1
|
Rakesh KP, Shantharam CS, Sridhara MB, Manukumar HM, Qin HL. Benzisoxazole: a privileged scaffold for medicinal chemistry. MEDCHEMCOMM 2017; 8:2023-2039. [PMID: 30108720 PMCID: PMC6072331 DOI: 10.1039/c7md00449d] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022]
Abstract
The benzisoxazole analogs represent one of the privileged structures in medicinal chemistry and there has been an increasing number of studies on benzisoxazole-containing compounds. The unique benzisoxazole scaffold also exhibits an impressive potential as antimicrobial, anticancer, anti-inflammatory, anti-glycation agents and so on. This review examines the state of the art in medicinal chemistry as it relates to the comprehensive and general summary of the different benzisoxazole analogs, their use as starting building blocks of multifarious architectures on scales sufficient to drive human drug trials. The number of reports describing benzisoxazole-containing highly active compounds leads to the expectation that this scaffold will further emerge as a potential candidate in the field of drug discovery.
Collapse
Affiliation(s)
- K P Rakesh
- Department of Pharmaceutical Engineering , School of Chemistry , Chemical Engineering and Life Science , Wuhan University of Technology , 205 Luoshi Road , Wuhan , 430073 , PR China .
| | - C S Shantharam
- Department of Chemistry , Pooja Bhagavath Memorial Mahajana Education Centre , Mysuru-570016 , Karnataka , India . ; Tel: +91 8904386977
| | - M B Sridhara
- Department of Chemistry , Rani Channamma University , Vidyasangama , Belagavi-591156 , Karnataka , India
| | - H M Manukumar
- Department of Studies in Biotechnology , University of Mysore , Manasagangotri , Mysuru-570006 , Karnataka , India
| | - Hua-Li Qin
- Department of Pharmaceutical Engineering , School of Chemistry , Chemical Engineering and Life Science , Wuhan University of Technology , 205 Luoshi Road , Wuhan , 430073 , PR China .
| |
Collapse
|
2
|
Samokhvalov V, Zlobine I, Jamieson KL, Jurasz P, Chen C, Lee KSS, Hammock BD, Seubert JM. PPARδ signaling mediates the cytotoxicity of DHA in H9c2 cells. Toxicol Lett 2014; 232:10-20. [PMID: 25300478 DOI: 10.1016/j.toxlet.2014.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/28/2022]
Abstract
Docosahexaenoic acid (22:6n3, DHA) is an n-3 polyunsaturated fatty acid (PUFA) known to affect numerous biological functions. While DHA possesses many properties that impact cell survival such as suppressing cell growth and inducing apoptosis, the exact molecular and cellular mechanism(s) remain unknown. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors that regulate many cell pathways including cell death. As DHA acts as a ligand to PPARs the aim of this study was to examine the involvement of PPARδ in DHA-mediated cytotoxicity toward H9c2 cells. Treatment with DHA (100μM) resulted in a significant decline in cell viability, cellular metabolic activity and total antioxidant capacity coinciding with increased total proteasome activities and activity of released lactate dehydrogenase (LDH). No changes in reactive oxygen species (ROS) production or accumulation of lipid peroxidation products were observed but DHA promoted apoptotic cell death as detected by flow cytometry, increased caspase-3 activity and decreased phosphorylation of Akt. Importantly, DHA enhanced PPARδ DNA binding activity in H9c2 cells strongly signifying that the cytotoxic effect of DHA might be mediated via PPARδ signaling. Co-treatment with the selective PPARδ antagonist GSK 3787 (1μM) abolished the cytotoxic effects of DHA in H9c2 cells. Cytotoxic effects of DHA were attenuated by co-treatment with myriocin, a selective inhibitor of serine palmitoyl transferase (SPT), preventing de novo ceramide biosynthesis. LC/MS analysis revealed that treatment with DHA resulted in the accumulation of ceramide, which was blocked by GSK 3787. Interestingly, inhibition of cytochrome P450 (CYP) oxidase with MS-PPOH (50μM) abolished DHA-mediated cytotoxicity suggesting downstream metabolites as the active mediators. We further demonstrate that CYP oxidase metabolites of DHA, methyl epoxy docosapentaenoate (EDP methyl esters, 1μM) (mix 1:1:1:1:1:1; 4,5-, 7,8-, 10,11-, 13,14-, 16,17- and 19,20-EDP methyl esters) and 19,20-EDP cause cytotoxicity via activation of PPARδ signaling leading to increased levels of intracellular ceramide. These results illustrate novel pathways for DHA-induced cytotoxicity that suggest an important role for CYP-derived metabolites, EDPs.
Collapse
Affiliation(s)
- Victor Samokhvalov
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Igor Zlobine
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kristi L Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Christopher Chen
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kin Sing Stephen Lee
- Department of Entomology and Nematology, University of California, Davis, CA, USA; UCD Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, CA, USA; UCD Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Liu W, Lau F, Liu K, Wood HB, Zhou G, Chen Y, Li Y, Akiyama TE, Castriota G, Einstein M, Wang C, McCann ME, Doebber TW, Wu M, Chang CH, McNamara L, McKeever B, Mosley RT, Berger JP, Meinke PT. Benzimidazolones: a new class of selective peroxisome proliferator-activated receptor γ (PPARγ) modulators. J Med Chem 2011; 54:8541-54. [PMID: 22070604 DOI: 10.1021/jm201061j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of benzimidazolone carboxylic acids and oxazolidinediones were designed and synthesized in search of selective PPARγ modulators (SPPARγMs) as potential therapeutic agents for the treatment of type II diabetes mellitus (T2DM) with improved safety profiles relative to rosiglitazone and pioglitazone, the currently marketed PPARγ full agonist drugs. Structure-activity relationships of these potent and highly selective SPPARγMs were studied with a focus on their unique profiles as partial agonists or modulators. A variety of methods, such as X-ray crystallographic analysis, PPARγ transactivation coactivator profiling, gene expression profiling, and mutagenesis studies, were employed to reveal the differential interactions of these new analogues with PPARγ receptor in comparison to full agonists. In rodent models of T2DM, benzimidazolone analogues such as (5R)-5-(3-{[3-(5-methoxybenzisoxazol-3-yl)benzimidazol-1-yl]methyl}phenyl)-5-methyloxazolidinedione (51) demonstrated efficacy equivalent to that of rosiglitazone. Side effects, such as fluid retention and heart weight gain associated with PPARγ full agonists, were diminished with 51 in comparison to rosiglitazone based on studies in two independent animal models.
Collapse
Affiliation(s)
- Weiguo Liu
- Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Nicola T, Ambalavanan N, Zhang W, James ML, Rehan V, Halloran B, Olave N, Bulger A, Oparil S, Chen YF. Hypoxia-induced inhibition of lung development is attenuated by the peroxisome proliferator-activated receptor-γ agonist rosiglitazone. Am J Physiol Lung Cell Mol Physiol 2011; 301:L125-34. [PMID: 21531777 DOI: 10.1152/ajplung.00074.2011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia enhances transforming growth factor-β (TGF-β) signaling, inhibiting alveolar development and causing abnormal pulmonary arterial remodeling in the newborn lung. We hypothesized that, during chronic hypoxia, reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling may contribute to, or be caused by, excessive TGF-β signaling. To determine whether PPAR-γ was reduced during hypoxia, C57BL/6 mice were exposed to hypoxia from birth to 2 wk and evaluated for PPAR-γ mRNA and protein. To determine whether rosiglitazone (RGZ, a PPAR-γ agonist) supplementation attenuated the effects of hypoxia, mice were exposed to air or hypoxia from birth to 2 wk in combination with either RGZ or vehicle, and measurements of lung histology, function, parameters related to TGF-β signaling, and collagen content were made. To determine whether excessive TGF-β signaling reduced PPAR-γ, mice were exposed to air or hypoxia from birth to 2 wk in combination with either TGF-β-neutralizing antibody or vehicle, and PPAR-γ signaling was evaluated. We observed that hypoxia reduced PPAR-γ mRNA and protein, in association with impaired alveolarization, increased TGF-β signaling, reduced lung compliance, and increased collagen. RGZ increased PPAR-γ signaling, with improved lung development and compliance in association with reduced collagen and TGF-β signaling. However, no reduction was noted in hypoxia-induced pulmonary vascular remodeling. Inhibition of hypoxia-enhanced TGF-β signaling increased PPAR-γ signaling. These results suggest that hypoxia-induced inhibition of lung development is associated with a mutually antagonistic relationship between reduced PPAR-γ and increased TGF-β signaling. PPAR-γ agonists may be of potential therapeutic significance in attenuating TGF-β signaling and improving alveolar development.
Collapse
Affiliation(s)
- Teodora Nicola
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pancani T, Phelps JT, Searcy JL, Kilgore MW, Chen KC, Porter NM, Thibault O. Distinct modulation of voltage-gated and ligand-gated Ca2+ currents by PPAR-gamma agonists in cultured hippocampal neurons. J Neurochem 2009; 109:1800-11. [PMID: 19453298 DOI: 10.1111/j.1471-4159.2009.06107.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes mellitus is a metabolic disorder characterized by hyperglycemia and is especially prevalent in the elderly. Because aging is a risk factor for type 2 diabetes mellitus, and insulin resistance may contribute to the pathogenesis of Alzheimer's disease (AD), anti-diabetic agents (thiazolidinediones-TZDs) are being studied for the treatment of cognitive decline associated with AD. These agents normalize insulin sensitivity in the periphery and can improve cognition and verbal memory in AD patients. Based on evidence that Ca(2+) dysregulation is a pathogenic factor of brain aging/AD, we tested the hypothesis that TZDs could impact Ca(2+) signaling/homeostasis in neurons. We assessed the effects of pioglitazone and rosiglitazone (TZDs) on two major sources of Ca(2+) influx in primary hippocampal cultured neurons, voltage-gated Ca(2+) channel (VGCC) and the NMDA receptor (NMDAR). VGCC- and NMDAR-mediated Ca(2+) currents were recorded using patch-clamp techniques, and Ca(2+) intracellular levels were monitored with Ca(2+) imaging techniques. Rosiglitazone, but not pioglitazone reduced VGCC currents. In contrast, NMDAR-mediated currents were significantly reduced by pioglitazone but not rosiglitazone. These results show that TZDs modulate Ca(2+)-dependent pathways in the brain and have different inhibitory profiles on two major Ca(2+) sources, potentially conferring neuroprotection to an area of the brain that is particularly vulnerable to the effects of aging and/or AD.
Collapse
Affiliation(s)
- Tristano Pancani
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, 800 Rose Street, MS 310, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Tuller ER, Brock AL, Yu H, Lou JR, Benbrook DM, Ding WQ. PPARα signaling mediates the synergistic cytotoxicity of clioquinol and docosahexaenoic acid in human cancer cells. Biochem Pharmacol 2009; 77:1480-6. [DOI: 10.1016/j.bcp.2009.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/29/2009] [Accepted: 02/05/2009] [Indexed: 11/29/2022]
|