1
|
Xylaki M, Boumpoureka I, Kokotou MG, Marras T, Papadimitriou G, Kloukina I, Magrioti V, Kokotos G, Vekrellis K, Emmanouilidou E. Changes in the cellular fatty acid profile drive the proteasomal degradation of α-synuclein and enhance neuronal survival. FASEB J 2020; 34:15123-15145. [PMID: 32931072 DOI: 10.1096/fj.202001344r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 01/04/2023]
Abstract
Parkinson's disease is biochemically characterized by the deposition of aberrant aggregated α-synuclein in the affected neurons. The aggregation properties of α-synuclein greatly depend on its affinity to bind cellular membranes via a dynamic interaction with specific lipid moieties. In particular, α-synuclein can interact with arachidonic acid (AA), a polyunsaturated fatty acid, in a manner that promotes the formation of α-helix enriched assemblies. In a cellular context, AA is released from membrane phospholipids by phospholipase A2 (PLA2 ). To investigate the impact of PLA2 activity on α-synuclein aggregation, we have applied selective PLA2 inhibitors to a SH-SY5Y cellular model where the expression of human wild-type α-synuclein is correlated with a gradual accumulation of soluble oligomers and subsequent cell death. We have found that pharmacological and genetic inhibition of GIVA cPLA2 resulted in a dramatic decrease of intracellular oligomeric and monomeric α-synuclein significantly promoting cell survival. Our data suggest that alterations in the levels of free fatty acids, and especially AA and adrenic acid, promote the formation of α-synuclein conformers which are more susceptible to proteasomal degradation. This mechanism is active only in living cells and is generic since it does not depend on the absolute quantity of α-synuclein, the presence of disease-linked point mutations, the expression system or the type of cells. Our findings indicate that the α-synuclein-fatty acid interaction can be a critical determinant of the conformation and fate of α-synuclein in the cell interior and, as such, cPLA2 inhibitors could serve to alleviate the intracellular, potentially pathological, α-synuclein burden.
Collapse
Affiliation(s)
- Mary Xylaki
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ioanna Boumpoureka
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maroula G Kokotou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Marras
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Papadimitriou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Ismini Kloukina
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelia Emmanouilidou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Thomas MH, Paris C, Magnien M, Colin J, Pelleïeux S, Coste F, Escanyé MC, Pillot T, Olivier JL. Dietary arachidonic acid increases deleterious effects of amyloid-β oligomers on learning abilities and expression of AMPA receptors: putative role of the ACSL4-cPLA 2 balance. ALZHEIMERS RESEARCH & THERAPY 2017; 9:69. [PMID: 28851448 PMCID: PMC5576249 DOI: 10.1186/s13195-017-0295-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 08/03/2017] [Indexed: 01/14/2023]
Abstract
Background Polyunsaturated fatty acids play a crucial role in neuronal function, and the modification of these compounds in the brain could have an impact on neurodegenerative diseases such as Alzheimer’s disease. Despite the fact that arachidonic acid is the second foremost polyunsaturated fatty acid besides docosahexaenoic acid, its role and the regulation of its transfer and mobilization in the brain are poorly known. Methods Two groups of 39 adult male BALB/c mice were fed with an arachidonic acid-enriched diet or an oleic acid-enriched diet, respectively, for 12 weeks. After 10 weeks on the diet, mice received intracerebroventricular injections of either NaCl solution or amyloid-β peptide (Aβ) oligomers. Y-maze and Morris water maze tests were used to evaluate short- and long-term memory. At 12 weeks on the diet, mice were killed, and blood, liver, and brain samples were collected for lipid and protein analyses. Results We found that the administration of an arachidonic acid-enriched diet for 12 weeks induced short-term memory impairment and increased deleterious effects of Aβ oligomers on learning abilities. These cognitive alterations were associated with modifications of expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, postsynaptic density protein 95, and glial fibrillary acidic protein in mouse cortex or hippocampus by the arachidonic acid-enriched diet and Aβ oligomer administration. This diet also led to an imbalance between the main ω-6 fatty acids and the ω-3 fatty acids in favor of the first one in erythrocytes and the liver as well as in the hippocampal and cortical brain structures. In the cortex, the dietary arachidonic acid also induced an increase of arachidonic acid-containing phospholipid species in phosphatidylserine class, whereas intracerebroventricular injections modified several arachidonic acid- and docosahexaenoic acid-containing species in the four phospholipid classes. Finally, we observed that dietary arachidonic acid decreased the expression of the neuronal form of acyl-coenzyme A synthetase 4 in the hippocampus and increased the cytosolic phospholipase A2 activation level in the cortices of the mice. Conclusions Dietary arachidonic acid could amplify Aβ oligomer neurotoxicity. Its consumption could constitute a risk factor for Alzheimer’s disease in humans and should be taken into account in future preventive strategies. Its deleterious effect on cognitive capacity could be linked to the balance between arachidonic acid-mobilizing enzymes. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0295-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mélanie H Thomas
- Research unit on Animals and Functionality of Animal Products (URAFPA), Lorraine University, EA 3998, USC INRA 0340, 2, Avenue de la Forêt de Haye, TSA40602, F-54518, Vandœuvre-lès-Nancy, France
| | - Cédric Paris
- Laboratory of Biomolecules Engineering (LIBio), Lorraine University, 2, Avenue de la Forêt de Haye, TSA40602, F-54518, Vandœuvre-lès-Nancy, France
| | - Mylène Magnien
- Research unit on Animals and Functionality of Animal Products (URAFPA), Lorraine University, EA 3998, USC INRA 0340, 2, Avenue de la Forêt de Haye, TSA40602, F-54518, Vandœuvre-lès-Nancy, France
| | - Julie Colin
- Research unit on Animals and Functionality of Animal Products (URAFPA), Lorraine University, EA 3998, USC INRA 0340, 2, Avenue de la Forêt de Haye, TSA40602, F-54518, Vandœuvre-lès-Nancy, France
| | - Sandra Pelleïeux
- Research unit on Animals and Functionality of Animal Products (URAFPA), Lorraine University, EA 3998, USC INRA 0340, 2, Avenue de la Forêt de Haye, TSA40602, F-54518, Vandœuvre-lès-Nancy, France.,Biochemistry Department, Central Hospital, University Hospitals of Nancy, 24, avenue du Mal de Lattre de Tassigny, CO n°34, F-54018, Nancy, France
| | - Florence Coste
- Research unit on Animals and Functionality of Animal Products (URAFPA), Lorraine University, EA 3998, USC INRA 0340, 2, Avenue de la Forêt de Haye, TSA40602, F-54518, Vandœuvre-lès-Nancy, France
| | - Marie-Christine Escanyé
- Biochemistry Department, Central Hospital, University Hospitals of Nancy, 24, avenue du Mal de Lattre de Tassigny, CO n°34, F-54018, Nancy, France
| | - Thierry Pillot
- Synaging SAS, 2, rue du Doyen Marcel Roubault, 54518, Vandoeuvre-les-Nancy, France
| | - Jean-Luc Olivier
- Research unit on Animals and Functionality of Animal Products (URAFPA), Lorraine University, EA 3998, USC INRA 0340, 2, Avenue de la Forêt de Haye, TSA40602, F-54518, Vandœuvre-lès-Nancy, France. .,Biochemistry Department, Central Hospital, University Hospitals of Nancy, 24, avenue du Mal de Lattre de Tassigny, CO n°34, F-54018, Nancy, France.
| |
Collapse
|
3
|
Valnoctamide, which reduces rat brain arachidonic acid turnover, is a potential non-teratogenic valproate substitute to treat bipolar disorder. Psychiatry Res 2017; 254:279-283. [PMID: 28500975 PMCID: PMC5524208 DOI: 10.1016/j.psychres.2017.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/11/2017] [Accepted: 04/22/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Valproic acid (VPA), used for treating bipolar disorder (BD), is teratogenic by inhibiting histone deacetylase. In unanaesthetized rats, chronic VPA, like other mood stabilizers, reduces arachidonic acid (AA) turnover in brain phospholipids, and inhibits AA activation to AA-CoA by recombinant acyl-CoA synthetase-4 (Acsl-4) in vitro. Valnoctamide (VCD), a non-teratogenic constitutional isomer of VPA amide, reported effective in BD, also inhibits recombinant Acsl-4 in vitro. HYPOTHESIS VCD like VPA will reduce brain AA turnover in unanaesthetized rats. METHODS A therapeutically relevant (50mg/kg i.p.) dose of VCD or vehicle was administered daily for 30 days to male rats. AA turnover and related parameters were determined using our kinetic model, following intravenous [1-14C]AA in unanaesthetized rats for 10min, and measuring labeled and unlabeled lipids in plasma and high-energy microwaved brain. RESULTS VCD, compared with vehicle, increased λ, the ratio of brain AA-CoA to unesterified plasma AA specific activities; and decreased turnover of AA in individual and total brain phospholipids. CONCLUSIONS VCD's ability like VPA to reduce rat brain AA turnover and inhibit recombinant Acsl-4, and its efficacy in BD, suggest that VCD be further considered as a non-teratogenic VPA substitute for treating BD.
Collapse
|
4
|
Brain uptake and metabolism of the endocannabinoid anandamide labeled in either the arachidonoyl or ethanolamine moiety. Nucl Med Biol 2017; 45:43-50. [DOI: 10.1016/j.nucmedbio.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022]
|
5
|
Malcher-Lopes R, Buzzi M. Glucocorticoid-regulated crosstalk between arachidonic acid and endocannabinoid biochemical pathways coordinates cognitive-, neuroimmune-, and energy homeostasis-related adaptations to stress. VITAMINS AND HORMONES 2009; 81:263-313. [PMID: 19647116 DOI: 10.1016/s0083-6729(09)81011-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Arachidonic acid and its derivatives constitute the major group of signaling molecules involved in the innate immune response and its communication with all cellular and systemic aspects involved on homeostasis maintenance. Glucocorticoids spread throughout the organism their influences over key enzymatic steps of the arachidonic acid biochemical pathways, leading, in the central nervous system, to a shift favoring the synthesis of anti-inflammatory endocannabinoids over proinflammatory metabolites, such as prostaglandins. This shift modifies local immune-inflammatory response and neuronal activity to ultimately coordinate cognitive, behavioral, neuroendocrine, neuroimmune, physiological, and metabolic adjustments to basal and stress conditions. In the hypothalamus, a reciprocal feedback between glucocorticoids and arachidonate-containing molecules provides a mechanism for homeostatic control. This neurochemical switch is susceptible to fine-tuning by neuropeptides, cytokines, and hormones, such as leptin and interleukin-1beta, assuring functional integration between energy homeostasis control and the immune/stress response.
Collapse
Affiliation(s)
- Renato Malcher-Lopes
- Laboratory of Mass Spectrometry, EMBRAPA-Center for Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | |
Collapse
|
6
|
Malcher-Lopes R, Franco A, Tasker JG. Glucocorticoids shift arachidonic acid metabolism toward endocannabinoid synthesis: a non-genomic anti-inflammatory switch. Eur J Pharmacol 2008; 583:322-39. [PMID: 18295199 DOI: 10.1016/j.ejphar.2007.12.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 12/12/2007] [Accepted: 12/16/2007] [Indexed: 11/24/2022]
Abstract
Glucocorticoids are capable of exerting both genomic and non-genomic actions in target cells of multiple tissues, including the brain, which trigger an array of electrophysiological, metabolic, secretory and inflammatory regulatory responses. Here, we have attempted to show how glucocorticoids may generate a rapid anti-inflammatory response by promoting arachidonic acid-containing endocannabinoids biosynthesis. According to our hypothesized model, non-genomic action of glucocorticoids results in the global shift of membrane lipid metabolism, subverting metabolic pathways toward the synthesis of the anti-inflammatory endocannabinoids, anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG), and away from arachidonic acid production. Post-transcriptional inhibition of cyclooxygenase-2 (COX(2)) synthesis by glucocorticoids assists this mechanism by suppressing the synthesis of pro-inflammatory prostaglandins as well as endocannabinoid-derived prostanoids. In the central nervous system (CNS) this may represent a major neuroprotective system, which may cross-talk with leptin signaling in the hypothalamus allowing for the coordination between energy homeostasis and the inflammatory response.
Collapse
|
7
|
Di Marzo V, De Petrocellis L, Bisogno T. The biosynthesis, fate and pharmacological properties of endocannabinoids. Handb Exp Pharmacol 2005:147-85. [PMID: 16596774 DOI: 10.1007/3-540-26573-2_5] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The finding of endogenous ligands for cannabinoid receptors, the endocannabinoids, opened a new era in cannabinoid research. It meant that the biological role of cannabinoid signalling could be finally studied by investigating not only the pharmacological actions subsequent to stimulation of cannabinoid receptors by their agonists, but also how the activity of these receptors was regulated under physiological and pathological conditions by varying levels of the endocannabinoids. This in turn meant that the enzymes catalysing endocannabinoid biosynthesis and inactivation had to be identified and characterized, and that selective inhibitors of these enzymes had to be developed to be used as (1) probes to confirm endocannabinoid involvement in health and disease, and (2) templates for the design of new therapeutic drugs. This chapter summarizes the progress achieved in this direction during the 12 years following the discovery of the first endocannabinoid.
Collapse
Affiliation(s)
- V Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, Comprensorio Olivetti, Fabbricato 70, 80078 Pozzuoli (Napoli), Italy.
| | | | | |
Collapse
|
8
|
Chapter 8 Molecular species of phospholipids during brain development. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0167-7306(02)35037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Farooqui AA, Horrocks LA. Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 2001; 7:232-45. [PMID: 11499402 DOI: 10.1177/107385840100700308] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasmalogens are unique glycerophospholipids because they have an enol ether double bond at the sn-1 position of the glycerol backbone. They are found in all mammalian tissues, with ethanolamine plasmalogens 10-fold higher than choline plasmalogens except in muscles. The enol ether double bond at the sn-1 position makes plasmalogens more susceptible to oxidative stress than the corresponding ester-bonded glycerophospholipids. Plasmalogens are not only structural membrane components and a reservoir for second messengers but may also be involved in membrane fusion, ion transport, and cholesterol efflux. Plasmalogens may also act as antioxidants, thus protecting cells from oxidative stress. Receptor-mediated degradation of plasmalogens by plasmalogen-selective phospholipase A2 results in the generation of arachidonic acid, eicosanoids, and platelet activating factor. Low levels of these metabolites have trophic effects, but at high concentration they are cytotoxic and may be involved in allergic response, inflammation, and trauma. Levels of plasmalogens are decreased in several neurological disorders including Alzheimer's disease, ischemia, and spinal cord trauma. This may be due to the stimulation of plasmalogen-selective phospholipase A2. A deficiency of plasmalogens in peroxisomal disorders and Niemann-Pick type C disease indicates that this deficiency may be due to the decreased activity of plasmalogen synthesizing enzymes that occur in peroxisomes.
Collapse
Affiliation(s)
- A A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus 43210-1218, USA
| | | |
Collapse
|
10
|
Farooqui AA, Horrocks LA. Plasmalogens, phospholipase A2, and docosahexaenoic acid turnover in brain tissue. J Mol Neurosci 2001; 16:263-72; discussion 279-84. [PMID: 11478381 DOI: 10.1385/jmn:16:2-3:263] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Plasmalogens are glycerophospholipids of neural membranes containing vinyl ether bonds. Their synthetic pathway is located in peroxisomes and endoplasmic reticulum. The rate-limiting enzymes are in the peroxisomes and are induced by docosahexaenoic acid (DHA). Plasmalogens often contain arachidonic acid (AA) or DHA at the sn-2 position of the glycerol moiety. The receptor-mediated hydrolysis of plasmalogens by cytosolic plasmalogen-selective phospholipase A2 generates AA or DHA and lysoplasmalogens. AA is metabolized to eicosanoids. The mechanism of signaling with DHA is not known. The plasmalogen-selective phospholipase A2 differs from other intracellular phospholipases A2 in molecular mass, kinetic properties, substrate specificity, and response to glycosaminoglycans, gangliosides, and sialoglycoproteins. A major portion of [3H]DHA incorporated into neural membranes is found at the sn-2 position of ethanolamine glycerophospholipids. Studies with a mutant cell line defective in plasmalogen biosynthesis indicate that the incorporation of DHA is reduced in this RAW 264.7 cell line by 50%. In contrast, the incorporation of AA remains unaffected. This is reversed completely when the growth medium is supplemented with sn-1-hexadecylglycerol, suggesting that DHA can be selectively targeted for incorporation into plasmalogens. We suggest that deficiencies of DHA and plasmalogens in peroxisomal disorders, Alzheimer's disease (AD), depression, and attention deficit hyperactivity disorders (ADHD) may be responsible for abnormal signal transduction associated with learning disability, cognitive deficit, and visual dysfunction. These abnormalities in the signal-transduction process can be partially corrected by supplementation with a diet enriched with DHA.
Collapse
Affiliation(s)
- A A Farooqui
- Department of Molecular and Cellular Biochemistry The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
11
|
Corrigan FM, Horrobin DF, Skinner ER, Besson JA, Cooper MB. Abnormal content of n-6 and n-3 long-chain unsaturated fatty acids in the phosphoglycerides and cholesterol esters of parahippocampal cortex from Alzheimer's disease patients and its relationship to acetyl CoA content. Int J Biochem Cell Biol 1998; 30:197-207. [PMID: 9608673 DOI: 10.1016/s1357-2725(97)00125-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The long-chain fatty acid composition of cholesterol esters, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI) from parahippocampal cortex of Alzheimer's disease (AD) patients and control subjects was examined. In general the PC fraction contained less polyunsaturated long-chain fatty acids than did PE, PS or PI. Of the n-6 polyunsaturated long-chain fatty acids, PI contained the greatest incorporation of these acids followed by PE. There were significant differences between controls and AD patients in total n-6 EFAs. Arachidonic acid (C20:4n-6) was the predominant fatty acid of this family found to be present. In AD, PE and PS showed a deficit of adrenic acid (C22:4n-6) content and PE also contained less arachidonic acid. In AD subjects, the cholesterol esters contained significantly less n-3 polyunsaturated fatty acids with, specifically, a reduction in alpha-linolenic acid. Acetyl CoA content of hippocampal cortex was greater in AD patients than in control subjects indicating either an increased extent of oxidative metabolism or a failure to utilise acetyl CoA for anabolic processes. Abnormal magnitude of oxidative processes could give rise to the biosynthesis of PE and PS species containing less n-6 polyunsaturated fatty acids than occurs in control subjects.
Collapse
|
12
|
Farooqui AA, Yang HC, Horrocks LA. Plasmalogens, phospholipases A2 and signal transduction. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1995; 21:152-61. [PMID: 8866672 DOI: 10.1016/0165-0173(95)00008-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several lines of evidence indicate that the breakdown of plasmalogens in neural membranes during neurodegenerative diseases is a receptor-mediated process catalyzed by a plasmalogen-selective phospholipase A2. This enzyme has recently been purified from bovine brain. It does not require Ca2+ and is localized in cytosol. It has a molecular mass of 39 kDa and is strongly inhibited by glycosaminoglycans, with the pattern of inhibition being heparan sulfate > hyaluronic acid > chondroitin sulfate > heparin. This plasmalogen-selective phospholipase A2 is also inhibited by gangliosides and sialoglycoproteins. Substrate specificity and the effects of metal ions, detergents and inhibitors suggest that this phospholipase A2 is different from the well-known 85 kDa Ca(2+)-dependent cytosolic phospholipase A2 that has recently been cloned and is not plasmalogen-selective. The plasmalogen-selective phospholipase A2 may be regulated by glycosaminoglycans and sialoglycoconjugates and may be involved in the regulation of K+ channels. This enzyme, which plays a major role in the release of fatty acids during ischemic injury and reperfusion, shows promise as a major target for drug therapy.
Collapse
Affiliation(s)
- A A Farooqui
- Neurovation Inc. and Department of Medical Biochemistry, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
13
|
Abstract
In this article we summarize a wide variety of properties of arachidonic acid (AA) in the mammalian nervous system especially in the brain. AA serves as a biologically-active signaling molecule as well as an important component of membrane lipids. Esterified AA is liberated from the membrane by phospholipase activity which is stimulated by various signals such as neurotransmitter-mediated rise in intracellular Ca2+. AA exerts many biological actions which include modulation of the activities of protein kinases and ion channels, inhibition of neurotransmitter uptake, and enhancement of synaptic transmission. AA serves also as a precursor of a variety of eicosanoids, which are formed by oxidative metabolism of AA. AA cascade is activated under several pathological conditions in the brain such as ischemia and seizures, and may be involved in irreversible tissue damage. On the other hand, AA can show beneficial influences on brain tissues and cells in several situations. In a recent study using cultured brain neurons, we have found that AA shows quite distinct actions at a narrow concentration range, such as induction of cell death, promotion of cell survival and enhancement of neurite extension. The neurotoxic action is mediated by free radicals generated by AA metabolism, whereas the neurotrophic actions are exerted by AA itself. The observed in vitro actions of AA might be related to important roles of AA in brain pathogenesis and neural development.
Collapse
Affiliation(s)
- H Katsuki
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | |
Collapse
|
14
|
Avellini L, Terracina L, Gaiti A. Linoleic acid passage through the blood-brain barrier and a possible effect of age. Neurochem Res 1994; 19:129-33. [PMID: 8183422 DOI: 10.1007/bf00966806] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It has already been established that the blood-brain barrier is readily crossed by unsaturated fatty acids, while saturated fatty acid transport appears to be protein mediated. When the passage of the fatty acids is tested in vivo by using perfusion buffers containing both linoleate and palmitate in different concentrations, linoleate is able to decrease the palmitate passage, while palmitate increases the linoleate passage. These results could be related to the effect of two fatty acids on the ratio between the fatty acids bound to the serum albumin and the free fatty acid pool, which is only available for transport through membranes. However, on the basis of some results obtained with aged rats, the possibility that a relationship may exist between palmitate and linoleate during their passage through the BBB is discussed. Moreover, it seems likely that in aged rats a moderate modification for fatty acids takes place in the BBB.
Collapse
Affiliation(s)
- L Avellini
- Istituto di Biochimica e Chimica Medica, Università di Perugia, Italy
| | | | | |
Collapse
|