-2 structure has been detected by grid-based function prediction method. Drug targets and their respective drugs similar to vivapain-2 have been identified using three publicly available databases: STITCH 3.1, DrugBank and Therapeutic Target Database (TTD). The second approach of this work focuses on docking study of selected drug E-64 against vivapain-2 protein. Docking reveals crucial information about key residues (Asn281, Cys283, Val396 and Asp398) that are responsible for holding the ligand in the active site. The similarity-search criterion is used for the preparation of our in-house database of drugs, obtained from filtering the drugs from the DrugBank database. A five-point 3D pharmacophore model is generated for the docked complex of vivapain-2 with E-64. This study of 3D pharmacophore-based virtual screening results in identifying three new drugs, amongst which one is approved and the other two are experimentally proved. The ADMET properties of these drugs are found to be in the desired range. These drugs with novel scaffolds may act as potent drugs for treating malaria caused by P. vivax.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- Department of Bioinformatics, MMV, Banaras Hindu University, Varanasi, 221005, India,
| | | | | |
Collapse
|
12
|
Kotturi SR, Somanadhan B, Ch’ng JH, Tan KSW, Butler MS, Lear MJ. Diverted total synthesis of falcitidin acyl tetrapeptides as new antimalarial leads. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Cheng T, Xia W, Wang P, Huang F, Wang J, Sun H. Histidine-rich proteins in prokaryotes: metal homeostasis and environmental habitat-related occurrence. Metallomics 2013; 5:1423-1429. [PMID: 23925314 DOI: 10.1039/c3mt00059a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Increasing amounts of histidine-rich proteins (HRPs) have been found in microorganisms. We systematically analyzed the proteomes of 675 prokaryotes including 52 archaea and 623 bacteria for histidine-rich motifs (HRMs). We show that HRPs are widespread in prokaryotic proteomes, with the majority being involved in metal homeostasis. HRPs are frequently found in the proteomes of certain orders of rhizobia and pathogenic Gram-negative bacteria, but are essentially absent in obligate intracellular pathogenic species. The occurrence of HRPs in the proteomes of prokaryotes is related to their habitats. We further revealed a class of globally histidine-rich bacterial proteins. This approach can readily be used to identify other single amino acid rich motifs (and proteins) in microbial proteomes to facilitate the exploration of their functions.
Collapse
Affiliation(s)
- Tianfan Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China.
| | | | | | | | | | | |
Collapse
|
14
|
Neves BJ, Bueno RV, Braga RC, Andrade CH. Discovery of new potential hits of Plasmodium falciparum enoyl-ACP reductase through ligand- and structure-based drug design approaches. Bioorg Med Chem Lett 2013; 23:2436-41. [DOI: 10.1016/j.bmcl.2013.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/21/2013] [Accepted: 02/01/2013] [Indexed: 11/16/2022]
|
15
|
Hakimi H, Asada M, Angeles JMM, Kawai S, Inoue N, Kawazu SI. Plasmodium vivax and Plasmodium knowlesi: cloning, expression and functional analysis of 1-Cys peroxiredoxin. Exp Parasitol 2012. [PMID: 23178658 DOI: 10.1016/j.exppara.2012.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Malaria parasites like other aerobes need to detoxify the reactive oxygen species (ROS) that are mainly produced from hemoglobin degradation in the food vacuole. Since Plasmodium lacks catalase and genuine glutathione peroxidase, they are highly dependent on peroxiredoxins (Prxs) and superoxide dismutases for ROS detoxification. Prxs are protective antioxidant enzymes that act through reduction of hydrogen peroxides. In recent years, several studies have been done on Prx family of human malaria parasites mainly on Plasmodium falciparum but not much on the other human malaria species. In this study 1-Cys peroxiredoxin (1-Cys-Prx) from Plasmodium vivax and Plasmodium knowlesi were cloned and characterized. The complete genes coding for 1-Cys-Prx of P. vivax (Pv1-Cys-Prx) and P. knowlesi (Pk1-Cys-Prx) were PCR amplified and the recombinant proteins were produced by heterologous over-expression in Escherichia coli. Both recombinant proteins showed antioxidant activity with the mixed function oxidation assay. Using specific polyclonal antibodies, it was indicated that Pv1-Cys-Prx and Pk1-Cys-Prx are expressed in the cytoplasm of the parasite. Altogether, the results suggested that 1-Cys-Prxs protect the parasites from oxidative damages.
Collapse
Affiliation(s)
- Hassan Hakimi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Kamaraj C, Kaushik NK, Rahuman AA, Mohanakrishnan D, Bagavan A, Elango G, Zahir AA, Santhoshkumar T, Marimuthu S, Jayaseelan C, Kirthi AV, Rajakumar G, Velayutham K, Sahal D. Antimalarial activities of medicinal plants traditionally used in the villages of Dharmapuri regions of South India. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:796-802. [PMID: 22433533 DOI: 10.1016/j.jep.2012.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/20/2012] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE An ethnopharmacological investigation of medicinal plants traditionally used to treat diseases associated with fevers in Dharmapuri region of South India was undertaken. Twenty four plants were identified and evaluated for their in vitro activity against Plasmodium falciparum and assessed for cytotoxicity against HeLa cell line. AIM OF THE STUDY This antimalarial in vitro study was planned to correlate and validate the traditional usage of medicinal plants against malaria. MATERIALS AND METHODS An ethnobotanical survey was made in Dharmapuri region, Tamil Nadu, India to identify plants used in traditional medicine against fevers. Selected plants were extracted with ethyl acetate and methanol and evaluated for antimalarial activity against erythrocytic stages of chloroquine (CQ)-sensitive 3D7 and CQ-resistant INDO strains of Plasmodium falciparum in culture using the fluorescence-based SYBR Green I assay. Cytotoxicity was determined against HeLa cells using MTT assay. RESULTS Promising antiplasmodial activity was found in Aegle marmelos [leaf methanol extract (ME) (IC(50)=7 μg/mL] and good activities were found in Lantana camara [leaf ethyl acetate extract (EAE) IC(50)=19 μg/mL], Leucas aspera (flower EAE IC(50)=12.5 μg/mL), Momordica charantia (leaf EAE IC(50)=17.5 μg/mL), Phyllanthus amarus (leaf ME IC(50)=15 μg/mL) and Piper nigrum (seed EAE IC(50)=12.5 μg/mL). The leaf ME of Aegle marmelos which showed the highest activity against Plasmodium falciparum elicited low cytotoxicity (therapeutic index>13). CONCLUSION These results provide validation for the traditional usage of some medicinal plants against malaria in Dharmapuri region, Tamil Nadu, India.
Collapse
Affiliation(s)
- Chinnaperumal Kamaraj
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam 632509, Vellore District, Tamil Nadu, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Molecular modeling studies of some substituted chalcone derivatives as cysteine protease inhibitors. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9900-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Mara C, Dempsey E, Bell A, Barlow JW. Synthesis and evaluation of phosphoramidate and phosphorothioamidate analogues of amiprophos methyl as potential antimalarial agents. Bioorg Med Chem Lett 2011; 21:6180-3. [DOI: 10.1016/j.bmcl.2011.07.088] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 11/30/2022]
|
19
|
Khanye SD, Wan B, Franzblau SG, Gut J, Rosenthal PJ, Smith GS, Chibale K. Synthesis and in vitro antimalarial and antitubercular activity of gold(III) complexes containing thiosemicarbazone ligands. J Organomet Chem 2011. [DOI: 10.1016/j.jorganchem.2011.07.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Sahu NK, Shahi S, Sharma MC, Kohli DV. QSAR studies on imidazopyridazine derivatives as PfPK7 inhibitors. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2010.547050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nitendra K. Sahu
- a Drug Research Laboratory, Department of Pharmaceutical Sciences , Dr H. S. Gour University , Sagar, MP, 470003, India
| | - Sadhana Shahi
- b Government College of Pharmacy , Osmanpura, Aurangabad, Maharashtra, India
| | - Mukesh C. Sharma
- a Drug Research Laboratory, Department of Pharmaceutical Sciences , Dr H. S. Gour University , Sagar, MP, 470003, India
| | - D. V. Kohli
- a Drug Research Laboratory, Department of Pharmaceutical Sciences , Dr H. S. Gour University , Sagar, MP, 470003, India
| |
Collapse
|
21
|
Design, synthesis and biological evaluation of some novel 3-cinnamoyl-4-hydroxy-2H-chromen-2-ones as antimalarial agents. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9694-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
|
23
|
Constrained peptidomimetics as antiplasmodial falcipain-2 inhibitors. Bioorg Med Chem 2010; 18:4928-38. [DOI: 10.1016/j.bmc.2010.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/28/2010] [Accepted: 06/04/2010] [Indexed: 11/23/2022]
|
24
|
Na-Bangchang K, Karbwang J. Current status of malaria chemotherapy and the role of pharmacology in antimalarial drug research and development. Fundam Clin Pharmacol 2009; 23:387-409. [PMID: 19709319 DOI: 10.1111/j.1472-8206.2009.00709.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Antimalarial drugs have played a mainstream role in controlling the spread of malaria through the treatment of patients infected with the plasmodial parasites and controlling its transmissibility. The inadequate armory of drugs in widespread use for the treatment of malaria, development of strains resistant to currently used antimalarials, and the lack of affordable new drugs are the limiting factors in the fight against malaria. In addition, other problems with some existing agents include unfavorable pharmacokinetic properties and adverse effects/toxicity. These factors underscore the continuing need of research for new classes of antimalarial agents, and a re-examination of the existing antimalarial drugs that may be effective against resistant strains. In recent years, major advances have been made in the pharmacology of several antimalarial drugs both in pharmacokinetics and pharmacodynamics aspects. These include the design, development, and optimization of appropriate dosage regimens of antimalarials, basic knowledge in metabolic pathways of key antimalarials, as well as the elucidation of mechanisms of action and resistance of antimalarials. Pharmacologists have been working in close collaboration with scientists in other disciplines of science/biomedical sciences for more understanding on the biology of the parasite, host, in order to exploit rational design of drugs. Multiple general approaches to the identification of new antimalarials are being pursued at this time. All should be implemented in parallel with focus on the rational development of new agents directed against newly identified parasite targets. With major advances in our understanding of malaria parasite biology coupled with the completion of the malaria genome, has presented exciting opportunities for target-based antimalarial drug discovery.
Collapse
Affiliation(s)
- Kesara Na-Bangchang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumtanee, Thailand.
| | | |
Collapse
|
25
|
Bellemare MJ, Bohle DS, Brosseau CN, Georges E, Godbout M, Kelly J, Leimanis ML, Leonelli R, Olivier M, Smilkstein M. Autofluorescence of condensed heme aggregates in malaria pigment and its synthetic equivalent hematin anhydride (beta-hematin). J Phys Chem B 2009; 113:8391-401. [PMID: 19472980 DOI: 10.1021/jp8104375] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The condensed crystalline phase of iron(III) protoporphyrin IX either isolated from parasite culture as malaria pigment (hemozoin) or synthetic equivalent hematin anhydride exhibits a solid-state autofluorescence characterized by an excitation maximum of 555 nm and an emission maximum of 577 nm. The excitation spectrum maximum at 555 nm corresponds to the Q(0,0) band in the absorption spectrum which represents the lowest singlet of the material. This suggests that the fluorescent emission is due to the heme condensed phase. The photoluminescence lifetime of tau(f) = 2.7 +/- 0.8 ns as measured at four wavelengths between 550 and 600 nm is in the range of Frankel exciton in porphyrinic condensed phases. The material is shown to have an optical band gap of 2.04 eV characteristic of a semiconductor. Luminescence is markedly dependent upon the degree of hydration and the emission does not seem to be caused by presence of zinc(II) protoporphyrin IX or free-base protoporphyrin IX in the lattice. The autofluorescence can be used for in vivo tracking of hemozoin, for determination of parasitemia levels, and for infection monitoring and possibly for drug screening studies.
Collapse
Affiliation(s)
- Marie-Josée Bellemare
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hunter WN. Structure-based ligand design and the promise held for antiprotozoan drug discovery. J Biol Chem 2008; 284:11749-53. [PMID: 19103598 PMCID: PMC2673241 DOI: 10.1074/jbc.r800072200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The development of the pharmaceutical industry, driven by progress in
chemistry, biology, and technology, ranks as one of the most successful of
human endeavors. However, serious health problems persist, among which are
diseases caused by protozoan parasites, largely ignored in modern times.
Advances in genomic sciences, molecular and structural biology, and
computational and medicinal chemistry now set the scene for a renewed assault
on such infections. A structure-centric approach to support discovery of
antiparasitic compounds promises much. Current strategies and benefits of a
structure-based approach to support early stage drug discovery will be
described.
Collapse
Affiliation(s)
- William N Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom.
| |
Collapse
|