1
|
Ong E, Clottes P, Leon C, Guedouari H, Gallo-Bona N, Lo Grasso M, Motter L, Bolbos R, Ovize M, Nighogossian N, Wiart M, Paillard M. Mitochondria dysfunction, a potential cytoprotection target against ischemia-reperfusion injury in a mouse stroke model. Neurotherapeutics 2025; 22:e00549. [PMID: 39933968 PMCID: PMC12014409 DOI: 10.1016/j.neurot.2025.e00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/08/2025] [Accepted: 02/02/2025] [Indexed: 02/13/2025] Open
Abstract
More than 50 % of patients undergoing mechanical thrombectomy (MT) for ischemic stroke have a poor functional outcome despite timely and successful angiographic reperfusion, highlighting the need for adjunctive treatments to reperfusion therapy. Mitochondria are key regulators of cell fate, by controlling cell bioenergetics via oxidative phosphorylation (OXPHOS) and cell death through the mitochondrial permeability transition pore (mPTP). Whether these two main mitochondrial functions are altered by reperfusion and could represent a new cytoprotective approach remains to be elucidated in mice. Swiss male mice underwent either permanent or transient middle cerebral artery occlusion (pMCAO or tMCAO), with neuroscore evaluation and multimodal imaging. The area at risk of necrosis was evaluated by per-occlusion dynamic contrast-enhanced ultrasound. Final infarct size was assessed at day 1 by MRI. Cortical mitochondrial isolation was subsequently performed to assess mPTP sensitivity by calcium retention capacity (CRC) and OXPHOS. A cytoprotective treatment targeting mitochondria, ciclosporine A (CsA), was tested in tMCAO, to mimick the clinical situation of patients treated with MT. Reperfusion after 60 min of ischemia improves neuroscores but does not significantly reduce infarct size or mitochondrial dysfunction compared to permanent ischemia. CsA treatment at reperfusion mitigates stroke outcome, decreases final infarct size and improves mitochondrial CRC and OXPHOS. Mitochondrial dysfunctions, i.e. reduced mPTP sensitivity and decreased oxygen consumption rates, were observed in pMCAO and tMCAO regardless of the reperfusion status. CsA improved mitochondrial functions when injected at reperfusion. These suggest that both mPTP opening and OXPHOS alterations are thus early but reversible hallmarks of cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Elodie Ong
- Stroke Department, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Paul Clottes
- Stroke Department, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Christelle Leon
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Hala Guedouari
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Noelle Gallo-Bona
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Megane Lo Grasso
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Lucas Motter
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Radu Bolbos
- CERMEP-Imagerie du Vivant, 69500 Bron, France
| | - Michel Ovize
- Stroke Department, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Norbert Nighogossian
- Stroke Department, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Marlene Wiart
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France; CNRS, 69100 Villeurbanne, France
| | - Melanie Paillard
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France.
| |
Collapse
|
2
|
Rekuviene E, Ivanoviene L, Borutaite V, Morkuniene R. Effects of Anesthesia with Pentobarbital/Ketamine on Mitochondrial Permeability Transition Pore Opening and Ischemic Brain Damage. Biomedicines 2024; 12:2342. [PMID: 39457655 PMCID: PMC11504713 DOI: 10.3390/biomedicines12102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVE The alteration of mitochondrial functions, especially the opening of the mitochondrial permeability transition pore (mPTP), has been proposed as a key mechanism in the development of lesions in cerebral ischemia, wherefore it is considered as an important target for drugs against ischemic injury. In this study, we aimed to investigate the effects of mitochondrial complex I inhibitors as possible regulators of mPTP using an in vitro brain ischemia model of the pentobarbital/ketamine (PBK)-anesthetized rats. RESULTS We found that PBK anesthesia itself delayed Ca2+-induced mPTP opening and partially recovered the respiratory functions of mitochondria, isolated from rat brain cortex and cerebellum. In addition, PBK reduced cell death in rat brain slices of cerebral cortex and cerebellum. PBK inhibited the adenosine diphosphate (ADP)-stimulated respiration of isolated cortical and cerebellar mitochondria respiring with complex I-dependent substrates pyruvate and malate. Moreover, pentobarbital alone directly increased the resistance of isolated cortex mitochondria to Ca2+-induced activation of mPTP and inhibited complex I-dependent respiration and mitochondrial complex I activity. In contrast, ketamine had no direct effect on functions of isolated normal cortex and cerebellum mitochondria. CONCLUSIONS Altogether, this suggests that modulation of mitochondrial complex I activity by pentobarbital during PBK anesthesia may increase the resistance of mitochondria to mPTP opening, which is considered the key event in brain cell necrosis during ischemia.
Collapse
Affiliation(s)
- Evelina Rekuviene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (V.B.); (R.M.)
- Department of Biochemistry, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Laima Ivanoviene
- Department of Biochemistry, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Vilmante Borutaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (V.B.); (R.M.)
- Department of Biochemistry, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Ramune Morkuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (V.B.); (R.M.)
- Department of Drug Chemistry, Lithuanian University of Health Sciences, Sukileliu 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
3
|
Zemgulyte G, Umbrasas D, Cizas P, Jankeviciute S, Pampuscenko K, Grigaleviciute R, Rastenyte D, Borutaite V. Imeglimin Is Neuroprotective Against Ischemic Brain Injury in Rats-a Study Evaluating Neuroinflammation and Mitochondrial Functions. Mol Neurobiol 2022; 59:2977-2991. [PMID: 35257284 DOI: 10.1007/s12035-022-02765-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 12/29/2022]
Abstract
Imeglimin is a novel oral antidiabetic drug modulating mitochondrial functions. However, neuroprotective effects of this drug have not been investigated. The aim of this study was to investigate effects of imeglimin against ischemia-induced brain damage and neurological deficits and whether it acted via inhibition of mitochondrial permeability transition pore (mPTP) and suppression of microglial activation. Ischemia in rats was induced by permanent middle cerebral artery occlusion (pMCAO) for 48 h. Imeglimin (135 μg/kg/day) was injected intraperitoneally immediately after pMCAO and repeated after 24 h. Immunohistochemical staining was used to evaluate total numbers of neurons, astrocytes, and microglia as well as interleukin-10 (IL-10) producing cells in brain slices. Respiration of isolated brain mitochondria was assessed using high-resolution respirometry. Assessment of ionomycin-induced mPTP opening in intact cultured primary rat neuronal, astrocytic, and microglial cells was performed using fluorescence microscopy. Treatment with imeglimin significantly decreased infarct size, brain edema, and neurological deficits after pMCAO. Moreover, imeglimin protected against pMCAO-induced neuronal loss as well as microglial proliferation and activation, and increased the number of astrocytes and the number of cells producing anti-inflammatory cytokine IL-10 in the ischemic hemisphere. Imeglimin in vitro acutely prevented mPTP opening in cultured neurons and astrocytes but not in microglial cells; however, treatment with imeglimin did not prevent ischemia-induced mitochondrial respiratory dysfunction after pMCAO. This study demonstrates that post-stroke treatment with imeglimin exerts neuroprotective effects by reducing infarct size and neuronal loss possibly via the resolution of neuroinflammation and partly via inhibition of mPTP opening in neurons and astrocytes.
Collapse
Affiliation(s)
- Gintare Zemgulyte
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus str. 9, LT-44307, Kaunas, Lithuania.
| | - Danielius Umbrasas
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50162, Kaunas, Lithuania
| | - Paulius Cizas
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50162, Kaunas, Lithuania
| | - Silvija Jankeviciute
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50162, Kaunas, Lithuania
| | - Katryna Pampuscenko
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50162, Kaunas, Lithuania
| | - Ramune Grigaleviciute
- Biological research center, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181, Kaunas, Lithuania
| | - Daiva Rastenyte
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus str. 9, LT-44307, Kaunas, Lithuania
| | - Vilmante Borutaite
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50162, Kaunas, Lithuania
| |
Collapse
|
4
|
Huang P, Wu SP, Wang N, Seto S, Chang D. Hydroxysafflor yellow A alleviates cerebral ischemia reperfusion injury by suppressing apoptosis via mitochondrial permeability transition pore. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153532. [PMID: 33735723 DOI: 10.1016/j.phymed.2021.153532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Mitochondria are key cellular organelles that are essential for cell fate decisions. Hydroxysafflor yellow A (HSYA) has displayed an impressively essential role in protection of cerebral ischemia/reperfusion (I/R). However, the mitochondrial effect of HSYA on Brain Microvascular Endothelial Cells (BMECs) under I/R remains to be largely unclear. PURPOSE To evaluate the protective effects of HSYA-mediated mitochondrial permeability transition pore (mPTP) on cerebral I/R injury and its mechanism. METHODS Cerebral I/R injury was established by the model of Middle cerebral artery occlusion (MCAO) in rats. Furthermore, to further clarify the relevant mechanism of HSYA's effects on mPTP, inhibition of extracellular regulated protein kinases (ERK) with U0126 and transfect with Cyclophilin D (CypD) SiRNA to reversely verified whether the protective effects of HSYA were exerted by regulating the Mitogen-activated protein kinase kinase (MEK)/ERK/CypD pathway. RESULTS HSYA treatment significantly increased BMECs viability, decreased the generation of ROS, opening of mPTP and translocation of cytochrome c after OGD/R. In addition to inhibited CypD, HSYA potentiated MEK and increased phosphorylation of ERK expression in BMECs, inhibited apoptosis mediated by mitochondrial. Notably, HSYA also significantly ameliorated neurological deficits and decreased the infarct volume in rats. CONCLUSION HSYA reduced the CytC export from mitochondrial by inhibited the open of mPTP via MEK/ERK/CypD pathway, contributing to the protection of I/R. Thus, our study not only revealed novel mechanisms of HSYA for its anti-I/R function, but also provided a template for the design of novel mPTP inhibitor for the treatment of various mPTP-related diseases.
Collapse
Affiliation(s)
- Ping Huang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Si-Peng Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Saiwang Seto
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University; Penrith, NSW 2751, Australia
| |
Collapse
|
5
|
Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, Casetta I, Pugliatti M, Pinton P, Giorgi C. Different Roles of Mitochondria in Cell Death and Inflammation: Focusing on Mitochondrial Quality Control in Ischemic Stroke and Reperfusion. Biomedicines 2021; 9:biomedicines9020169. [PMID: 33572080 PMCID: PMC7914955 DOI: 10.3390/biomedicines9020169] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunctions are among the main hallmarks of several brain diseases, including ischemic stroke. An insufficient supply of oxygen and glucose in brain cells, primarily neurons, triggers a cascade of events in which mitochondria are the leading characters. Mitochondrial calcium overload, reactive oxygen species (ROS) overproduction, mitochondrial permeability transition pore (mPTP) opening, and damage-associated molecular pattern (DAMP) release place mitochondria in the center of an intricate series of chance interactions. Depending on the degree to which mitochondria are affected, they promote different pathways, ranging from inflammatory response pathways to cell death pathways. In this review, we will explore the principal mitochondrial molecular mechanisms compromised during ischemic and reperfusion injury, and we will delineate potential neuroprotective strategies targeting mitochondrial dysfunction and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Marianna Carinci
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Bianca Vezzani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Katrin Lessmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Ilaria Casetta
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
- Correspondence:
| |
Collapse
|
6
|
Neuroprotection by remote ischemic conditioning in the setting of acute ischemic stroke: a preclinical two-centre study. Sci Rep 2020; 10:16874. [PMID: 33037284 PMCID: PMC7547701 DOI: 10.1038/s41598-020-74046-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023] Open
Abstract
Reperfusion is the only existing strategy for patients with acute ischemic stroke, however it causes further brain damage itself. A feasible therapy targeting reperfusion injury is remote ischemic conditioning (RIC). This was a two-centre, randomized, blinded international study, using translational imaging endpoints, aimed to examine the neuroprotective effects of RIC in ischemic stroke model. 80 male rats underwent 90-min middle cerebral artery occlusion. RIC consisted of 4 × 5 min cycles of left hind limb ischemia. The primary endpoint was infarct size measured on T2-weighted MRI at 24 h, expressed as percentage of the area-at-risk. Secondary endpoints were: hemispheric space-modifying edema, infarct growth between per-occlusion and 24 h MRI, neurofunctional outcome measured by neuroscores. 47 rats were included in the analysis after applying pre-defined inclusion criteria. RIC significantly reduced infarct size (median, interquartile range: 19% [8%; 32%] vs control: 40% [17%; 59%], p = 0.028). This effect was still significant after adjustment for apparent diffusion coefficient lesion size in multivariate analysis. RIC also improved neuroscores (6 [3; 8] vs control: 9 [7; 11], p = 0.032). Other secondary endpoints were not statistically different between groups. We conclude that RIC in the setting of acute ischemic stroke in rats is safe, reduces infarct size and improves functional recovery.
Collapse
|
7
|
Boese AC, Eckert A, Hamblin MH, Lee JP. Human neural stem cells improve early stage stroke outcome in delayed tissue plasminogen activator-treated aged stroke brains. Exp Neurol 2020; 329:113275. [PMID: 32147438 PMCID: PMC7609039 DOI: 10.1016/j.expneurol.2020.113275] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Clinically, significant stroke injury results from ischemia-reperfusion (IR), which induces a deleterious biphasic opening of the blood-brain barrier (BBB). Tissue plasminogen activator (tPA) remains the sole pharmacological agent to treat ischemic stroke. However, major limitations of tPA treatment include a narrow effective therapeutic window of 4.5 h in most patients after initial stroke onset and off-target non-thrombolytic effects (e.g., the risk of increased IR injury). We hypothesized that ameliorating BBB damage with exogenous human neural stem cells (hNSCs) would improve stroke outcome to a greater extent than treatment with delayed tPA alone in aged stroke mice. METHODS We employed middle cerebral artery occlusion to produce focal ischemia with subsequent reperfusion (MCAO/R) in aged mice and administered tPA at a delayed time point (6 h post-stroke) via tail vein. We transplanted hNSCs intracranially in the subacute phase of stroke (24 h post-stroke). We assessed the outcomes of hNSC transplantation on pathophysiological markers of stroke 48 h post-stroke (24 h post-transplant). RESULTS Delayed tPA treatment resulted in more extensive BBB damage and inflammation relative to MCAO controls. Notably, transplantation of hNSCs ameliorated delayed tPA-induced escalated stroke damage; decreased expression of proinflammatory factors (tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6), decreased the level of matrix metalloprotease-9 (MMP-9), increased the level of brain-derived neurotrophic factor (BDNF), and reduced BBB damage. CONCLUSIONS Aged stroke mice that received delayed tPA treatment in combination with hNSC transplantation exhibited reduced stroke pathophysiology in comparison to non-transplanted stroke mice with delayed tPA. This suggests that hNSC transplantation may synergize with already existing stroke therapies to benefit a larger stroke patient population.
Collapse
Affiliation(s)
- Austin C Boese
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Auston Eckert
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
8
|
Dimopoulos C, Papadakis M, Perrea D, Nikiteas N, Kontzoglou K. The Effect of Cyclosporine and the Consequences in Hepatic and Renal Function Following Ischemic Stroke in a Rats' Model. J Stroke Cerebrovasc Dis 2019; 29:104562. [PMID: 31836361 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/01/2019] [Accepted: 11/21/2019] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Recent studies have indicated that the damaging effects of stroke are not only limited to the brain. We sought to examine the changes of liver and renal enzymes in the acute phase of ischemic stroke and to investigate possible explanations and therapeutic options, concerning in particular the functional alterations of peripheral organs after administration of an anti-inflammatory agent. MATERIAL/METHODS Twelve-week-old Wistar male rats were randomly divided into control and Cyclosporine groups (n = 10 each). Cyclosporine was given orally by gavage for 5 days prior to cerebral ischemia at a total volume of 15 mg/kg/day. All animals were subjected to 60 minutes focal ischemia by filament occlusion of the middle cerebral artery. Serum concentrations of Creatinine, Urea, SGOT, SGPT, and γGT were determined at the time before surgery and after 60 minutes brain ischemia. RESULTS Comparing data of 2 time-points, in both groups the serum liver enzyme levels increased progressively during the ischemic period. The liver enzymes and Urea were significantly lower in the Cyclosporine group than in the control group and the levels of Creatinine were slightly higher in the Cyclosporine group, in both time-points. CONCLUSIONS The detection of high liver enzyme serum levels in the acute phase of ischemic stroke implies the secondary effect of cerebral infraction on the peripheral organs and particularly on the liver function. Cyclosporine seems to exhibit a protective activity and to affect both liver and renal function after ischemic stroke.
Collapse
Affiliation(s)
- Christos Dimopoulos
- Laboratory for Experimental Surgery and Surgical Research "N.S Christeas", Medical School of Athens, Athens, Greece; Department of Vascular and Endovascular Surgery, Heinrich-Heine-University Medical Center Düsseldorf, Düsseldorf, Germany.
| | - Marios Papadakis
- Department of Plastic Surgery, Helios Clinic Wuppertal, University Hospital Witten-Herdecke, Wuppertal, Germany
| | - Despina Perrea
- Laboratory for Experimental Surgery and Surgical Research "N.S Christeas", Medical School of Athens, Athens, Greece
| | - Nikolaos Nikiteas
- Laboratory for Experimental Surgery and Surgical Research "N.S Christeas", Medical School of Athens, Athens, Greece; Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Cyclosporin A ameliorates cerebral oxidative metabolism and infarct size in the endothelin-1 rat model of transient cerebral ischaemia. Sci Rep 2019; 9:3702. [PMID: 30842488 PMCID: PMC6403404 DOI: 10.1038/s41598-019-40245-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/08/2019] [Indexed: 01/15/2023] Open
Abstract
Cerebral microdialysis can be used to detect mitochondrial dysfunction, a potential target of neuroprotective treatment. Cyclosporin A (CsA) is a mitochondrial stabiliser that in a recent clinical stroke trial showed protective potential in patients with successful recanalisation. To investigate specific metabolic effects of CsA during reperfusion, and hypothesising that microdialysis values can be used as a proxy outcome measure, we assessed the temporal patterns of cerebral energy substrates related to oxidative metabolism in a model of transient focal ischaemia. Transient ischaemia was induced by intracerebral microinjection of endothelin-1 (150 pmol/15 µL) through stereotaxically implanted guide cannulas in awake, freely moving rats. This was immediately followed by an intravenous injection of CsA (NeuroSTAT; 15 mg/kg) or placebo solution during continuous microdialysis monitoring. After reperfusion, the lactate/pyruvate ratio (LPR) was significantly lower in the CsA group vs placebo (n = 17, 60.6 ± 24.3%, p = 0.013). Total and striatal infarct volumes (mm3) were reduced in the treatment group (n = 31, 61.8 ± 6.0 vs 80.6 ± 6.7, p = 0.047 and 29.9 ± 3.5 vs 41.5 ± 3.9, p = 0.033). CsA treatment thus ameliorated cerebral reperfusion metabolism and infarct size. Cerebral microdialysis may be useful in evaluating putative neuroprotectants in ischaemic stroke.
Collapse
|
10
|
Dimopoulos C, Damaskos C, Papadakis M, Garmpis N, Kontzoglou K, Perrea D, Moraitis S, Daskalopoulou A, Papaspirou I, Georgopoulos S, Nikiteas N. Expression of S100B Protein in Ischemia/Reperfusion-Induced Brain Injury After Cyclosporine Therapy: A Biochemical Serum Marker with Prognostic Value? Med Sci Monit 2019; 25:1637-1644. [PMID: 30826814 PMCID: PMC6410611 DOI: 10.12659/msm.912810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Accumulating evidence has indicated that S100B protein may be involved in the pathophysiology of ischemia-reperfusion brain injury. Cyclosporine has been shown to have neuroprotective functions. This study investigated the effect of cyclosporine on S100B serum levels and the severity of brain tissue damage in a rat model of cerebral ischemia-reperfusion (I/R). Material/Methods Twelve-week-old Wistar male rats were randomly divided into Control I/R and Cyclosporine I/R groups (n=10 each). Cyclosporine was given orally by gavage for 5 days prior to cerebral I/R, at a total volume of 15 mg/kg/day. The Control group received an equal volume of saline. Body weight was measured and all animals were subjected to 60-min focal ischemia by filament occlusion of the middle cerebral artery. ELISA was used to assess the concentrations of serum S100B and development of brain infarct size and neurological outcomes were determined at 2 and 24 h after occlusion withdrawal. Results Cyclosporine improved the neurological deficit score and decreased the cerebral infarct size and body weight. S100B serum levels were significantly elevated in Cyclosporine-treated rats compared with untreated Control rats during the reperfusion phase. Total infarct size was positively associated with S100B serum levels in the Control I/R group, but no significant correlation was observed in the Cyclosporine I/R group. Conclusions Cyclosporine seems to affect both ischemia-reperfusion brain tissue damage and S100B protein serum levels. S100B serum level appears to be a state marker for the severity of the cerebral ischemia-reperfusion, rather than a trait marker for Cyclosporine responsiveness.
Collapse
Affiliation(s)
- Christos Dimopoulos
- Laboratory for Experimental Surgery and Surgical Research "N.S. Christeas", Medical School of Athens, Athens, Greece.,Department of Vascular and Endovascular Surgery, Heinrich-Heine-University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Christos Damaskos
- Laboratory for Experimental Surgery and Surgical Research "N.S Christeas", Medical School of Athens, Athens, Greece.,Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Papadakis
- Department of Plastic Surgery, Helios Clinic Wuppertal, University Hospital Witten-Herdecke, Wuppertal, Germany
| | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Perrea
- Laboratory for Experimental Surgery and Surgical Research "N.S Christeas", Medical School of Athens, Athens, Greece
| | - Stavros Moraitis
- Department of Pathology, Alexandra Hospital Athens, Athens, Greece
| | - Afroditi Daskalopoulou
- Laboratory for Experimental Surgery and Surgical Research "N.S Christeas", Medical School of Athens, Athens, Greece
| | - Irini Papaspirou
- Department of Pathology, Alexandra Hospital Athens, Athens, Greece
| | - Sotirios Georgopoulos
- First Department of Surgery, Vascular Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Nikiteas
- Laboratory for Experimental Surgery and Surgical Research "N.S Christeas", Medical School of Athens, Athens, Greece.,Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Mizuma A, Kim JY, Kacimi R, Stauderman K, Dunn M, Hebbar S, Yenari MA. Microglial Calcium Release-Activated Calcium Channel Inhibition Improves Outcome from Experimental Traumatic Brain Injury and Microglia-Induced Neuronal Death. J Neurotrauma 2018; 36:996-1007. [PMID: 30351197 DOI: 10.1089/neu.2018.5856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) mediated by calcium release-activated calcium (CRAC) channels contributes to calcium signaling. The resulting intracellular calcium increases activate calcineurin, which in turn activates immune transcription factor nuclear factor of activated T cells (NFAT). Microglia contain CRAC channels, but little is known whether these channels play a role in acute brain insults. We studied a novel CRAC channel inhibitor to explore the therapeutic potential of this compound in microglia-mediated injury. Cultured microglial BV2 cells were activated by Toll-like receptor agonists or IFNγ. Some cultures were treated with a novel CRAC channel inhibitor (CM-EX-137). Western blots revealed the presence of CRAC channel proteins STIM1 and Orai1 in BV2 cells. CM-EX-137 decreased nitric oxide (NO) release and inducible nitric oxide synthase (iNOS) expression in activated microglia and reduced agonist-induced intracellular calcium accumulation in microglia, while suppressing inflammatory transcription factors nuclear factor kappa B (NF-κB) and nuclear factor of activated T cells (NFAT). Male C57/BL6 mice exposed to experimental brain trauma and treated with CM-EX-137 had decreased lesion size, brain hemorrhage, and improved neurological deficits with decreased microglial activation, iNOS and Orai1 and STIM1 levels. We suggest a novel anti-inflammatory approach for managing acute brain injury. Our observations also shed light on new calcium signaling pathways not described previously in brain injury models.
Collapse
Affiliation(s)
- Atsushi Mizuma
- 1 Department of Neurology, University of California, San Francisco; the San Francisco VA Medical Center, San Francisco, California.,2 Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Jong Youl Kim
- 1 Department of Neurology, University of California, San Francisco; the San Francisco VA Medical Center, San Francisco, California.,3 Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Rachid Kacimi
- 1 Department of Neurology, University of California, San Francisco; the San Francisco VA Medical Center, San Francisco, California
| | | | | | | | - Midori A Yenari
- 1 Department of Neurology, University of California, San Francisco; the San Francisco VA Medical Center, San Francisco, California
| |
Collapse
|
12
|
Anttila JE, Whitaker KW, Wires ES, Harvey BK, Airavaara M. Role of microglia in ischemic focal stroke and recovery: focus on Toll-like receptors. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:3-14. [PMID: 27389423 PMCID: PMC5214845 DOI: 10.1016/j.pnpbp.2016.07.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/20/2016] [Accepted: 07/02/2016] [Indexed: 12/21/2022]
Abstract
Stroke is the leading cause of disability in adults. Drug treatments that target stroke-induced pathological mechanisms and promote recovery are desperately needed. In the brain, an ischemic event triggers major inflammatory responses that are mediated by the resident microglial cells. In this review, we focus on the microglia activation after ischemic brain injury as a target of immunomodulatory therapeutics. We divide the microglia-mediated events following ischemic stroke into three categories: acute, subacute, and long-term events. This division encompasses the spatial and temporal dynamics of microglia as they participate in the pathophysiological changes that contribute to the symptoms and sequela of a stroke. The importance of Toll-like receptor (TLR) signaling in the outcomes of these pathophysiological changes is highlighted. Increasing evidence shows that microglia have a complex role in stroke pathophysiology, and they mediate both detrimental and beneficial effects on stroke outcome. So far, most of the pharmacological studies in experimental models of stroke have focused on neuroprotective strategies which are impractical for clinical applications. Post-ischemic inflammation is long lasting and thus, could provide a therapeutic target for novel delayed drug treatment. However, more studies are needed to elucidate the role of microglia in the recovery process from an ischemic stroke and to evaluate the therapeutic potential of modulating post-ischemic inflammation to promote functional recovery.
Collapse
Affiliation(s)
- Jenni E Anttila
- Institute of Biotechnology, P.O. Box 56, 00014, University of Helsinki, Finland
| | - Keith W Whitaker
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, USA; Human Research and Engineering Directorate, US Army Research Laboratory, Aberdeen, Proving Ground, MD 21005, USA
| | - Emily S Wires
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, USA
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, USA
| | - Mikko Airavaara
- Institute of Biotechnology, P.O. Box 56, 00014, University of Helsinki, Finland.
| |
Collapse
|
13
|
Cuccione E, Versace A, Cho TH, Carone D, Berner LP, Ong E, Rousseau D, Cai R, Monza L, Ferrarese C, Sganzerla EP, Berthezène Y, Nighoghossian N, Wiart M, Beretta S, Chauveau F. Multi-site laser Doppler flowmetry for assessing collateral flow in experimental ischemic stroke: Validation of outcome prediction with acute MRI. J Cereb Blood Flow Metab 2017; 37:2159-2170. [PMID: 27466372 PMCID: PMC5464709 DOI: 10.1177/0271678x16661567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
High variability in infarct size is common in experimental stroke models and affects statistical power and validity of neuroprotection trials. The aim of this study was to explore cerebral collateral flow as a stratification factor for the prediction of ischemic outcome. Transient intraluminal occlusion of the middle cerebral artery was induced for 90 min in 18 Wistar rats. Cerebral collateral flow was assessed intra-procedurally using multi-site laser Doppler flowmetry monitoring in both the lateral middle cerebral artery territory and the borderzone territory between middle cerebral artery and anterior cerebral artery. Multi-modal magnetic resonance imaging was used to assess acute ischemic lesion (diffusion-weighted imaging, DWI), acute perfusion deficit (time-to-peak, TTP), and final ischemic lesion at 24 h. Infarct volumes and typology at 24 h (large hemispheric versus basal ganglia infarcts) were predicted by both intra-ischemic collateral perfusion and acute DWI lesion volume. Collateral flow assessed by multi-site laser Doppler flowmetry correlated with the corresponding acute perfusion deficit using TTP maps. Multi-site laser Doppler flowmetry monitoring was able to predict ischemic outcome and perfusion deficit in good agreement with acute MRI. Our results support the additional value of cerebral collateral flow monitoring for outcome prediction in experimental ischemic stroke, especially when acute MRI facilities are not available.
Collapse
Affiliation(s)
- Elisa Cuccione
- 1 Department of Medicine and Surgery, Laboratory of Experimental Stroke Research, University of Milano-Bicocca, Monza, Italy.,2 PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Versace
- 1 Department of Medicine and Surgery, Laboratory of Experimental Stroke Research, University of Milano-Bicocca, Monza, Italy
| | - Tae-Hee Cho
- 3 Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1, Lyon, France.,4 Hospices Civils de Lyon, France
| | - Davide Carone
- 1 Department of Medicine and Surgery, Laboratory of Experimental Stroke Research, University of Milano-Bicocca, Monza, Italy
| | - Lise-Prune Berner
- 3 Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1, Lyon, France.,4 Hospices Civils de Lyon, France
| | - Elodie Ong
- 3 Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1, Lyon, France.,4 Hospices Civils de Lyon, France
| | - David Rousseau
- 3 Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1, Lyon, France
| | - Ruiyao Cai
- 1 Department of Medicine and Surgery, Laboratory of Experimental Stroke Research, University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- 1 Department of Medicine and Surgery, Laboratory of Experimental Stroke Research, University of Milano-Bicocca, Monza, Italy
| | - Carlo Ferrarese
- 1 Department of Medicine and Surgery, Laboratory of Experimental Stroke Research, University of Milano-Bicocca, Monza, Italy.,5 Milan Center for Neuroscience (NeuroMi), Milan, Italy
| | - Erik P Sganzerla
- 1 Department of Medicine and Surgery, Laboratory of Experimental Stroke Research, University of Milano-Bicocca, Monza, Italy.,5 Milan Center for Neuroscience (NeuroMi), Milan, Italy
| | - Yves Berthezène
- 3 Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1, Lyon, France.,4 Hospices Civils de Lyon, France
| | - Norbert Nighoghossian
- 3 Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1, Lyon, France.,4 Hospices Civils de Lyon, France
| | - Marlène Wiart
- 3 Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1, Lyon, France
| | - Simone Beretta
- 1 Department of Medicine and Surgery, Laboratory of Experimental Stroke Research, University of Milano-Bicocca, Monza, Italy.,5 Milan Center for Neuroscience (NeuroMi), Milan, Italy
| | - Fabien Chauveau
- 6 Université de Lyon, Lyon Neuroscience Research Center, BioRaN team; CNRS UMR5292; Inserm U1028; Université Lyon 1, Lyon, France
| |
Collapse
|
14
|
Sun J, Ren DD, Wan JY, Chen C, Chen D, Yang H, Feng CL, Gao J. Desensitizing Mitochondrial Permeability Transition by ERK-Cyclophilin D Axis Contributes to the Neuroprotective Effect of Gallic Acid against Cerebral Ischemia/Reperfusion Injury. Front Pharmacol 2017; 8:184. [PMID: 28428752 PMCID: PMC5382198 DOI: 10.3389/fphar.2017.00184] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/22/2017] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a devastating disease with complex pathophysiology. Much evidence confirms that opening of the mitochondrial permeability transition pore (MPTP) is related with mitochondrial dysfunction to apoptosis in ischemic stroke, thus elucidating its signaling mechanism and screening novel MPTP inhibitor is therefore of paramount importance. Our earlier studies identified that gallic acid (GA), a naturally occurring plant phenol, endows with effect on inhibition of mitochondrial dysfunction, which has significant neuroprotective effect in cerebral ischemia/reperfusion injury. However, its molecular mechanisms regulating mitochondrial dysfunction remain elusive. Here, we uncover a role of GA in protecting mitochondria via MPTP inhibition. In addition to inhibit CypD binding to adenine nucleotide translocator, GA potentiates extracellular signal-regulated kinases (ERK) phosphorylation, leading to a decrease in cyclophilin D (CypD) expression, resulting in a desensitization to induction of MPTP, thus inhibiting caspase activation and ultimately giving rise to cellular survival. Our study firstly identifies ERK-CypD axis is one of the cornerstones of the cell death pathways following ischemic stroke, and confirms GA is a novel inhibitor of MPTP, which inhibits apoptosis depending on regulating the ERK-CypD axis.
Collapse
Affiliation(s)
- Jing Sun
- Neurobiology and Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu UniversityZhenjiang, China.,Department of Traditional Chinese Medicine, School of Pharmacy, Jiangsu UniversityZhenjiang, China
| | - Da-Dui Ren
- Neurobiology and Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu UniversityZhenjiang, China
| | - Jin-Yi Wan
- Department of Traditional Chinese Medicine, School of Pharmacy, Jiangsu UniversityZhenjiang, China
| | - Chen Chen
- Neurobiology and Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu UniversityZhenjiang, China
| | - Dong Chen
- Neurobiology and Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu UniversityZhenjiang, China
| | - Huan Yang
- Department of Traditional Chinese Medicine, School of Pharmacy, Jiangsu UniversityZhenjiang, China
| | - Chun-Lai Feng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu UniversityZhenjiang, China
| | - Jing Gao
- Neurobiology and Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu UniversityZhenjiang, China
| |
Collapse
|
15
|
Hurst S, Hoek J, Sheu SS. Mitochondrial Ca 2+ and regulation of the permeability transition pore. J Bioenerg Biomembr 2017; 49:27-47. [PMID: 27497945 PMCID: PMC5393273 DOI: 10.1007/s10863-016-9672-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/31/2016] [Indexed: 02/06/2023]
Abstract
The mitochondrial permeability transition pore was originally described in the 1970's as a Ca2+ activated pore and has since been attributed to the pathogenesis of many diseases. Here we evaluate how each of the current models of the pore complex fit to what is known about how Ca2+ regulates the pore, and any insight that provides into the molecular identity of the pore complex. We also discuss the central role of Ca2+ in modulating the pore's open probability by directly regulating processes, such as ATP/ADP balance through the tricarboxylic acid cycle, electron transport chain, and mitochondrial membrane potential. We review how Ca2+ influences second messengers such as reactive oxygen/nitrogen species production and polyphosphate formation. We discuss the evidence for how Ca2+ regulates post-translational modification of cyclophilin D including phosphorylation by glycogen synthase kinase 3 beta, deacetylation by sirtuins, and oxidation/ nitrosylation of key residues. Lastly we introduce a novel view into how Ca2+ activated proteolysis through calpains in the mitochondria may be a driver of sustained pore opening during pathologies such as ischemia reperfusion injury.
Collapse
Affiliation(s)
- Stephen Hurst
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA
| | - Jan Hoek
- Mitocare Center for Mitochondria Research, Department of Pathology Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA.
| |
Collapse
|
16
|
Bonaventura A, Liberale L, Vecchié A, Casula M, Carbone F, Dallegri F, Montecucco F. Update on Inflammatory Biomarkers and Treatments in Ischemic Stroke. Int J Mol Sci 2016; 17:1967. [PMID: 27898011 PMCID: PMC5187767 DOI: 10.3390/ijms17121967] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 12/26/2022] Open
Abstract
After an acute ischemic stroke (AIS), inflammatory processes are able to concomitantly induce both beneficial and detrimental effects. In this narrative review, we updated evidence on the inflammatory pathways and mediators that are investigated as promising therapeutic targets. We searched for papers on PubMed and MEDLINE up to August 2016. The terms searched alone or in combination were: ischemic stroke, inflammation, oxidative stress, ischemia reperfusion, innate immunity, adaptive immunity, autoimmunity. Inflammation in AIS is characterized by a storm of cytokines, chemokines, and Damage-Associated Molecular Patterns (DAMPs) released by several cells contributing to exacerbate the tissue injury both in the acute and reparative phases. Interestingly, many biomarkers have been studied, but none of these reflected the complexity of systemic immune response. Reperfusion therapies showed a good efficacy in the recovery after an AIS. New therapies appear promising both in pre-clinical and clinical studies, but still need more detailed studies to be translated in the ordinary clinical practice. In spite of clinical progresses, no beneficial long-term interventions targeting inflammation are currently available. Our knowledge about cells, biomarkers, and inflammatory markers is growing and is hoped to better evaluate the impact of new treatments, such as monoclonal antibodies and cell-based therapies.
Collapse
Affiliation(s)
- Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Alessandra Vecchié
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Matteo Casula
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova, 10 Largo Benzi, 16132 Genoa, Italy.
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova, 10 Largo Benzi, 16132 Genoa, Italy.
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy.
| |
Collapse
|
17
|
Uchino H, Ogihara Y, Fukui H, Chijiiwa M, Sekine S, Hara N, Elmér E. Brain injury following cardiac arrest: pathophysiology for neurocritical care. J Intensive Care 2016; 4:31. [PMID: 27123307 PMCID: PMC4847238 DOI: 10.1186/s40560-016-0140-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/04/2016] [Indexed: 11/27/2022] Open
Abstract
Cardiac arrest induces the cessation of cerebral blood flow, which can result in brain damage. The primary intervention to salvage the brain under such a pathological condition is to restore the cerebral blood flow to the ischemic region. Ischemia is defined as a reduction in blood flow to a level that is sufficient to alter normal cellular function. Brain tissue is highly sensitive to ischemia, such that even brief ischemic periods in neurons can initiate a complex sequence of events that may ultimately culminate in cell death. However, paradoxically, restoration of blood flow can cause additional damage and exacerbate the neurocognitive deficits in patients who suffered a brain ischemic event, which is a phenomenon referred to as “reperfusion injury.” Transient brain ischemia following cardiac arrest results from the complex interplay of multiple pathways including excitotoxicity, acidotoxicity, ionic imbalance, peri-infarct depolarization, oxidative and nitrative stress, inflammation, and apoptosis. The pathophysiology of post-cardiac arrest brain injury involves a complex cascade of molecular events, most of which remain unknown. Many lines of evidence have shown that mitochondria suffer severe damage in response to ischemic injury. Mitochondrial dysfunction based on the mitochondrial permeability transition after reperfusion, particularly involving the calcineurin/immunophilin signal transduction pathway, appears to play a pivotal role in the induction of neuronal cell death. The aim of this article is to discuss the underlying pathophysiology of brain damage, which is a devastating pathological condition, and highlight the central signal transduction pathway involved in brain damage, which reveals potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hiroyuki Uchino
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan
| | - Yukihiko Ogihara
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan
| | - Hidekimi Fukui
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan
| | - Miyuki Chijiiwa
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan
| | - Shusuke Sekine
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan
| | - Naomi Hara
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan
| | - Eskil Elmér
- Mitochondrial Pathophysiology Unit, Department of Clinical Sciences, Lund University, Box 117, 221 00 Lund, Sweden
| |
Collapse
|
18
|
Toldo S, Marchetti C, Mauro AG, Chojnacki J, Mezzaroma E, Carbone S, Zhang S, Van Tassell B, Salloum FN, Abbate A. Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischemia-reperfusion in the mouse. Int J Cardiol 2016; 209:215-20. [PMID: 26896627 DOI: 10.1016/j.ijcard.2016.02.043] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/23/2016] [Accepted: 02/02/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Successful reperfusion is the most effective strategy to reduce ischemic injury in acute myocardial infarction (AMI). Ischemic injury, however, also triggers a secondary ischemia-independent injury, known as reperfusion injury, contributing to the overall infarct size. We hypothesize that inhibition of the Nod-like Receptor Protein-3 (NLRP3) inflammasome limits infarct size following myocardial ischemia/reperfusion (I/R), by inhibiting the inflammatory component of the reperfusion injury. METHODS CD-1 male mice underwent transient ligation of the left anterior descending coronary artery for 30 or 75min followed by reperfusion. Infarct size was measured at 1, 3 and 24h. A NLRP3 inflammasome inhibitor (NLRP3inh) or vehicle was administrated immediately at time of reperfusion or with a delay of 1 or 3h of reperfusion. RESULTS A time-dependent increase in infarct size was measured at 1, 3, and 24h after reperfusion (11±2%, 30±5% and 43±4% of the area at risk respectively; P<0.001 for trend). NLRP3 myocardial expression was significantly increased at 24h and 6h vs 3h (P<0.01). Administration of the NLRP3inh at reperfusion did not reduce infarct size at 3h, while it significantly reduced infarct size at 24h (-56% vs vehicle, P<0.01). The NLRP3inh given 1h after reperfusion also significantly decreased caspase-1 activity and infarct size measured at 24h, whereas the NLRP3inh did not when given with a delay of 3h. CONCLUSIONS Pharmacological inhibition of the NLRP3 inflammasome within 1h of reperfusion limits the secondary inflammatory injury and infarct size following myocardial ischemia-reperfusion in the mouse.
Collapse
Affiliation(s)
- Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, United States; Department of Surgery, Division of Cardio-thoracic Surgery, Virginia Commonwealth University, United States; Johnson Research Center for Critical Care, Virginia Commonwealth University, United States
| | - Carlo Marchetti
- VCU Pauley Heart Center, Virginia Commonwealth University, United States; Johnson Research Center for Critical Care, Virginia Commonwealth University, United States
| | - Adolfo G Mauro
- VCU Pauley Heart Center, Virginia Commonwealth University, United States; Johnson Research Center for Critical Care, Virginia Commonwealth University, United States
| | - Jeremy Chojnacki
- Department of Medicinal Chemistry, Virginia Commonwealth University, United States
| | - Eleonora Mezzaroma
- Department of Pharmacotherapy and Outcome Sciences, Virginia Commonwealth University, United States
| | - Salvatore Carbone
- VCU Pauley Heart Center, Virginia Commonwealth University, United States
| | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, United States
| | - Benjamin Van Tassell
- Department of Medicinal Chemistry, Virginia Commonwealth University, United States
| | - Fadi N Salloum
- VCU Pauley Heart Center, Virginia Commonwealth University, United States
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, United States; Johnson Research Center for Critical Care, Virginia Commonwealth University, United States.
| |
Collapse
|
19
|
Monassier L, Ayme-Dietrich E, Aubertin-Kirch G, Pathak A. Targeting myocardial reperfusion injuries with cyclosporine in the CIRCUS Trial - pharmacological reasons for failure. Fundam Clin Pharmacol 2016; 30:191-3. [DOI: 10.1111/fcp.12177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/15/2015] [Accepted: 12/23/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Laurent Monassier
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296); CHU de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine; 11 rue Humann Strasbourg France
| | - Estelle Ayme-Dietrich
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296); CHU de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine; 11 rue Humann Strasbourg France
| | - Gaëlle Aubertin-Kirch
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296); CHU de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine; 11 rue Humann Strasbourg France
| | - Atul Pathak
- Clinique Pasteur; Centre de Recherche Clinique Cardiovasculaire Pasteur; 45 avenue de Lombez 31000 Toulouse Toulouse France
| |
Collapse
|
20
|
Smith CJ, Denes A, Tyrrell PJ, Di Napoli M. Phase II anti-inflammatory and immune-modulating drugs for acute ischaemic stroke. Expert Opin Investig Drugs 2015; 24:623-43. [PMID: 25727670 DOI: 10.1517/13543784.2015.1020110] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Stroke is the second leading cause of death worldwide and the leading cause of adult neurological disability. Despite advances in stroke unit care, and increasing use of thrombolysis, there remains an urgent need for safe and effective treatments for acute ischaemic stroke. However, this is against a backdrop of multiple failures in translational drug development. Cerebral ischaemia initiates a complex cascade of immune and inflammatory pathways in the brain microvasculature and periphery, which contribute to the evolution of cerebral injury, resolution and repair. Targeting specific inflammatory or immune pathways, therefore, represents an attractive treatment strategy in acute ischaemic stroke. Although anti-inflammatory drugs have already failed in clinical trial development, several are currently at the Phase II developmental stage. AREAS COVERED The authors highlight several candidate drugs, which modulate a range of inflammatory and immune pathways, and have been investigated in pre-clinical and Phase II studies to date. EXPERT OPINION Drugs targeting inflammatory and immune pathways offer theoretical advantages including potentially longer therapeutic time windows and effects complementary to thrombolysis (ameliorating reperfusion injury). Fundamental changes in the approach to pre-clinical and clinical drug development are required to facilitate successful translation of promising candidate drugs into clinical practice.
Collapse
Affiliation(s)
- Craig J Smith
- Greater Manchester Comprehensive Stroke Centre, Department of Medical Neurosciences, Salford Royal Foundation Trust , Salford , UK
| | | | | | | |
Collapse
|
21
|
Sun J, Li YZ, Ding YH, Wang J, Geng J, Yang H, Ren J, Tang JY, Gao J. Neuroprotective effects of gallic acid against hypoxia/reoxygenation-induced mitochondrial dysfunctions in vitro and cerebral ischemia/reperfusion injury in vivo. Brain Res 2014; 1589:126-39. [PMID: 25251593 DOI: 10.1016/j.brainres.2014.09.039] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 02/02/2023]
Abstract
Oxidative stress and mitochondrial dysfunction are frequently implicated in the pathology of secondary neuronal damage following cerebral ischemia/reperfusion. Recent evidence suggests that gallic acid (GA) reverses oxidative stress in rat model of streptozotocin-induced dementia, but the roles and mechanisms of GA on cerebral ischemia/reperfusion injury remain unknown. Here we investigated the potential roles and mechanisms of GA in hypoxia/reoxygenation induced by sodium hydrosulfite (Na2S2O4) in vitro and cerebral ischemia/reperfusion induced by middle cerebral artery occlusion (MCAO) in vivo. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazol carbocyanine iodide (JC-1), Dichlorofluorescin diacetate (DCF-DA) and MitoSOX fluorescent assay, Clark-type oxygen electrode, firefly luciferase assay, and calcium-induced mitochondrial swelling were conducted to detect cell death, mitochondrial membrane potential (MMP), intracellular and mitochondrial reactive oxygen species (ROS), oxygen consumption, ATP level, and mitochondrial permeability transition pore (MPTP) viability. We firstly find that modulation of the mitochondrial dysfunction is an important mechanism by GA attenuating hypoxia/reoxygenation insult. To further assess the effects of GA on cerebral ischemia/reperfusion injury, 2, 3, 5-triphenyl-tetrazolium chloride (TTC) staining, dUTP nick-end labeling (TUNEL) assay, and Cytochrome C (Cyt C) release were performed in MCAO rats. The results support that GA is useful against cerebral ischemia/reperfusion injury as a potential protective agent.
Collapse
Affiliation(s)
- Jing Sun
- Neurobiology Laboratory, School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P R China
| | - Yun-Zi Li
- Neurobiology Laboratory, School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P R China
| | - Yin-Hui Ding
- Neurobiology Laboratory, School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P R China
| | - Jin Wang
- Neurobiology Laboratory, School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P R China
| | - Ji Geng
- Neurobiology Laboratory, School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P R China
| | - Huan Yang
- Neurobiology Laboratory, School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P R China
| | - Jie Ren
- Neurobiology Laboratory, School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P R China
| | - Jin-Yan Tang
- Neurobiology Laboratory, School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P R China
| | - Jing Gao
- Neurobiology Laboratory, School of Pharmacy, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P R China.
| |
Collapse
|
22
|
Durand A, Chauveau F, Cho TH, Bolbos R, Langlois JB, Hermitte L, Wiart M, Berthezène Y, Nighoghossian N. Spontaneous reperfusion after in situ thromboembolic stroke in mice. PLoS One 2012; 7:e50083. [PMID: 23166825 PMCID: PMC3500336 DOI: 10.1371/journal.pone.0050083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/15/2012] [Indexed: 11/19/2022] Open
Abstract
Injection of thrombin into the middle cerebral artery (MCA) of mice has been proposed as a new model of thromboembolic stroke. The present study used sequential multiparametric Magnetic Resonance Imaging (MRI), including Magnetic Resonance Angiography (MRA), Diffusion-Weighted Imaging (DWI) and Perfusion-Weighted Imaging (PWI), to document MCA occlusion, PWI-DWI mismatch, and lesion development. In the first experiment, complete MCA occlusion and reproducible hypoperfusion were obtained in 85% of animals during the first hour after stroke onset. In the second experiment, 80% of animals showed partial to complete reperfusion during a three-hour follow-up. Spontaneous reperfusion thus contributed to the variability in ischemic volume in this model. The study confirmed the value of the model for evaluating new thrombolytic treatments, but calls for extended MRI follow-up at the acute stage in therapeutic studies.
Collapse
Affiliation(s)
- Anne Durand
- Université de Lyon, CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Fabien Chauveau
- Université de Lyon, CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Tae-Hee Cho
- Université de Lyon, CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Radu Bolbos
- CERMEP-Imagerie du Vivant, Animage, Lyon, France
| | | | - Laure Hermitte
- Université de Lyon, CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Marlène Wiart
- Université de Lyon, CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Yves Berthezène
- Université de Lyon, CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Norbert Nighoghossian
- Université de Lyon, CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Hospices Civils de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|