1
|
Park J, Sahyoun C, Frangieh J, Réthoré L, Proux C, Grimaud L, Vessières E, Bourreau J, Mattei C, Henrion D, Marionneau C, Fajloun Z, Legendre C, Legros C. Veratridine Induces Vasorelaxation in Mouse Cecocolic Mesenteric Arteries. Toxins (Basel) 2024; 16:533. [PMID: 39728791 PMCID: PMC11679225 DOI: 10.3390/toxins16120533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na+ (NaV) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that NaV channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery. Using wire myography, we found that VTD induced vasorelaxation in mouse CAs. This VTD-induced relaxation was insensitive to prazosin, an α1-adrenergic receptor antagonist, but abolished by atropine, a muscarinic receptor antagonist. Indeed, VTD-vasorelaxant effect was totally inhibited by the NaV channel blocker tetrodotoxin (0.3 µM), the NO synthase inhibitor L-NNA (20 µM), and low extracellular Na+ concentration (14.9 mM) and was partially blocked by the NCX1 antagonist SEA0400 (45.4% at 1 µM). Thus, we assumed that the VTD-induced vasorelaxation in CAs was due to acetylcholine release by parasympathetic neurons, which induced NO synthase activation mediated by the NCX1-Ca2+ entry mode in endothelial cells (ECs). We demonstrated NCX1 expression in ECs by RT-qPCR and immunohisto- and western immunolabelling. VTD did not induce an increase in intracellular Ca2+ ([Ca2+]i), while SEA0400 partially blocked acetylcholine-triggered [Ca2+]i elevations in Mile Sven 1 ECs. Altogether, these results illustrate that VTD activates NaV channels in parasympathetic neurons and then vasorelaxation in resistance arteries, which could explain arterial hypotension after VTD intoxication.
Collapse
Affiliation(s)
- Joohee Park
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - Christina Sahyoun
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Jacinthe Frangieh
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Léa Réthoré
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - Coralyne Proux
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - Linda Grimaud
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - Emilie Vessières
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - Jennifer Bourreau
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - César Mattei
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - Daniel Henrion
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - Céline Marionneau
- Nantes Université, CNRS, INSERM, l’Institut du thorax, 44000 Nantes, France;
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| | - Claire Legendre
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - Christian Legros
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| |
Collapse
|
2
|
Kawasaki H, Hino H, Takayama F, Kitamura Y, Sendou T, Takatori S. Regulatory effects of nicotine on neurite outgrowth in rat superior cervical ganglia cells. J Pharmacol Sci 2021; 148:103-107. [PMID: 34924113 DOI: 10.1016/j.jphs.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022] Open
Abstract
We have reported that nicotine has a neurotrophic action on peripheral adrenergic nerves in vivo, which is mediated by α7 nicotinic acetylcholine receptors (nAChRs). To clarify the possible mechanisms, the present study further investigated the effect of nicotine on neurite outgrowth in tyrosine hydroxylase (TH)-positive superior cervical ganglia (SCG) cells isolated from neonatal rats in vitro. Nicotine at low concentrations (0.01-0.3 mM) increased the number of neurite outgrowths in TH-immunopositive SCG cells, while high concentrations of nicotine (1-10 mM) gradually reduced it, and only 10 mM nicotine was markedly inhibited compared to the control. A 100 μM of nicotine-induced increase in neurite numbers depended on the exposure time and was inhibited by treatment with the nAChR antagonist hexamethonium (Hex) and α7 nAChR antagonist α-bungarotoxin (α-Bgtx). The nicotine (10 mM)-induced a significant decrease in neurite outgrowth in SCG, which was perfectly canceled by Hex to the control level but not by α-Bgtx. These results suggest that nicotine has a regulatory neurotrophic action mediated by both α7 nAChR and other subtypes in TH-positive SCG cells of rats.
Collapse
Affiliation(s)
- Hiromu Kawasaki
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Hayato Hino
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Department of Pharmacy, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Fusako Takayama
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yoshihisa Kitamura
- Department of Pharmacotherapy, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan
| | - Toshiaki Sendou
- Department of Pharmacy, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shingo Takatori
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| |
Collapse
|
3
|
Marichal-Cancino BA, González-Hernández A, Muñoz-Islas E, Villalón CM. Monoaminergic Receptors as Modulators of the Perivascular Sympathetic and Sensory CGRPergic Outflows. Curr Neuropharmacol 2021; 18:790-808. [PMID: 32364079 PMCID: PMC7569320 DOI: 10.2174/1570159x18666200503223240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 03/02/2020] [Accepted: 04/24/2020] [Indexed: 12/27/2022] Open
Abstract
Blood pressure is a highly controlled cardiovascular parameter that normally guarantees an adequate blood supply to all body tissues. This parameter is mainly regulated by peripheral vascular resistance and is maintained by local mediators (i.e., autacoids), and by the nervous and endocrine systems. Regarding the nervous system, blood pressure can be modulated at the central level by regulating the autonomic output. However, at peripheral level, there exists a modulation by activation of prejunctional monoaminergic receptors in autonomic- or sensory-perivascular fibers. These modulatory mechanisms on resistance blood vessels exert an effect on the release of neuroactive substances from the autonomic or sensory fibers that modify blood pressure. Certainly, resistance blood vessels are innervated by perivascular: (i) autonomic sympathetic fibers (producing vasoconstriction mainly by noradrenaline release); and (ii) peptidergic sensory fibers [producing vasodilatation mainly by calcitonin gene-related peptide (CGRP) release]. In the last years, by using pithed rats, several monoaminergic mechanisms for controlling both the sympathetic and sensory perivascular outflows have been elucidated. Additionally, several studies have shown the functions of many monoaminergic auto-receptors and hetero-receptors expressed on perivascular fibers that modulate neurotransmitter release. On this basis, the present review: (i) summarizes the modulation of the peripheral vascular tone by adrenergic, serotoninergic, dopaminergic, and histaminergic receptors on perivascular autonomic (sympathetic) and sensory fibers, and (ii) highlights that these monoaminergic receptors are potential therapeutic targets for the development of novel medications to treat cardiovascular diseases (with some of them explored in clinical trials or already in clinical use).
Collapse
Affiliation(s)
- Bruno A Marichal-Cancino
- Departamento de Fisiologia y Farmacologia, Centro de Ciencias Basicas, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico
| | | | - Enriqueta Muñoz-Islas
- Unidad Academica Multidisciplinaria Reynosa-Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Carlos M Villalón
- Departamento de Farmacobiologia, Cinvestav-Coapa, Czda. Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330 Mexico City, Mexico
| |
Collapse
|
4
|
Whitehead AK, Erwin AP, Yue X. Nicotine and vascular dysfunction. Acta Physiol (Oxf) 2021; 231:e13631. [PMID: 33595878 DOI: 10.1111/apha.13631] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/25/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
Cigarette smoking is the single most important risk factor for the development of cardiovascular diseases (CVDs). However, the role of nicotine, the addictive component of all tobacco products, in the development of CVD is incompletely understood. Although increased public awareness of the harms of cigarette smoking has successfully led to a decline in its prevalence, the use of electronic cigarettes (e-cig) or electronic nicotine delivery system has increased dramatically in recent years because of the perception that these products are safe. This review summarizes our current knowledge of the expression and function of the nicotinic acetylcholine receptors in the cardiovascular system and the impact of nicotine exposure on cardiovascular health, with a focus on nicotine-induced vascular dysfunction. Nicotine alters vasoreactivity through endothelium-dependent and/or endothelium-independent mechanisms, leading to clinical manifestations in both cigarette smokers and e-cig users. In addition, nicotine induces vascular remodelling through its effects on proliferation, migration and matrix production of both vascular endothelial and vascular smooth muscle cells. The purpose of this review is to identify critical knowledge gaps regarding the effects of nicotine on the vasculature and to stimulate continued nicotine research.
Collapse
Affiliation(s)
- Anna K. Whitehead
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| | - Abigail P. Erwin
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| | - Xinping Yue
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| |
Collapse
|
5
|
van der Horst J, Manville RW, Hayes K, Thomsen MB, Abbott GW, Jepps TA. Acetaminophen (Paracetamol) Metabolites Induce Vasodilation and Hypotension by Activating Kv7 Potassium Channels Directly and Indirectly. Arterioscler Thromb Vasc Biol 2020; 40:1207-1219. [PMID: 32188278 DOI: 10.1161/atvbaha.120.313997] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Intravenous acetaminophen/paracetamol (APAP) is well documented to cause hypotension. Since the patients receiving intravenous APAP are usually critically ill, any severe hemodynamic changes, as with those associated with APAP, can be life-threatening. The mechanism underlying this dangerous iatrogenic effect of APAP was unknown. Approach and Results: Here, we show that intravenous APAP caused transient hypotension in rats, which was attenuated by the Kv7 channel blocker, linopirdine. APAP metabolite N-acetyl-p-benzoquinone imine caused vasodilatation of rat mesenteric arteries ex vivo. This vasodilatation was sensitive to linopirdine and also the calcitonin gene-related peptide antagonist, BIBN 4096. Further investigation revealed N-acetyl-p-benzoquinone imine stimulates calcitonin gene-related peptide release from perivascular nerves, causing a cAMP-dependent activation of Kv7 channels. We also show that N-acetyl-p-benzoquinone imine enhances Kv7.4 and Kv7.5 channels overexpressed in oocytes, suggesting that it can activate Kv7.4 and Kv7.5 channels directly, to elicit vasodilatation. CONCLUSIONS Direct and indirect activation of Kv7 channels by the APAP metabolite N-acetyl-p-benzoquinone imine decreases arterial tone, which can lead to a drop in blood pressure. Our findings provide a molecular mechanism and potential preventive intervention for the clinical phenomenon of intravenous APAP-dependent transient hypotension.
Collapse
Affiliation(s)
- Jennifer van der Horst
- From the Vascular Biology Group, Department of Biomedical Science (J.v.d.H., K.H., T.A.J.), University of Copenhagen, Denmark
| | - Rian W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine (R.W.M., G.W.A.)
| | - Katie Hayes
- From the Vascular Biology Group, Department of Biomedical Science (J.v.d.H., K.H., T.A.J.), University of Copenhagen, Denmark
| | - Morten B Thomsen
- Cardiac Electrophysiology Group, Department of Biomedical Science (M.B.T.), University of Copenhagen, Denmark
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine (R.W.M., G.W.A.)
| | - Thomas A Jepps
- From the Vascular Biology Group, Department of Biomedical Science (J.v.d.H., K.H., T.A.J.), University of Copenhagen, Denmark
| |
Collapse
|
6
|
Abstract
Perivascular adipose tissue (PVAT) refers to the local aggregate of adipose tissue surrounding the vascular tree, exhibiting phenotypes from white to brown and beige adipocytes. Although PVAT has long been regarded as simply a structural unit providing mechanical support to vasculature, it is now gaining reputation as an integral endocrine/paracrine component, in addition to the well-established modulator endothelium, in regulating vascular tone. Since the discovery of anti-contractile effect of PVAT in 1991, the use of multiple rodent models of reduced amounts of PVAT has revealed its regulatory role in vascular remodeling and cardiovascular implications, including atherosclerosis. PVAT does not only release PVAT-derived relaxing factors (PVRFs) to activate multiple subsets of endothelial and vascular smooth muscle potassium channels and anti-inflammatory signals in the vasculature, but it does also provide an interface for neuron-adipocyte interactions in the vascular wall to regulate arterial vascular tone. In this review, we outline our current understanding towards PVAT and attempt to provide hints about future studies that can sharpen the therapeutic potential of PVAT against cardiovascular diseases and their complications.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hamidah Abu Bakar
- Health Sciences Department, Universiti Selangor, 40000, Shah Alam, Selangor, Malaysia
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC)-a joint cooperation between the Charité-University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
- Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
7
|
Guo H, Tian L, Zhang JZ, Kitani T, Paik DT, Lee WH, Wu JC. Single-Cell RNA Sequencing of Human Embryonic Stem Cell Differentiation Delineates Adverse Effects of Nicotine on Embryonic Development. Stem Cell Reports 2019; 12:772-786. [PMID: 30827876 PMCID: PMC6449785 DOI: 10.1016/j.stemcr.2019.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Nicotine, the main chemical constituent of tobacco, is highly detrimental to the developing fetus by increasing the risk of gestational complications and organ disorders. The effects of nicotine on human embryonic development and related mechanisms, however, remain poorly understood. Here, we performed single-cell RNA sequencing (scRNA-seq) of human embryonic stem cell (hESC)-derived embryoid body (EB) in the presence or absence of nicotine. Nicotine-induced lineage-specific responses and dysregulated cell-to-cell communication in EBs, shedding light on the adverse effects of nicotine on human embryonic development. In addition, nicotine reduced cell viability, increased reactive oxygen species (ROS), and altered cell cycling in EBs. Abnormal Ca2+ signaling was found in muscle cells upon nicotine exposure, as verified in hESC-derived cardiomyocytes. Consequently, our scRNA-seq data suggest direct adverse effects of nicotine on hESC differentiation at the single-cell level and offer a new method for evaluating drug and environmental toxicity on human embryonic development in utero.
Collapse
Affiliation(s)
- Hongchao Guo
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lei Tian
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joe Z Zhang
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomoya Kitani
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David T Paik
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Søndergaard AM, Overgaard CB, Mazur A, Postnov DD, Matchkov VV, Aalkjaer C. Rat mesenteric small artery neurogenic dilatation is predominantly mediated by β 1 -adrenoceptors in vivo. J Physiol 2019; 597:1819-1831. [PMID: 30693527 DOI: 10.1113/jp277368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/23/2019] [Indexed: 01/19/2023] Open
Abstract
KEY POINTS The prevailing dogma about neurogenic regulation of vascular tone consists of major vasodilatation caused by CGRP (and possibly substance P) released from sensory-motor nerves and vasoconstriction caused by noradrenaline, ATP and neuropeptode Y release from sympathetic nerves. Most studies on perivascular nerve-mediated vasodilatation are made in vitro. In the present study, we provide evidence indicating that in vivo electrical perivascular nerve stimulation in rat mesenteric small arteries causes a large β1-adrenoceptor-mediated vasodilatation, which contrasts with a smaller vasodilatation caused by endogenous CGRP that is only visible after inhibition of Y1 NPY receptors. ABSTRACT Mesenteric arteries are densely innervated and the nerves are important regulators of vascular tone and hence blood pressure and blood flow. Perivascular sensory-motor nerves have been shown to cause vasodilatation in vitro. However, less is known about their function in vivo. Male Wistar rats (10-12 weeks old; n = 72) were anaesthetized with ketamine (3 mg kg-1 ) and xylazine (0.75 mg kg-1 ) or pentobarbital (60 mg kg-1 ). After a laparotomy, a section of second-order mesenteric artery was visualized in an organ bath after minimal removal of perivascular adipose tissue. The effects of electrical field stimulation (EFS) and drugs on artery diameter and blood flow were recorded with intravital microscopy and laser speckle imaging. EFS caused vasodilatation in arteries constricted with 1 μm U46619 in the presence of 140 μm suramin and 1 μm prazosin. The vasodilatation was inhibited by 1 μm tetrodotoxin and 5 μm guanethidine, although not by the 1 μm of the CGRP receptor antagonist BIBN4096bs. In the presence of 0.3 μm Y1 receptor antagonist BIBP3226, BIBN4096bs partly inhibited the vasodilatation. Atenolol at a concentration 1 μm inhibited the vasodilatation, whereas 0.1 μm of the β2 -adrenoceptor selective antagonist ICI-118,551 had no effect. Increasing the extracellular [K+ ] to 20 mm caused vasodilatation but was converted to vasoconstriction in the presence of 1 μm BIBN4096bs, and constriction to 30 mm potassium was potentiated by BIBN4096bs. Atenolol but not BIBN4096bs increased contraction to EFS in the absence of suramin and prazosin. In mesenteric small arteries of anaesthetized rats, EFS failed to stimulate major dilatation via sensory-motor nerves but induced sympathetic β1 -adrenoceptor-mediated dilatation.
Collapse
Affiliation(s)
| | | | - Aleksandra Mazur
- Department of Biomedicine, Membranes, University of Aarhus, Aarhus, Denmark
| | - Dmitry D Postnov
- Department of Biomedical Sciences, University of Copenhagen, Denmark.,Neurophotonics Center, Boston University, Boston, MA, USA
| | | | - Christian Aalkjaer
- Department of Biomedicine, Membranes, University of Aarhus, Aarhus, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
9
|
Aekthammarat D, Pannangpetch P, Tangsucharit P. Moringa oleifera leaf extract lowers high blood pressure by alleviating vascular dysfunction and decreasing oxidative stress in L-NAME hypertensive rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:9-16. [PMID: 30668387 DOI: 10.1016/j.phymed.2018.10.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Enhancing relaxation of resistance arteries and decreasing oxidative stress by using natural products are potential strategies for prevention and treatment of hypertension. PURPOSE This study investigated whether aqueous extract of Moringa oleifera leaves (MOE) could alleviate Nω-nitro-L-arginine-methyl ester (L-NAME)-induced high blood pressure via modulation of vascular function and antioxidant properties. METHODS An experimental hypertensive model was established by administration of L-NAME (50 mg/kg/day) in drinking water to male Wistar rats for 3 weeks. Arterial pressure was measured indirectly by tail-cuff plethysmography and directly via femoral artery catheterization. Vasoreactivity of isolated rat mesenteric arterial bed was determined by the changes in perfusion pressure detected by a pressure transducer. Vascular superoxide anion (O2•-) production was determined by lucigenin-enhanced chemiluminescence. Other biochemical measurements including malondialdehyde (MDA) level, superoxide dismutase (SOD), and catalase (CAT) activities were measured by colorimetric assay. RESULTS L-NAME-treated rats developed significantly increased blood pressure and heart rate. Concurrent oral treatment with MOE (30 and 60 mg/kg/day) could decrease the high blood pressure and tachycardia in a dose-dependent manner. MOE reduced the impairment of acetylcholine-induced relaxation and decreased the hyperreactivity of adrenergic-mediated contraction in response to periarterial nerve stimulation and phenylephrine in isolated mesenteric arterial beds. In addition, MOE exhibited antioxidant effects in the hypertensive rats, as indicated by suppression of vascular O2•- production, decrease of plasma and thoracic aorta MDA levels, and increase of antioxidant activities of SOD and CAT. Moreover, MOE (0.001-0.3 mg) produced a dose-dependent relaxation in methoxamine pre-contracted arterial beds isolated from L-NAME hypertensive rats, which was abolished by endothelium denudation. CONCLUSION These findings suggest that the antihypertensive effect of MOE in L-NAME-hypertensive rats may be mediated by alleviating vascular dysfunction and oxidative stress and promoting endothelium-dependent vasorelaxation. MOE may be potentially useful as a natural product against hypertension.
Collapse
Affiliation(s)
- Direk Aekthammarat
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patchareewan Pannangpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Panot Tangsucharit
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cardiovascular Research Group, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
10
|
Heteroreceptors Modulating CGRP Release at Neurovascular Junction: Potential Therapeutic Implications on Some Vascular-Related Diseases. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2056786. [PMID: 28116293 PMCID: PMC5223010 DOI: 10.1155/2016/2056786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/12/2016] [Accepted: 11/27/2016] [Indexed: 01/23/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino-acid neuropeptide belonging to the calcitonin gene peptide superfamily. CGRP is a potent vasodilator with potential therapeutic usefulness for treating vascular-related disease. This peptide is primarily located on C- and Aδ-fibers, which have extensive perivascular presence and a dual sensory-efferent function. Although CGRP has two major isoforms (α-CGRP and β-CGRP), the α-CGRP is the isoform related to vascular actions. Release of CGRP from afferent perivascular nerve terminals has been shown to result in vasodilatation, an effect mediated by at least one receptor (the CGRP receptor). This receptor is an atypical G-protein coupled receptor (GPCR) composed of three functional proteins: (i) the calcitonin receptor-like receptor (CRLR; a seven-transmembrane protein), (ii) the activity-modifying protein type 1 (RAMP1), and (iii) a receptor component protein (RCP). Although under physiological conditions, CGRP seems not to play an important role in vascular tone regulation, this peptide has been strongly related as a key player in migraine and other vascular-related disorders (e.g., hypertension and preeclampsia). The present review aims at providing an overview on the role of sensory fibers and CGRP release on the modulation of vascular tone.
Collapse
|
11
|
Zhang MJ, Liu Y, Hu ZC, Zhou Y, Pi Y, Guo L, Wang X, Chen X, Li JC, Zhang LL. TRPV1 attenuates intracranial arteriole remodeling through inhibiting VSMC phenotypic modulation in hypertension. Histochem Cell Biol 2016; 147:511-521. [DOI: 10.1007/s00418-016-1512-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 01/11/2023]
|
12
|
Takatori S, Hirai K, Ozaki S, Tangsucharit P, Fukushima-Miyashita S, Goda M, Hashikawa-Hobara N, Ono N, Kawasaki H. Protons modulate perivascular axo-axonal neurotransmission in the rat mesenteric artery. Br J Pharmacol 2015; 171:5743-56. [PMID: 25117291 DOI: 10.1111/bph.12878] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 07/07/2014] [Accepted: 08/01/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Previous studies have demonstrated that nicotine releases protons from adrenergic nerves via stimulation of nicotinic ACh receptors and activates transient receptor potential vanilloid-1 (TRPV1) receptors located on calcitonin gene-related peptide (CGRP)-containing (CGRPergic) vasodilator nerves, resulting in vasodilatation. The present study investigated whether perivascular nerves release protons, which modulate axon-axonal neurotransmission. EXPERIMENT APPROACH Perfusion pressure and pH levels of perfusate in rat-perfused mesenteric vascular beds without endothelium were measured with a pressure transducer and a pH meter respectively. KEY RESULTS Periarterial nerve stimulation (PNS) initially induced vasoconstriction, which was followed by long-lasting vasodilatation and decreased pH levels in the perfusate. Cold-storage denervation of the preparation abolished the decreased pH and vascular responses to PNS. The adrenergic neuron blocker guanethidine inhibited PNS-induced vasoconstriction and effects on pH, but not PNS-induced vasodilatation. Capsaicin (CGRP depletor), capsazepine and ruthenium red (TRPV1 inhibitors) attenuated the PNS-induced decrease in pH and vasodilatation. In denuded preparations, ACh caused long-lasting vasodilatation and lowered pH; these effects were inhibited by capsaicin pretreatment and atropine, but not by guanethidine or mecamylamine. Capsaicin injection induced vasodilatation and a reduction in pH, which were abolished by ruthenium red. The use of a fluorescent pH indicator demonstrated that application of nicotine, ACh and capsaicin outside small mesenteric arteries reduced perivascular pH levels and these effects were abolished in a Ca(2+) -free medium. CONCLUSION AND IMPLICATION These results suggest that protons are released from perivascular adrenergic and CGRPergic nerves upon PNS and these protons modulate transmission in CGRPergic nerves.
Collapse
Affiliation(s)
- Shingo Takatori
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan; Department of Clinical Pharmaceutical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Takatori S, Fujiwara H, Hagimori K, Hashikawa-Hobara N, Yokomizo A, Takayama F, Tangsucharit P, Ono N, Kawasaki H. Nicotine facilitates reinnervation of phenol-injured perivascular adrenergic nerves in the rat mesenteric resistance artery. Eur J Pharmacol 2015; 748:1-9. [DOI: 10.1016/j.ejphar.2014.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 01/19/2023]
|
14
|
Su KH, Lin SJ, Wei J, Lee KI, Zhao JF, Shyue SK, Lee TS. The essential role of transient receptor potential vanilloid 1 in simvastatin-induced activation of endothelial nitric oxide synthase and angiogenesis. Acta Physiol (Oxf) 2014; 212:191-204. [PMID: 25183024 DOI: 10.1111/apha.12378] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/26/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
AIMS We investigated the role of transient receptor potential vanilloid receptor type 1 (TRPV1) in simvastatin-mediated activation of endothelial nitric oxide synthase (eNOS) and angiogenesis. METHODS Fluo-8 NW assay was for Ca(2+) detection; Griess's assay was for NO bioavailability; Western blotting and immunoprecipitation were for protein phosphorylation and interaction; tube formation and Matrigel plug assay were for angiogenesis. RESULTS In endothelial cells (ECs), treatment with simvastatin time-dependently increased intracellular level of Ca(2+). Pharmacological inhibition or genetic disruption of TRPV1 abrogated simvastatin-mediated elevation of intracellular Ca(2+) in ECs or TRPV1-transfected HEK293 cells. Loss of TRPV1 function abolished simvastatin-induced NO production and phosphorylation of eNOS and calmodulin protein kinase II (CaMKII) in ECs and in aortas of mice. Inhibition of TRPV1 activation prevented the simvastatin-elicited increase in the formation of TRPV1-Akt-CaMKII-AMPK-eNOS complex. In mice, Matrigel plug assay showed that simvastatin-evoked angiogenesis was abolished by TRPV1 antagonist and genetic ablation of TRPV1. Additionally, our results demonstrated that TRP ankyrin 1 (TRPA1) is the downstream effector in the simvastatin-activated TRPV1-Ca(2+) signalling and in the consequent NO production and angiogenesis as evidence by that re-expression of TRPA1 further augmented simvastatin-elicited Ca(2+) influx in TRPV1-expressed HEK293 cells and ablation of TRPA1 function profoundly inhibited the simvastatin-induced increase in the phosphorylation of eNOS and CaMKII, formation of TRPV1-Akt-CaMKII-AMPK-eNOS complex, NO bioavailability, tube formation and angiogenesis in ECs or mice. CONCLUSION Simvastatin-induced Ca(2+) influx may through the activation of TRPV1-TRPA1 signalling, which leads to phosphorylation of CaMKII, increases in the formation of TRPV1-CaMKII-AMPK-eNOS complex, eNOS activation, NO production and, ultimately, angiogenesis in ECs.
Collapse
Affiliation(s)
- K.-H. Su
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - S.-J. Lin
- Department of Internal Medicine; Taipei Veterans General Hospital; Taipei Taiwan
| | - J. Wei
- Heart Center; Cheng-Hsin General Hospital; Taipei Taiwan
| | - K.-I. Lee
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - J.-F. Zhao
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - S.-K. Shyue
- Cardiovascular Division; Institute of Biomedical Sciences; Academia Sinica; Taipei Taiwan
| | - T.-S. Lee
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
15
|
Shelukhina I, Paddenberg R, Kummer W, Tsetlin V. Functional expression and axonal transport of α7 nAChRs by peptidergic nociceptors of rat dorsal root ganglion. Brain Struct Funct 2014; 220:1885-99. [PMID: 24706047 DOI: 10.1007/s00429-014-0762-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/19/2014] [Indexed: 11/28/2022]
Abstract
In recent pain studies on animal models, α7 nicotinic acetylcholine receptor (nAChR) agonists demonstrated analgesic, anti-hyperalgesic and anti-inflammatory effects, apparently acting through some peripheral receptors. Assuming possible involvement of α7 nAChRs on nociceptive sensory neurons, we investigated the morphological and neurochemical features of the α7 nAChR-expressing subpopulation of dorsal root ganglion (DRG) neurons and their ability to transport α7 nAChR axonally. In addition, α7 receptor activity and its putative role in pain signal neurotransmitter release were studied. Medium-sized α7 nAChR-expressing neurons prevailed, although the range covered all cell sizes. These cells accounted for one-fifth of total medium and large DRG neurons and <5% of small ones. 83.2% of α7 nAChR-expressing DRG neurons were peptidergic nociceptors (CGRP-immunopositive), one half of which had non-myelinated C-fibers and the other half had myelinated Aδ- and likely Aα/β-fibers, whereas 15.2% were non-peptidergic C-fiber nociceptors binding isolectin B4. All non-peptidergic and a third of peptidergic α7 nAChR-bearing nociceptors expressed TRPV1, a capsaicin-sensitive noxious stimulus transducer. Nerve crush experiments demonstrated that CGRPergic DRG nociceptors axonally transported α7 nAChRs both to the spinal cord and periphery. α7 nAChRs in DRG neurons were functional as their specific agonist PNU282987 evoked calcium rise enhanced by α7-selective positive allosteric modulator PNU120596. However, α7 nAChRs do not modulate neurotransmitter CGRP and glutamate release from DRG neurons since nicotinic ligands affected neither their basal nor provoked levels, showing the necessity of further studies to elucidate the true role of α7 nAChRs in those neurons.
Collapse
Affiliation(s)
- Irina Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia,
| | | | | | | |
Collapse
|
16
|
Westcott EB, Segal SS. Perivascular innervation: a multiplicity of roles in vasomotor control and myoendothelial signaling. Microcirculation 2013; 20:217-38. [PMID: 23289720 DOI: 10.1111/micc.12035] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/25/2012] [Indexed: 12/30/2022]
Abstract
The control of vascular resistance and tissue perfusion reflect coordinated changes in the diameter of feed arteries and the arteriolar networks they supply. Against a background of myogenic tone and metabolic demand, vasoactive signals originating from perivascular sympathetic and sensory nerves are integrated with endothelium-derived signals to produce vasodilation or vasoconstriction. PVNs release adrenergic, cholinergic, peptidergic, purinergic, and nitrergic neurotransmitters that lead to SMC contraction or relaxation via their actions on SMCs, ECs, or other PVNs. ECs release autacoids that can have opposing actions on SMCs. Respective cell layers are connected directly to each other through GJs at discrete sites via MEJs projecting through holes in the IEL. Whereas studies of intercellular communication in the vascular wall have centered on endothelium-derived signals that govern SMC relaxation, attention has increasingly focused on signaling from SMCs to ECs. Thus, via MEJs, neurotransmission from PVNs can evoke distinct responses from ECs subsequent to acting on SMCs. To integrate this emerging area of investigation in light of vasomotor control, the present review synthesizes current understanding of signaling events that originate within SMCs in response to perivascular neurotransmission in light of EC feedback. Although often ignored in studies of the resistance vasculature, PVNs are integral to blood flow control and can provide a physiological stimulus for myoendothelial communication. Greater understanding of these underlying signaling events and how they may be affected by aging and disease will provide new approaches for selective therapeutic interventions.
Collapse
Affiliation(s)
- Erika B Westcott
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212, USA
| | | |
Collapse
|
17
|
Persson PB, Bondke Persson A. Nitric oxide: a classic revisited. Acta Physiol (Oxf) 2013; 207:427-9. [PMID: 23384421 DOI: 10.1111/apha.12052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Kaßmann M, Harteneck C, Zhu Z, Nürnberg B, Tepel M, Gollasch M. Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney. Acta Physiol (Oxf) 2013; 207:546-64. [PMID: 23253200 DOI: 10.1111/apha.12051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/15/2012] [Accepted: 12/11/2012] [Indexed: 12/13/2022]
Abstract
Recent preclinical data indicate that activators of transient receptor potential channels of the vanilloid receptor subtype 1 (TRPV1) may improve the outcome of ischaemic acute kidney injury (AKI). The underlying mechanisms are unclear, but may involve TRPV1 channels in dorsal root ganglion neurones that innervate the kidney. Recent data identified TRPV4, together with TRPV1, to serve as major calcium influx channels in endothelial cells. In these cells, gating of individual TRPV4 channels within a four-channel cluster provides elementary calcium influx (calcium sparklets) to open calcium-activated potassium channels and promote vasodilation. The TRPV receptors can also form heteromers that exhibit unique conductance and gating properties, further increasing their spatio-functional diversity. This review summarizes data on electrophysiological properties of TRPV1/4 and their modulation by endogenous channel agonists such as 20-HETE, phospholipase C and phosphatidylinositide 3-kinase (PI3 kinase). We review important roles of TRPV1 and TRPV4 in kidney physiology and renal ischaemia reperfusion injury; further studies are warranted to address renoprotective mechanism of vanilloid receptors in ischaemic AKI including the role of the capsaicin receptor TRPV1 in primary sensory nerves and/or endothelium. Particular attention should be paid to understand the kidneys' ability to respond to ischaemic stimuli after catheter-based renal denervation therapy in man, whereas the discovery of novel pharmacological TRPV modulators may be a successful strategy for better treatment of acute or chronic kidney failure.
Collapse
Affiliation(s)
- M. Kaßmann
- Charité University Medicine, Section Nephrology/Intensive Care, Campus Virchow, and Experimental and Clinical Research Center (ECRC); Berlin; Germany
| | - C. Harteneck
- Institut für Experimentelle & Klinische Pharmakologie & Toxikologie and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research (ICePhA); Eberhard-Karls-Universität; Tübingen; Germany
| | - Z. Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases; Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension; Chongqing; China
| | - B. Nürnberg
- Institut für Experimentelle & Klinische Pharmakologie & Toxikologie and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research (ICePhA); Eberhard-Karls-Universität; Tübingen; Germany
| | - M. Tepel
- Department of Nephrology, and University of Southern Denmark, Institute of Molecular Medicine, Cardiovascular and Renal Research, Institute of Clinical Research; Odense University Hospital; Odense; Denmark
| | - M. Gollasch
- Charité University Medicine, Section Nephrology/Intensive Care, Campus Virchow, and Experimental and Clinical Research Center (ECRC); Berlin; Germany
| |
Collapse
|
19
|
Tangsucharit P, Takatori S, Sun P, Zamami Y, Goda M, Pakdeechote P, Takayama F, Kawasaki H. Do cholinergic nerves innervating rat mesenteric arteries regulate vascular tone? Am J Physiol Regul Integr Comp Physiol 2012; 303:R1147-56. [PMID: 23054174 DOI: 10.1152/ajpregu.00317.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Vascular blood vessels have various types of cholinergic acetylcholine receptors (AChR), but the source of ACh has not been confirmed. Perivascular adrenergic nerves and nonadrenergic calcitonin gene-related peptide (CGRP)-containing (CGRPergic) nerves innervate rat mesenteric arteries and regulate vascular tone. However, function of cholinergic innervation remains unknown. The present study investigated cholinergic innervation by examining effects of cholinesterase inhibitor (neostigmine), a muscarinic AChR antagonist (atropine), and a nicotinic AChR antagonist (hexamethonium) on adrenergic nerve-mediated vasoconstriction and CGRPergic nerve-mediated vasodilation in rat mesenteric vascular beds without endothelium. In preparations treated with capsaicin (CGRP depletor) or in the presence of N(ω)-nitro-l-arginine methyl ester (nonselective nitric oxide synthase inhibitor), perivascular nerve stimulation (PNS; 2-12 Hz) evoked a frequency-dependent vasoconstriction. In the same preparations, exogenous norepinephrine induced a concentration-dependent vasoconstriction. Atropine, hexamethonium, and neostigmine had no effect on vasoconstrictor responses to PNS and norepinephrine injections. In denuded preparations, these cholinergic agents did not affect the PNS (12 Hz)-evoked release of norepinephrine in perfusate. In preconstricted preparations without endothelium in the presence of guanethidine (adrenergic neuron blocker), PNS (1-4 Hz) induced a frequency-dependent vasodilation, which was not affected by atropine, hexamethonium, and neostigmine. In denuded preparations treated with capsaicin and guanethidine, PNS did not induce vascular responses, and atropine, neostigmine, and physostigmine had no effect on PNS. Immunohistochemistry study showed choline acetyltransferase-immunopositive fibers, which were resistant to capsaicin and 6-hydroxydopamine (adrenergic toxin). These results suggest that rat mesenteric arteries have cholinergic innervation, which is different from adrenergic and capsaicin-sensitive nerves and not associated with vascular tone regulation.
Collapse
Affiliation(s)
- Panot Tangsucharit
- Dept. of Clinical Pharmaceutical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama Univ., 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Donoso MV, Hermosilla D, Navarrete C, Álvarez P, Lillo JG, Huidobro-Toro JP. Reciprocal sympatho-sensory control: functional role of nucleotides and calcitonin gene-related peptide in a peripheral neuroeffector junction. Neuroscience 2011; 203:216-29. [PMID: 22178987 DOI: 10.1016/j.neuroscience.2011.11.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/25/2011] [Accepted: 11/28/2011] [Indexed: 11/24/2022]
Abstract
The rat vas deferens has scattered sensory afferens plus a dense network of sympathetic motor efferens; these fibers are not known to interact functionally. We ascertained whether sensory fibers modulate the release of sympathetic transmitters through the release of calcitonin gene-related peptide (CGRP) and reciprocally assessed whether sympathetic transmitters modulate the overflow of ir-CGRP from sensory fibers. The tissue overflow of electrically evoked sympathetic co-transmitters (ATP/metabolites, noradrenaline (NA), and immunoreactive neuropeptide tyrosine (ir-NPY)) and the motor responses elicited were quantified following either exogenous CGRP or capsaicin application to elicit peptide release. Conversely, the outflow of ir-CGRP was examined in the presence of sympathetic transmitters. Exogenous CGRP reduced in a concentration-dependent manner the electrically evoked outflow of ATP/metabolites, NA, and ir-NPY with EC(50) values of 1.3, 0.18, and 1.9 nM, respectively. CGRP also reduced the basal NA overflow. The CGRP-evoked modulation was blocked by CGRP8-37 or H-89. Release of endogenous CGRP by capsaicin significantly reduced the basal overflow of NA, ir-NPY, and the electrically evoked sympathetic transmitter release. ADP, 2-methylthioadenosine-5'-O-diphosphate (2-MeSADP), or UTP decreased the electrically evoked ir-CGRP overflow, whereas clonidine, α,β-methyleneadenosine 5'-triphosphate (α,β-mATP), or adenosine (ADO) were inactive. CGRP acting postjunctionally also reduced the motor responses elicited by exogenous NA, ATP, or electrically evoked contractions. We conclude that CGRP exerts a presynaptic modulator role on sympathetic nerve endings and reciprocally ATP or related nucleotides influence the release of ir-CGRP from sensory fibers, highlighting a dynamic sympatho-sensory control between sensory fibers and sympathetic nerve ending. Postjunctional CGRP receptors further contribute to reduce the tissue sympathetic motor tone implying a pre and postjunctional role of CGRP as a sympathetic tone modulator.
Collapse
Affiliation(s)
- M V Donoso
- Departamento de Fisiología, Laboratorio de Nucleótidos, Centro de Envejecimiento y Regeneración CARE, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|