1
|
Riachy L, Ferrand T, Chasserot-Golaz S, Galas L, Alexandre S, Montero-Hadjadje M. Advanced Imaging Approaches to Reveal Molecular Mechanisms Governing Neuroendocrine Secretion. Neuroendocrinology 2023; 113:107-119. [PMID: 34915491 DOI: 10.1159/000521457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022]
Abstract
Identification of the molecular mechanisms governing neuroendocrine secretion and resulting intercellular communication is one of the great challenges of cell biology to better understand organism physiology and neurosecretion disruption-related pathologies such as hypertension, neurodegenerative, or metabolic diseases. To visualize molecule distribution and dynamics at the nanoscale, many imaging approaches have been developed and are still emerging. In this review, we provide an overview of the pioneering studies using transmission electron microscopy, atomic force microscopy, total internal reflection microscopy, and super-resolution microscopy in neuroendocrine cells to visualize molecular mechanisms driving neurosecretion processes, including exocytosis and associated fusion pores, endocytosis and associated recycling vesicles, and protein-protein or protein-lipid interactions. Furthermore, the potential and the challenges of these different advanced imaging approaches for application in the study of neuroendocrine cell biology are discussed, aiming to guide researchers to select the best approach for their specific purpose around the crucial but not yet fully understood neurosecretion process.
Collapse
Affiliation(s)
- Lina Riachy
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Thomas Ferrand
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg University, Strasbourg, France
| | - Ludovic Galas
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Stéphane Alexandre
- Polymères, Biopolymères, Surfaces Laboratory, CNRS, Normandie University, UNIROUEN, UMR 6270, Rouen, France
| | - Maité Montero-Hadjadje
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| |
Collapse
|
2
|
Sahu BS, Mahata S, Bandyopadhyay K, Mahata M, Avolio E, Pasqua T, Sahu C, Bandyopadhyay GK, Bartolomucci A, Webster NJG, Van Den Bogaart G, Fischer-Colbrie R, Corti A, Eiden LE, Mahata SK. Catestatin regulates vesicular quanta through modulation of cholinergic and peptidergic (PACAPergic) stimulation in PC12 cells. Cell Tissue Res 2018; 376:51-70. [PMID: 30467710 DOI: 10.1007/s00441-018-2956-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/30/2018] [Indexed: 12/23/2022]
Abstract
We have previously shown that the chromogranin A (CgA)-derived peptide catestatin (CST: hCgA352-372) inhibits nicotine-induced secretion of catecholamines from the adrenal medulla and chromaffin cells. In the present study, we seek to determine whether CST regulates dense core (DC) vesicle (DCV) quanta (catecholamine and chromogranin/secretogranin proteins) during acute (0.5-h treatment) or chronic (24-h treatment) cholinergic (nicotine) or peptidergic (PACAP, pituitary adenylyl cyclase activating polypeptide) stimulation of PC12 cells. In acute experiments, we found that both nicotine (60 μM) and PACAP (0.1 μM) decreased intracellular norepinephrine (NE) content and increased 3H-NE secretion, with both effects markedly inhibited by co-treatment with CST (2 μM). In chronic experiments, we found that nicotine and PACAP both reduced DCV and DC diameters and that this effect was likewise prevented by CST. Nicotine or CST alone increased expression of CgA protein and together elicited an additional increase in CgA protein, implying that nicotine and CST utilize separate signaling pathways to activate CgA expression. In contrast, PACAP increased expression of CgB and SgII proteins, with a further potentiation by CST. CST augmented the expression of tyrosine hydroxylase (TH) but did not increase intracellular NE levels, presumably due to its inability to cause post-translational activation of TH through serine phosphorylation. Co-treatment of CST with nicotine or PACAP increased quantal size, plausibly due to increased synthesis of CgA, CgB and SgII by CST. We conclude that CST regulates DCV quanta by acutely inhibiting catecholamine secretion and chronically increasing expression of CgA after nicotinic stimulation and CgB and SgII after PACAPergic stimulation.
Collapse
Affiliation(s)
- Bhavani Shankar Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA. .,Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA.
| | - Sumana Mahata
- California Institute of Technology, Pasadena, CA, USA
| | - Keya Bandyopadhyay
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA
| | - Manjula Mahata
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA
| | | | | | - Chinmayi Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Gautam K Bandyopadhyay
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J G Webster
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| | | | | | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Lee E Eiden
- Section on Molecular Neuroscience, NIMH-IRP, Bethesda, MD, USA
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
3
|
MacDougall DD, Lin Z, Chon NL, Jackman SL, Lin H, Knight JD, Anantharam A. The high-affinity calcium sensor synaptotagmin-7 serves multiple roles in regulated exocytosis. J Gen Physiol 2018; 150:783-807. [PMID: 29794152 PMCID: PMC5987875 DOI: 10.1085/jgp.201711944] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
MacDougall et al. review the structure and function of the calcium sensor synaptotagmin-7 in exocytosis. Synaptotagmin (Syt) proteins comprise a 17-member family, many of which trigger exocytosis in response to calcium. Historically, most studies have focused on the isoform Syt-1, which serves as the primary calcium sensor in synchronous neurotransmitter release. Recently, Syt-7 has become a topic of broad interest because of its extreme calcium sensitivity and diversity of roles in a wide range of cell types. Here, we review the known and emerging roles of Syt-7 in various contexts and stress the importance of its actions. Unique functions of Syt-7 are discussed in light of recent imaging, electrophysiological, and computational studies. Particular emphasis is placed on Syt-7–dependent regulation of synaptic transmission and neuroendocrine cell secretion. Finally, based on biochemical and structural data, we propose a mechanism to link Syt-7’s role in membrane fusion with its role in subsequent fusion pore expansion via strong calcium-dependent phospholipid binding.
Collapse
Affiliation(s)
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Nara L Chon
- Department of Chemistry, University of Colorado, Denver, CO
| | - Skyler L Jackman
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Hai Lin
- Department of Chemistry, University of Colorado, Denver, CO
| | | | - Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
4
|
Bohannon KP, Holz RW, Axelrod D. Refractive Index Imaging of Cells with Variable-Angle Near-Total Internal Reflection (TIR) Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:978-988. [PMID: 28918767 PMCID: PMC7790292 DOI: 10.1017/s1431927617012570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The refractive index in the interior of single cells affects the evanescent field depth in quantitative studies using total internal reflection (TIR) fluorescence, but often that index is not well known. We here present method to measure and spatially map the absolute index of refraction in a microscopic sample, by imaging a collimated light beam reflected from the substrate/buffer/cell interference at variable angles of incidence. Above the TIR critical angle (which is a strong function of refractive index), the reflection is 100%, but in the immediate sub-critical angle zone, the reflection intensity is a very strong ascending function of incidence angle. By analyzing the angular position of that edge at each location in the field of view, the local refractive index can be estimated. In addition, by analyzing the steepness of the edge, the distance-to-substrate can be determined. We apply the technique to liquid calibration samples, silica beads, cultured Chinese hamster ovary cells, and primary culture chromaffin cells. The optical technique suffers from decremented lateral resolution, scattering, and interference artifacts. However, it still provides reasonable results for both refractive index (~1.38) and for distance-to-substrate (~150 nm) for the cells, as well as a lateral resolution to about 1 µm.
Collapse
Affiliation(s)
- Kevin P. Bohannon
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ronald W. Holz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniel Axelrod
- Departments of Physics and LSA Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Mziaut H, Mulligan B, Hoboth P, Otto O, Ivanova A, Herbig M, Schumann D, Hildebrandt T, Dehghany J, Sönmez A, Münster C, Meyer-Hermann M, Guck J, Kalaidzidis Y, Solimena M. The F-actin modifier villin regulates insulin granule dynamics and exocytosis downstream of islet cell autoantigen 512. Mol Metab 2016; 5:656-668. [PMID: 27656403 PMCID: PMC5021679 DOI: 10.1016/j.molmet.2016.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 01/02/2023] Open
Abstract
Objective Insulin release from pancreatic islet β cells should be tightly controlled to avoid hypoglycemia and insulin resistance. The cortical actin cytoskeleton is a gate for regulated exocytosis of insulin secretory granules (SGs) by restricting their mobility and access to the plasma membrane. Prior studies suggest that SGs interact with F-actin through their transmembrane cargo islet cell autoantigen 512 (Ica512) (also known as islet antigen 2/Ptprn). Here we investigated how Ica512 modulates SG trafficking and exocytosis. Methods Transcriptomic changes in Ica512−/− mouse islets were analyzed. Imaging as well as biophysical and biochemical methods were used to validate if and how the Ica512-regulated gene villin modulates insulin secretion in mouse islets and insulinoma cells. Results The F-actin modifier villin was consistently downregulated in Ica512−/− mouse islets and in Ica512-depleted insulinoma cells. Villin was enriched at the cell cortex of β cells and dispersed villin−/− islet cells were less round and less deformable. Basal mobility of SGs in villin-depleted cells was enhanced. Moreover, in cells depleted either of villin or Ica512 F-actin cages restraining cortical SGs were enlarged, basal secretion was increased while glucose-stimulated insulin release was blunted. The latter changes were reverted by overexpressing villin in Ica512-depleted cells, but not vice versa. Conclusion Our findings show that villin controls the size of the F-actin cages restricting SGs and, thus, regulates their dynamics and availability for exocytosis. Evidence that villin acts downstream of Ica512 also indicates that SGs directly influence the remodeling properties of the cortical actin cytoskeleton for tight control of insulin secretion. Ica512-depletion reduces the genetic expression of the F-actin modifier villin. Villin-depletion enhances basal insulin granule mobility and exocytosis. Villin regulates the size of actin cages restraining insulin granules. Villin acts downstream of insulin granule cargo Ica512. The Ica512-villin genetic link enables granules to control cytoskeleton plasticity.
Collapse
Key Words
- D, diffusion coefficient
- EGFP, enhanced green fluorescent protein
- F-actin
- Granules
- IPGTT, intraperitoneal glucose tolerance test
- IVGTT, intravenous glucose tolerance test
- Ica512
- Ica512, islet cell autoantigen
- Insulin
- OGTT, oral glucose tolerance test
- RT-DC, real-time deformability cytometry
- SE, standard error
- SG, secretory granules
- Secretion
- TIRFM, total internal reflection fluorescence microscopy
- Villin
Collapse
Affiliation(s)
- Hassan Mziaut
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Bernard Mulligan
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Peter Hoboth
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Oliver Otto
- Biotechnology Center Dresden, 01307 Dresden, Germany
| | - Anna Ivanova
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Maik Herbig
- Biotechnology Center Dresden, 01307 Dresden, Germany
| | - Desiree Schumann
- Boehringer Ingelheim Pharma GmbH & Co. KG. Cardiometabolic Research, 88397 Biberach, Germany
| | - Tobias Hildebrandt
- Boehringer Ingelheim Pharma GmbH & Co. KG. Cardiometabolic Research, 88397 Biberach, Germany
| | - Jaber Dehghany
- Helmholtz Centre for Infection Research (HZI), Braunschweig Integrated Centre for Systems Biology (BRICS), 38124 Braunschweig, Germany
| | - Anke Sönmez
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Carla Münster
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Michael Meyer-Hermann
- Helmholtz Centre for Infection Research (HZI), Braunschweig Integrated Centre for Systems Biology (BRICS), 38124 Braunschweig, Germany
| | - Jochen Guck
- Biotechnology Center Dresden, 01307 Dresden, Germany
| | - Yannis Kalaidzidis
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Michele Solimena
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany; Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
6
|
Ges IA, Brindley RL, Currie KPM, Baudenbacher FJ. A microfluidic platform for chemical stimulation and real time analysis of catecholamine secretion from neuroendocrine cells. LAB ON A CHIP 2013; 13:4663-73. [PMID: 24126415 PMCID: PMC3892771 DOI: 10.1039/c3lc50779c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Release of neurotransmitters and hormones by calcium-regulated exocytosis is a fundamental cellular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. As such, there is significant interest in targeting neurosecretion for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistic insight coupled with increased experimental throughput. Here, we report a simple, inexpensive, reusable, microfluidic device designed to analyze catecholamine secretion from small populations of adrenal chromaffin cells in real time, an important neuroendocrine component of the sympathetic nervous system and versatile neurosecretory model. The device is fabricated by replica molding of polydimethylsiloxane (PDMS) using patterned photoresist on silicon wafer as the master. Microfluidic inlet channels lead to an array of U-shaped "cell traps", each capable of immobilizing single or small groups of chromaffin cells. The bottom of the device is a glass slide with patterned thin film platinum electrodes used for electrochemical detection of catecholamines in real time. We demonstrate reliable loading of the device with small populations of chromaffin cells, and perfusion/repetitive stimulation with physiologically relevant secretagogues (carbachol, PACAP, KCl) using the microfluidic network. Evoked catecholamine secretion was reproducible over multiple rounds of stimulation, and graded as expected to different concentrations of secretagogue or removal of extracellular calcium. Overall, we show this microfluidic device can be used to implement complex stimulation paradigms and analyze the amount and kinetics of catecholamine secretion from small populations of neuroendocrine cells in real time.
Collapse
Affiliation(s)
- Igor A Ges
- Dept. of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235-1631, USA.
| | | | | | | |
Collapse
|
7
|
Li D, Agulhon C, Schmidt E, Oheim M, Ropert N. New tools for investigating astrocyte-to-neuron communication. Front Cell Neurosci 2013; 7:193. [PMID: 24194698 PMCID: PMC3810613 DOI: 10.3389/fncel.2013.00193] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/07/2013] [Indexed: 12/24/2022] Open
Abstract
Gray matter protoplasmic astrocytes extend very thin processes and establish close contacts with synapses. It has been suggested that the release of neuroactive gliotransmitters at the tripartite synapse contributes to information processing. However, the concept of calcium (Ca2+)-dependent gliotransmitter release from astrocytes, and the release mechanisms are being debated. Studying astrocytes in their natural environment is challenging because: (i) astrocytes are electrically silent; (ii) astrocytes and neurons express an overlapping repertoire of transmembrane receptors; (iii) the size of astrocyte processes in contact with synapses are below the resolution of confocal and two-photon microscopes (iv) bulk-loading techniques using fluorescent Ca2+ indicators lack cellular specificity. In this review, we will discuss some limitations of conventional methodologies and highlight the interest of novel tools and approaches for studying gliotransmission. Genetically encoded Ca2+ indicators (GECIs), light-gated channels, and exogenous receptors are being developed to selectively read out and stimulate astrocyte activity. Our review discusses emerging perspectives on: (i) the complexity of astrocyte Ca2+ signaling revealed by GECIs; (ii) new pharmacogenetic and optogenetic approaches to activate specific Ca2+ signaling pathways in astrocytes; (iii) classical and new techniques to monitor vesicle fusion in cultured astrocytes; (iv) possible strategies to express specifically reporter genes in astrocytes.
Collapse
Affiliation(s)
- Dongdong Li
- Biophysics of Gliotransmitter Release Team, Laboratory of Neurophysiology and New Microscopies, INSERM U603, CNRS UMR 8154, University Paris Descartes Paris, France
| | | | | | | | | |
Collapse
|
8
|
Abstract
Quantitative dynamic footprinting (qDF) allows visualization of the footprints of live leukocytes rolling on a selectin-coated cover glass. qDF works on the principle of total internal reflection fluorescence, which involves fluorescence excitation in a thin slice (~200 nm) of the cell proximal to the cover glass while the rest of the cell remains dark. Dual color qDF (DqDF) is an advancement of qDF, which enables simultaneous visualization of two fluorochromes in the footprints of rolling leukocytes. When the fluorochrome is localized either in the cell cytoplasm or plasma membrane, the two-dimensional qDF image is used to create a three-dimensional rendition of the footprint topography. DqDF is a useful tool to study leukocyte adhesion under flow, and has recently been used to reveal mechanisms that enable neutrophils to roll at high shear stresses that prevail in venules during inflammation.
Collapse
Affiliation(s)
- Prithu Sundd
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|
9
|
Stamper IJ, Wang X. Mathematical modeling of insulin secretion and the role of glucose-dependent mobilization, docking, priming and fusion of insulin granules. J Theor Biol 2012; 318:210-25. [PMID: 23154190 DOI: 10.1016/j.jtbi.2012.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 10/28/2012] [Accepted: 11/02/2012] [Indexed: 01/08/2023]
Abstract
In this paper we develop a new mathematical model of glucose-induced insulin secretion from pancreatic islet β-cells, and we use this model to investigate the rate limiting factors. We assume that insulin granules reside in different pools inside each β-cell, and that all β-cells respond homogeneously to glucose with the same recruitment thresholds. Consistent with recent experimental observations, our model also accounts for the fusion of newcomer granules that are not pre-docked at the plasma membrane. In response to a single step increase in glucose concentration, our model reproduces the characteristic biphasic insulin release observed in multiple experimental systems, including perfused pancreata and isolated islets of rodent or human origin. From our model analysis we note that first-phase insulin secretion depends on rapid depletion of the primed, release-ready granule pools, while the second phase relies on granule mobilization from the reserve. Moreover, newcomers have the potential to contribute significantly to the second phase. When the glucose protocol consists of multiple changes in sequence (a so-called glucose staircase), our model predicts insulin spikes of increasing height, as has been seen experimentally. This increase stems from the glucose-dependent increase in the fusion rate of insulin granules at the plasma membrane of single β-cells. In contrast, previous mathematical models reproduced the staircase experiment by assuming heterogeneous β-cell activation. In light of experimental data indicating limited heterogeneous activation for β-cells within intact islets, our findings suggest that a graded, dose-dependent cell response to glucose may contribute to insulin secretion patterns observed in multiple experiments, and thus regulate in vivo insulin release. In addition, the strength of insulin granule mobilization, priming and fusion are critical limiting factors in determining the total amount of insulin release.
Collapse
Affiliation(s)
- I Johanna Stamper
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama, AL 35294, USA.
| | | |
Collapse
|
10
|
3D single molecule tracking with multifocal plane microscopy reveals rapid intercellular transferrin transport at epithelial cell barriers. Biophys J 2012; 103:1594-603. [PMID: 23062352 DOI: 10.1016/j.bpj.2012.08.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/04/2012] [Accepted: 08/10/2012] [Indexed: 01/01/2023] Open
Abstract
The study of intracellular transport pathways at epithelial cell barriers that line diverse tissue sites is fundamental to understanding tissue homeostasis. A major impediment to investigating such processes at the subcellular level has been the lack of imaging approaches that support fast three-dimensional (3D) tracking of cellular dynamics in thick cellular specimens. Here, we report significant advances in multifocal plane microscopy and demonstrate 3D single molecule tracking of rapid protein dynamics in a 10 micron thick live epithelial cell monolayer. We have investigated the transferrin receptor (TfR) pathway, which is not only essential for iron delivery but is also of importance for targeted drug delivery across cellular barriers at specific body sites, such as the brain that is impermeable to blood-borne substances. Using multifocal plane microscopy, we have discovered a cellular process of intercellular transfer involving rapid exchange of Tf molecules between two adjacent cells in the monolayer. Furthermore, 3D tracking of Tf molecules at the lateral plasma membrane has led to the identification of different modes of endocytosis and exocytosis, which exhibit distinct temporal and intracellular spatial trajectories. These results reveal the complexity of the 3D trafficking pathways in epithelial cell barriers. The methods and approaches reported here can enable the study of fast 3D cellular dynamics in other cell systems and models, and underscore the importance of developing advanced imaging technologies to study such processes.
Collapse
|
11
|
Becherer U, Medart MR, Schirra C, Krause E, Stevens D, Rettig J. Regulated exocytosis in chromaffin cells and cytotoxic T lymphocytes: How similar are they? Cell Calcium 2012; 52:303-12. [DOI: 10.1016/j.ceca.2012.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/27/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
|
12
|
Than A, Tan Y, Ong WY, Farooqui AA, Chen P. Kainate Receptors Mediate Regulated Exocytosis of Secretory Phospholipase A2 in SH-SY5Y Neuroblastoma Cells. Neurosignals 2011; 20:72-85. [DOI: 10.1159/000330414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/27/2011] [Indexed: 01/03/2023] Open
|
13
|
Jin S, Zhou F, Katirai F, Li PL. Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal 2011; 15:1043-83. [PMID: 21294649 PMCID: PMC3135227 DOI: 10.1089/ars.2010.3619] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases.
Collapse
Affiliation(s)
- Si Jin
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | |
Collapse
|
14
|
Whole-Cell Scan Using Automatic Variable-Angle and Variable-Illumination-Depth Pseudo—Total Internal Reflection Fluorescence Microscopy. ACTA ACUST UNITED AC 2011; 16:255-62. [DOI: 10.1016/j.jala.2010.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Indexed: 11/21/2022]
Abstract
An automatic calibration and angle-scanning prism-type total internal reflection fluorescence microscope (TIRFM) was modified to function in both TIRFM and pseudo-TIRFM modes. When the incident angle of the excitation laser beam was controlled to be larger than the critical angle, the instrument served as a variable-angle TIRFM. A homemade computer program automatically calibrates the laser illumination spot in the sample to overlap with the center of the microscope's field of view. Then, by measuring the fluorescence intensities at different incident angles, the z-positions of fluorescent nanospheres close to the cell basolateral membrane can be extracted. When the incident angle is reduced to be in the subcritical range, the instrument works as a pseudo-TIRFM. The whole cell body from bottom to top can be imaged in a vertical scan process. Furthermore, the illumination field depth in the pseudo-TIRFM can be controlled by changing the incident angle or the horizontal position of the laser spot.
Collapse
|
15
|
Huang Y, Cai D, Chen P. Micro- and Nanotechnologies for Study of Cell Secretion. Anal Chem 2011; 83:4393-406. [DOI: 10.1021/ac200358b] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yinxi Huang
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Dong Cai
- Biology Department, Boston College, Boston, Massachusetts 02467, United States
| | - Peng Chen
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| |
Collapse
|
16
|
Liu X, Barizuddin S, Shin W, Mathai CJ, Gangopadhyay S, Gillis KD. Microwell device for targeting single cells to electrochemical microelectrodes for high-throughput amperometric detection of quantal exocytosis. Anal Chem 2011; 83:2445-51. [PMID: 21355543 DOI: 10.1021/ac1033616] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical microelectrodes are commonly used to detect spikes of amperometric current that correspond to exocytosis of oxidizable transmitter from individual vesicles, i.e., quantal exocytosis. We are developing transparent multielectrochemical electrode arrays on microchips in order to automate measurement of quantal exocytosis. Here, we report development of an improved device to target individual cells to each microelectrode in an array. Efficient targeting (~75%) is achieved using cell-sized microwell traps fabricated in SU-8 photoresist together with patterning of poly(l-lysine) in register with electrodes to promote cell adhesion. The surface between electrodes is made resistant to cell adhesion using poly(ethylene glycol) in order to facilitate movement of cells to electrode "docking sites". We demonstrate the activity of the electrodes using the test analyte ferricyanide and perform recordings of quantal exocytosis from bovine adrenal chromaffin cells on the device. Multiple cell recordings on a single device demonstrate the consistency of spike measurements, and multiple recordings from the same electrodes demonstrate that the device can be cleaned and reused without degradation of performance. The new device will enable high-throughput studies of quantal exocytosis and may also find application in rapidly screening drugs or toxins for effects on exocytosis.
Collapse
Affiliation(s)
- Xin Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|
17
|
Than A, Ye F, Xue R, Ong JW, Poh CL, Chen P. The crosstalks between adipokines and catecholamines. Mol Cell Endocrinol 2011; 332:261-70. [PMID: 21070834 DOI: 10.1016/j.mce.2010.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 01/11/2023]
Abstract
Adipocytes, which secrete a spectrum of adipokines, play an integral role in metabolism via communications with other endocrine cells. In the present work, we have studied the interplays between adipokines and catecholamines, using 3T3-L1 adipocytes and PC12 cells as the cell models and an integrative experimental platform. We demonstrate that all catecholamines inhibit vesicle trafficking and secretion of leptin and resistin through β-adrenergic receptors, while leptin and resistin enhance the vesicle trafficking and secretion of catecholamines through PKC, PKA, MAPK kinase and Ca(2+) dependent pathways. The crosstalks between adipokines and catecholamines were further corroborated by co-culturing 3T3-L1 adipocytes and PC12 cells. Our findings highlight the importance of adipo-adrenal axis in energy metabolism and the intricate interactions between metabolic hormones.
Collapse
Affiliation(s)
- Aung Than
- Division of Bioengineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | | | | | | | | | | |
Collapse
|
18
|
Barizuddin S, Liu X, Mathai JC, Hossain M, Gillis KD, Gangopadhyay S. Automated targeting of cells to electrochemical electrodes using a surface chemistry approach for the measurement of quantal exocytosis. ACS Chem Neurosci 2010; 1:590-597. [PMID: 21113333 DOI: 10.1021/cn1000183] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Here we describe a method to fabricate a multi-channel high-throughput microchip device for measurement of quantal transmitter release from individual cells. Instead of bringing carbon-fiber electrodes to cells, the device uses a surface chemistry approach to bring cells to an array of electrochemical microelectrodes. The microelectrodes are small and "cytophilic" in order to promote adhesion of a single cell whereas all other areas of the chip are covered with a thin "cytophobic" film to block cell attachement and facilitate movement of cells to electrodes. This cytophobic film also insulates unused areas of the conductive film, thus the alignment of cell docking sites to working electrodes is automatic. Amperometric spikes resulting from single-granule fusion events were recorded on the device and had amplitudes and kinetics similar to those measured using carbon-fiber microelectrodes. Use of this device will increase the pace of basic neuroscience research and may also find applications in drug discovery or validation.
Collapse
Affiliation(s)
- Syed Barizuddin
- Department of Electrical and Computer Engineering
- Dalton Cardiovascular Research Center
| | - Xin Liu
- Dalton Cardiovascular Research Center
| | | | | | - Kevin, D. Gillis
- Dalton Cardiovascular Research Center
- Department of Biological Engineering
- Department of Medical Pharmacology and Physiology
| | - Shubhra Gangopadhyay
- Department of Electrical and Computer Engineering
- Dalton Cardiovascular Research Center
| |
Collapse
|
19
|
Bioanalytical tools for single-cell study of exocytosis. Anal Bioanal Chem 2010; 397:3281-304. [PMID: 20521141 DOI: 10.1007/s00216-010-3843-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/08/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
Abstract
Regulated exocytosis is a fundamental biological process used to deliver chemical messengers for cell-cell communication via membrane fusion and content secretion. A plethora of cell types employ this chemical-based communication to achieve crucial functions in many biological systems. Neurons in the brain and platelets in the circulatory system are representative examples utilizing exocytosis for neurotransmission and blood clotting. Single-cell studies of regulated exocytosis in the past several decades have greatly expanded our knowledge of this critical process, from vesicle/granule transport and docking at the early stages of exocytosis to membrane fusion and to eventual chemical messenger secretion. Herein, four main approaches that have been widely used to study single-cell exocytosis will be highlighted, including total internal reflection fluorescence microscopy, capillary electrophoresis, single-cell mass spectrometry, and microelectrochemistry. These techniques are arranged in the order following the route of a vesicle/granule destined for secretion. Within each section, the basic principles and experimental strategies are reviewed and representative examples are given revealing critical spatial, temporal, and chemical information of a secretory vesicle/granule at different stages of its lifetime. Lastly, an analytical chemist's perspective on potential future developments in this exciting field is discussed.
Collapse
|
20
|
Ma J, Zhao Y, Ng S, Zhang J, Zeng J, Than A, Chen P, Liu XW. Sugar-Based Synthesis of Tamiflu and Its Inhibitory Effects on Cell Secretion. Chemistry 2010; 16:4533-40. [DOI: 10.1002/chem.200902048] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/02/2009] [Indexed: 12/16/2022]
|
21
|
Chen R, Furman CA, Gnegy ME. Dopamine transporter trafficking: rapid response on demand. FUTURE NEUROLOGY 2010; 5:123. [PMID: 20174452 DOI: 10.2217/fnl.09.76] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dopamine transporter (DAT) is a primary determinant of the concentration of dopamine in the synapse and is involved in a number of psychiatric and neurological diseases. The transporter actively takes up its physiological substrate, dopamine, when it is on the surface of the plasmalemmal membrane, but the concentration of DAT in the membrane is highly regulated by substrate. Substrates initially, and very rapidly, recruit more DAT into the membrane for greater function, but continued presence of substrate downregulates the activity of DAT and even membrane DAT content. This biphasic regulation is orchestrated by numerous signal transduction mechanisms, including a palette of protein kinases. Understanding the mechanisms of rapid regulation of DAT could provide new therapeutic strategies to improve transporter function and modulate responses to its more notorious substrates, amphetamine and methamphetamine.
Collapse
Affiliation(s)
- Rong Chen
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109-5632, USA Tel.: +1 734 763 3083
| | | | | |
Collapse
|
22
|
Soo JC, Zhang J, He Q, Agarwal S, Li H, Zhang H, Chen P. Surface immobilized cholera toxin B subunit (CTB) facilitates vesicle docking, trafficking and exocytosis. Integr Biol (Camb) 2010; 2:250-7. [DOI: 10.1039/c0ib00006j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Zhang J, Xue R, Ong WY, Chen P. Roles of cholesterol in vesicle fusion and motion. Biophys J 2009; 97:1371-80. [PMID: 19720025 DOI: 10.1016/j.bpj.2009.06.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 06/18/2009] [Accepted: 06/22/2009] [Indexed: 12/01/2022] Open
Abstract
Although it is well established that exocytosis of neurotransmitters and hormones is highly regulated by numerous secretory proteins, such as SNARE proteins, there is an increasing appreciation of the importance of the chemophysical properties and organization of membrane lipids to various aspects of the exocytotic program. Based on amperometric recordings by carbon fiber microelectrodes, we show that deprivation of membrane cholesterol by methyl-beta-cyclodextrin not only inhibited the extent of membrane depolarization-induced exocytosis, it also adversely affected the kinetics and quantal size of vesicle fusion in neuroendocrine PC12 cells. In addition, total internal fluorescence microscopy studies revealed that cholesterol depletion impaired vesicle docking and trafficking, which are believed to correlate with the dynamics of exocytosis. Furthermore, we found that free cholesterol is able to directly trigger vesicle fusion, albeit with less potency and slower kinetics as compared to membrane depolarization stimulation. These results underscore the versatile roles of cholesterol in facilitating exocytosis.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Bioengineering, Nanyang Technological University, Singapore
| | | | | | | |
Collapse
|
24
|
McDonough AA. Motoring down the microvilli. Focus on "PTH-induced internalization of apical membrane NaPi2a: role of actin and myosin VI". Am J Physiol Cell Physiol 2009; 297:C1331-2. [PMID: 19776391 DOI: 10.1152/ajpcell.00423.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Oreopoulos J, Yip CM. Probing membrane order and topography in supported lipid bilayers by combined polarized total internal reflection fluorescence-atomic force microscopy. Biophys J 2009; 96:1970-84. [PMID: 19254557 DOI: 10.1016/j.bpj.2008.11.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 11/17/2008] [Indexed: 11/19/2022] Open
Abstract
Determining the local structure, dynamics, and conformational requirements for protein-protein and protein-lipid interactions in membranes is critical to understanding biological processes ranging from signaling to the translocating and membranolytic action of antimicrobial peptides. We report here the application of a combined polarized total internal reflection fluorescence microscopy-in situ atomic force microscopy platform. This platform's ability to image membrane orientational order was demonstrated on DOPC/DSPC/cholesterol model membranes containing the fluorescent membrane probe, DiI-C(20) or BODIPY-PC. Spatially resolved order parameters and fluorophore tilt angles extracted from the polarized total internal reflection fluorescence microscopy images were in good agreement with the topographical details resolved by in situ atomic force microscopy, portending use of this technique for high-resolution characterization of membrane domain structures and peptide-membrane interactions.
Collapse
Affiliation(s)
- John Oreopoulos
- Institute of Biomaterials and Biomedical Engineering, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | | |
Collapse
|
26
|
Dopamine and amphetamine rapidly increase dopamine transporter trafficking to the surface: live-cell imaging using total internal reflection fluorescence microscopy. J Neurosci 2009; 29:3328-36. [PMID: 19279270 DOI: 10.1523/jneurosci.5386-08.2009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rapid treatment (1 min) of rat striatal synaptosomes with low-dose amphetamine increases surface expression of the dopamine transporter (DAT). Using mouse neuroblastoma N2A cells, stably transfected with green fluorescent protein-DAT, we demonstrate the real-time substrate-induced rapid trafficking of DAT to the plasma membrane using total internal reflection fluorescence microscopy (TIRFM). Both the physiological substrate, dopamine, and amphetamine began to increase surface DAT within 10 s of drug addition and steadily increased surface DAT until removal 2 min later. The substrate-induced rise in surface DAT was dose-dependent, was blocked by cocaine, and abated after drug removal. Although individual vesicle fusion was not visually detectable, exocytosis of DAT was blocked using both tetanus neurotoxin and botulinum neurotoxin C to cleave soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Notably, the dopamine-induced increase in surface DAT was cocaine-sensitive but D(2)-receptor independent. TIRFM data were confirmed in human DAT-N2A cells using biotinylation, and similar effects were detected in rat striatal synaptosomes. A specific inhibitor of protein kinase C-beta blocked the substrate-mediated increase in surface DAT in both DAT-N2A cells and rat striatal synaptosomes. These data demonstrate that the physiological substrate, dopamine, and amphetamine rapidly increase the trafficking of DAT to the surface by a mechanism dependent on SNARE proteins and protein kinase C-beta but independent of dopamine D(2) receptor activation. Importantly, this study suggests that the reuptake system is poised to rapidly increase its function during dopamine secretion to tightly regulate dopaminergic neurotransmission.
Collapse
|
27
|
Feinshreiber L, Singer-Lahat D, Ashery U, Lotan I. Voltage-gated potassium channel as a facilitator of exocytosis. Ann N Y Acad Sci 2009; 1152:87-92. [PMID: 19161379 DOI: 10.1111/j.1749-6632.2008.03997.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Voltage-gated ion channels are well characterized for their function in excitability signals. Accumulating studies, however, have established an ion-independent function for the major classes of ion channels in cellular signaling. During the last few years we established a novel role for Kv2.1, a voltage-gated potassium (Kv) channel, classically known for its role of repolarizing the membrane potential, in facilitation of exocytosis. Kv2.1 induces facilitation of depolarization-induced release through its direct interaction with syntaxin, a protein component of the exocytotic machinery, independently of the potassium ion flow through the channel's pore. Here, we review our recent studies, further characterize the phenomena (using chromaffin cells and carbon fiber amperometry), and suggest plausible mechanisms that can underlie this facilitation of release.
Collapse
Affiliation(s)
- Lori Feinshreiber
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|