1
|
Alizamini MM, Fattahi M, Sayehmiri F, Haghparast A, Liang J. Regulatory Role of PFC Corticotropin-Releasing Factor System in Stress-Associated Depression Disorders: A Systematic Review. Cell Mol Neurobiol 2023; 43:1785-1797. [PMID: 36227396 PMCID: PMC11412166 DOI: 10.1007/s10571-022-01289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
Abstract
Stress has a substantial role in formation of psychiatric disorders especially depression. Meanwhile, impairment of the prefrontal cortex (PFC) is connected to the executive and cognitive deficits induced by the stress. Given the involvement of the corticotropin-releasing factor (CRF) in stress-related processes and knowing the fact that PFC hosts a lot of CRF receptors and CRF neurotransmissions, it can worth to look at the CRF as a potential treatment for the regulation of depression disorders induced by stress within PFC region. Here, for the first time we aimed to systematically review the effectiveness of intra-PFC CRF system in the modulation of depression dysfunction caused by the stress in clinical and preclinical models/studies. Qualified researches were combined utilizing a comprehensive search of six databases including Scopus, Pubmed, Web of Science, Sciencedirect, APA PsycNet, and Embase in April 2021 and were evaluated through proper methodological quality assessment tools. Results indicate that PFC has a remarkable role in the modulation for stress-induced depression and intra-PFC CRF receptors agonist and antagonist are very considerable for regulating these types of impairments. Specifically, elevation of both CRF immunoreactivity and gene expression were observed in human studies. In the animal studies, mostly immunoreactivity or excitatory/inhibitory currents of CRF within the PFC regulated depression dysfunction. In conclusion, reviewed studies show a positive attitude toward the CRF system in regulation of the stress-induced depression; however, obviously further investigations are required to get closer to the best treatment. Prefrontal cortex corticotropin-releasing factor system regulates stress-induced depression. CRFR1, Corticotropin-releasing factor receptor of type1; PFC, Prefrontal cortex; Minus (-) and Plus (+) signs, dysregulation and upregulation, respectively.
Collapse
Affiliation(s)
- Mirmohammadali Mirramezani Alizamini
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Zip Code 100101, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mojdeh Fattahi
- Student Research Committee, Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box 19615-1178, Tehran, Iran.
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Zip Code 100101, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Mwobobia RM, Kanui TI, Abelson KSP. The effects of clonidine and yohimbine in the tail flick and hot plate tests in the naked mole rat (Heterocephalus glaber). BMC Res Notes 2021; 14:191. [PMID: 34001271 PMCID: PMC8130107 DOI: 10.1186/s13104-021-05607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/08/2021] [Indexed: 11/10/2022] Open
Abstract
Objective The naked mole rat (NMR) (Heterocephalus glaber) is increasingly considered an important biomedical research model for various conditions like hypoxic brain injury, cancer and nociception. This study was designed to investigate the effects of clonidine and yohimbine, an alpha-2 (α2) adrenoceptor agonist and antagonist respectively in the tail flick and hot plate tests. Results A significant difference in tail flick latency was noted between saline control and 30 µg/kg clonidine, which was reduced after administration of 30 µg/kg yohimbine. A significant difference in hot plate latency was also noted between saline control and 30 µg/kg clodinine during the periods 30, 45, 60, 75 and 90 min after administration, and between saline control and 10 µg/kg clonidine during 30 min after administration. The hot plate latency by 30 µg/kg clonidine was also reduced by 30 µg/kg yohimbine during 30 min after administration. Since the tail-flick and hot plate tests mediate the effects at spinal and supraspinal levels respectively, the present study indicates the presence and involvement of noradrenergic receptors in thermal antinociception at spinal and supraspinal levels of the NMR, similar to what has been found in other mammals.
Collapse
Affiliation(s)
- R M Mwobobia
- School of Agriculture and Veterinary Sciences, South Eastern Kenya University, P O Box 170-90200, Kitui, Kenya. .,Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamvej 3B, 2200, Copenhagen, Denmark.
| | - T I Kanui
- School of Agriculture and Veterinary Sciences, South Eastern Kenya University, P O Box 170-90200, Kitui, Kenya
| | - K S P Abelson
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamvej 3B, 2200, Copenhagen, Denmark
| |
Collapse
|
3
|
Doh HW, Stebbins CL, Choi HM, Park J, Nho H, Kim JK. Histamine H2 receptor blockade augments blood pressure responses to acute submaximal exercise in males. Appl Physiol Nutr Metab 2016; 41:605-10. [PMID: 27191340 DOI: 10.1139/apnm-2015-0450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histamine is a potent vasodilator that has been found to increase during exercise. We tested the hypothesis that histamine would attenuate blood pressure (BP), cardiac output (CO), and vascular resistance responses to short-term, submaximal dynamic exercise during H2 receptor blockade. Fourteen healthy men (20-29 years of age) were studied. Systolic (SBP), diastolic (DBP), and mean arterial (MAP) BP and heart rate (HR) were assessed at rest and during the last minute of 10 min of submaximal cycling exercise (60% of peak oxygen consumption) in the absence and presence of histamine H2 receptor blockade (ranitidine, 300 mg). Stroke volume (SV) (impedance cardiography) and plasma norepinephrine (NE) were measured, and CO, rate × pressure product (RPP), and total peripheral resistance (TPR) were calculated. Plasma levels of histamine were also measured. H2 blockade had no effects on any variables at rest. During exercise, SBP (184 ± 3 mm Hg vs. 166 ± 2 mm Hg), MAP (121 ± 2 mm Hg vs. 112 ± 5 mm Hg), and RPP (25.9 ± 0.8 × 10(3) mm Hg·beats/min vs. 23.5 ± 0.8 × 10(3) mm Hg/beats·min) were greater during blocked conditions (P < 0.05), and an interaction was observed for TPR. SV, DBP, HR, and NE levels were unaffected by blockade. Plasma histamine increased from 1.83 ± 0.14 ng/mL at rest to 2.33 ± 0.23 ng/mL during exercise (P < 0.05) and was not affected by H2 blockade (1.56 ± 0.23 ng/mL vs. 1.70 ± 0.24 ng/mL). These findings suggest that, during submaximal exercise, histamine attenuates BP, vascular resistance, and the work of the heart via activation of H2 receptors and that these effects occurred primarily in the vasculature and not in the myocardium.
Collapse
Affiliation(s)
- Hyung-Woo Doh
- a Graduate School of Physical Education, Kyung Hee University, Yongin, Korea
| | - Charles L Stebbins
- b Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| | - Hyun-Min Choi
- a Graduate School of Physical Education, Kyung Hee University, Yongin, Korea
| | - Joonsung Park
- a Graduate School of Physical Education, Kyung Hee University, Yongin, Korea
| | - Hosung Nho
- a Graduate School of Physical Education, Kyung Hee University, Yongin, Korea
| | - Jong-Kyung Kim
- a Graduate School of Physical Education, Kyung Hee University, Yongin, Korea
| |
Collapse
|
4
|
A comparison of histamine effects on the sympathetic neurotransmission of testicular capsule and rat vas deferens. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:719-31. [DOI: 10.1007/s00210-014-0979-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/30/2014] [Indexed: 11/26/2022]
|
5
|
Macarthur H, Wilken GH, Westfall TC, Kolo LL. Neuronal and non-neuronal modulation of sympathetic neurovascular transmission. Acta Physiol (Oxf) 2011; 203:37-45. [PMID: 21362154 PMCID: PMC3139802 DOI: 10.1111/j.1748-1716.2010.02242.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Noradrenaline, neuropeptide Y and adenosine triphosphate are co-stored in, and co-released from, sympathetic nerves. Each transmitter modulates its own release as well as the release of one another; thus, anything affecting the release of one of these transmitters has consequences for all. Neurotransmission at the sympathetic neurovascular junction is also modulated by non-sympathetic mediators such as angiotensin II, serotonin, histamine, endothelin and prostaglandins through the activation of specific pre-junctional receptors. In addition, nitric oxide (NO) has been identified as a modulator of sympathetic neuronal activity, both as a physiological antagonist against the vasoconstrictor actions of the sympathetic neurotransmitters, and also by directly affecting transmitter release. Here, we review the modulation of sympathetic neurovascular transmission by neuronal and non-neuronal mediators with an emphasis on the actions of NO. The consequences for co-transmission are also discussed, particularly in light of hypertensive states where NO availability is diminished.
Collapse
Affiliation(s)
- H Macarthur
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, MO 63104, USA.
| | | | | | | |
Collapse
|
6
|
Chapter 2 Neurochemistry of cognition: serotonergic and adrenergic mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2008; 88:31-40. [DOI: 10.1016/s0072-9752(07)88002-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Buchholz JN, Behringer EJ, Pottorf WJ, Pearce WJ, Vanterpool CK. Age-dependent changes in Ca2+ homeostasis in peripheral neurones: implications for changes in function. Aging Cell 2007; 6:285-96. [PMID: 17517039 PMCID: PMC1974774 DOI: 10.1111/j.1474-9726.2007.00298.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Calcium ions represent universal second messengers within neuronal cells integrating multiple cellular functions, such as release of neurotransmitters, gene expression, proliferation, excitability, and regulation of cell death or apoptotic pathways. The magnitude, duration and shape of stimulation-evoked intracellular calcium ([Ca2+]i) transients are determined by a complex interplay of mechanisms that modulate stimulation-evoked rises in [Ca2+]i that occur with normal neuronal function. Disruption of any of these mechanisms may have implications for the function and health of peripheral neurones during the aging process. This review focuses on the impact of advancing age on the overall function of peripheral adrenergic neurones and how these changes in function may be linked to age-related changes in modulation of [Ca2+]i regulation. The data in this review suggest that normal aging in peripheral autonomic neurones is a subtle process and does not always result in dramatic deterioration in their function. We present studies that support the idea that in order to maintain cell viability peripheral neurones are able to compensate for an age-related decline in the function of at least one of the neuronal calcium-buffering systems, smooth endoplasmic reticulum calcium ATPases, by increased function of other calcium-buffering systems, namely, the mitochondria and plasmalemma calcium extrusion. Increased mitochondrial calcium uptake may represent a 'weak point' in cellular compensation as this over time may contribute to cell death. In addition, we present more recent studies on [Ca2+]i regulation in the form of the modulation of release of calcium from smooth endoplasmic reticulum calcium stores. These studies suggest that the contribution of the release of calcium from smooth endoplasmic reticulum calcium stores is altered with age through a combination of altered ryanodine receptor levels and modulation of these receptors by neuronal nitric oxide containing neurones.
Collapse
Affiliation(s)
- John N Buchholz
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA.
| | | | | | | | | |
Collapse
|
8
|
Pottorf WJ, Duckles SP, Buchholz JN. Mechanisms of calcium buffering in adrenergic neurones and effects of ageing: testing the limits of homeostasis. JOURNAL OF AUTONOMIC PHARMACOLOGY 2000; 20:63-75. [PMID: 11095545 DOI: 10.1046/j.1365-2680.2000.00165.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- W J Pottorf
- Department of Pharmacology, Loma Linda University School of Medicine, CA 92350, USA
| | | | | |
Collapse
|
9
|
Phillips JK, McLean AJ, Hill CE. Receptors involved in nerve-mediated vasoconstriction in small arteries of the rat hepatic mesentery. Br J Pharmacol 1998; 124:1403-12. [PMID: 9723951 PMCID: PMC1565534 DOI: 10.1038/sj.bjp.0701976] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. We have investigated the neurotransmitters and receptor subtypes involved in nerve-mediated vasoconstriction in small arteries of the rat hepatic mesentery. 2. A dense sympathetic innervation was demonstrated using catecholamine histochemistry and antibodies against the synaptic vesicle protein synaptophysin. 3. Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated very strong expression of the alpha1A-adrenergic, neuropeptide Y (NPY) Y1, P2X1- and P2X4-purinergic receptors, moderate expression of the alpha2B-adrenergic receptor and the purinergic P2X5- and P2X7-receptors and weak expression of the alpha1B-, alpha1D-, alpha2A- and alpha2C-adrenergic receptors and the P2X2- and P2X3-purinergic receptors. NPY2 and P2X6 receptor expression was absent. 4. Electrical field stimulation (10 Hz, 10 s) produced contractions which were abolished by tetrodotoxin (10(-6) M) and/or guanethidine (GE, 5 x 10(-6) M) and a combination of benextramine (10(-5) M) and alpha,beta-methylene ATP, (alpha,beta-mATP, 3 x 10(-6) M) or PPADS (10(-5) M). Selective alpah1-adrenergic receptor antagonists showed the potency order of prazosin > WB-4101 > 5-methyl-urapidil > BMY 7378. Yohimbine (10(-8) M, 10(-7) M), alpha,beta-mATP (3 x 10(-6) M) and PPADS (10(-5) M) each enhanced the response to nerve stimulation. 5. Some experiments demonstrated a slow neurogenic contraction which was abolished by GE or the selective NPY1 receptor antagonist 1229U91 (6 x 10(-7) M). 6. We conclude that nerve-mediated vasoconstriction results from the activation of postsynaptic alpha,beta-adrenergic and P2X-purinergic receptors and under some conditions, NPY1 receptors. Neurotransmitter release is modulated by presynaptic alpha2-adrenergic receptors and possibly also P2X-purinoceptors. The major postsynaptic subtypes involved were well predicted by mRNA expression as measured by RT-PCR, suggesting that this technique may be a useful adjunct to studies aimed at identifying functional receptor subtypes.
Collapse
MESH Headings
- Animals
- Base Sequence
- Catecholamines/metabolism
- DNA Primers
- Electric Stimulation
- Immunohistochemistry
- Liver/blood supply
- Liver/innervation
- Liver/metabolism
- Mesenteric Arteries/innervation
- Mesenteric Arteries/physiology
- RNA, Messenger/genetics
- Rats
- Rats, Wistar
- Receptors, Adrenergic/classification
- Receptors, Adrenergic/genetics
- Receptors, Adrenergic/physiology
- Receptors, Neuropeptide Y/genetics
- Receptors, Neuropeptide Y/physiology
- Receptors, Purinergic/classification
- Receptors, Purinergic/genetics
- Receptors, Purinergic/physiology
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- J K Phillips
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT
| | | | | |
Collapse
|
10
|
Venkatesan C, Song XZ, Go CG, Kurose H, Aoki C. Cellular and subcellular distribution of alpha 2A-adrenergic receptors in the visual cortex of neonatal and adult rats. J Comp Neurol 1996; 365:79-95. [PMID: 8821443 DOI: 10.1002/(sici)1096-9861(19960129)365:1<79::aid-cne7>3.0.co;2-g] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Activation of alpha 2-adrenergic receptors (alpha 2AR) in the cerebral cortex has been shown to modulate visually guided delayed response tasks as well as anxiety and depression. We used an antiserum directed specifically against the A subtype of alpha 2AR (alpha 2AAR) to determine the cell types and subcellular sites for noradrenergic reception mediated by this receptor in the adult and the developing rat visual cortices. Light microscopic examination of adult tissue revealed numerous labeled perikarya in layers II-VI, many of which appeared distinctly pyramidal. A few perikarya in layer I also were immunoreactive. In all layers, alpha 2AAR immunoreactivity (alpha 2AAR-ir) was present within proximal dendrites and fine processes. In neonatal tissue, there was an intense, distinct band of immunoreactivity spanning the layer composed of tightly packed immature cell bodies, i.e., the cortical plate. The band dissipated as this tier differentiated postnatally into the supragranular layers. Electron microscopy showed that the supragranular layers, which contain the highest density of noradrenergic fibers, also contain the highest areal density of labeled postsynaptic junctions beyond 2 weeks of age. Throughout the ages, the majority of immunoreactivity occurred at sites which, in single ultrathin sections, appeared to be nonjunctional sites of axons, dendrites, and in glial processes. Our observations indicate that (1) both pyramidal and nonpyramidal neurons are receptive to norepinephrine via alpha 2AAR, (2) alpha 2AAR synthesis is robust prior to synaptogenesis, and (3) alpha 2AAR operates both pre- and postsynaptically.
Collapse
Affiliation(s)
- C Venkatesan
- Center for Neural Science, New York University, New York 10003, USA
| | | | | | | | | |
Collapse
|
11
|
Hill CE, Powis DA, Hendry IA. Involvement of pertussis toxin-sensitive and -insensitive mechanisms in alpha-adrenoceptor modulation of noradrenaline release from rat sympathetic neurones in tissue culture. Br J Pharmacol 1993; 110:281-8. [PMID: 8106104 PMCID: PMC2175990 DOI: 10.1111/j.1476-5381.1993.tb13806.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. Sympathetic neurones derived from superior cervical ganglia of neonatal rats and maintained in tissue culture were used to investigate the modulation of neurotransmitter release by presynaptic receptors. Three week old cultures of neurones were loaded with [3H]-noradrenaline to label endogenous neurotransmitter stores. Release of noradrenaline was evoked by depolarization with raised extracellular K+ in the presence of desipramine and corticosterone to prevent uptake of released catecholamine. 2. Potassium (55 mmol l-1) depolarization for 30 s caused more than a four fold increase in 3H overflow from basal levels but this increase was reduced by up to 40% in the presence of exogenous noradrenaline (1 mumol l-1). The inhibition by noradrenaline of depolarization-evoked overflow was blocked by the alpha 1/alpha 2-adrenoceptor antagonist, phentolamine. Phentolamine alone did not increase K(+)-evoked 3H overflow. 3. The alpha 2-adrenoceptor antagonist, yohimbine, produced a concentration-dependent block of the inhibition by noradrenaline of K(+)-evoked overflow, while the alpha 1-adrenoceptor antagonist, prazosin, was without effect at concentrations up to 0.1 mumol l-1. 4. The beta-adrenoceptor antagonist, propranolol, neither reduced K(+)-evoked overflow nor increased the degree of inhibition caused by the addition of 1 mumol l-1 noradrenaline. 5. The alpha 2-adrenoceptor agonist, clonidine (1 mumol l-1) was less effective than noradrenaline at inhibiting K(+)-evoked overflow, while the alpha 1-adrenoceptor agonist, phenylephrine (1 mumol l-1) had no significant effect. 6. The L-channel calcium blocker, nicardipine (1 mumol l-1) significantly inhibited 3H overflow evoked by K+. In the presence of L-channel block, however, noradrenaline still inhibited residual evoked overflow.7. In the presence or absence of nicardipine, pertussis toxin pretreatment (1 nmol 1-1) reduced, but did not prevent, the effect of noradrenaline (1 micromol 1-1). Pertussis toxin alone caused a significant enhancement of K+-evoked 3H overflow.8. The data indicate that on postganglionic neurones of cultured rat sympathetic ganglia there are alpha 2-adrenoceptors that modulate neurotransmitter release, but no functional beta-adrenoceptors that mediate an enhancement of transmitter release. The data suggest further that in this preparation the mechanism of alpha2-adrenoceptor modulation may involve pertussis toxin sensitive and insensitive G-proteins and effects on calcium channels other than L-type.
Collapse
MESH Headings
- Adrenergic alpha-1 Receptor Antagonists
- Adrenergic alpha-2 Receptor Antagonists
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Animals, Newborn/physiology
- Calcium Channel Blockers/pharmacology
- Culture Techniques
- Neurons/drug effects
- Neurons/metabolism
- Norepinephrine/metabolism
- Norepinephrine/physiology
- Pertussis Toxin
- Potassium/antagonists & inhibitors
- Potassium/pharmacology
- Rats
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/physiology
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/physiology
- Second Messenger Systems/drug effects
- Superior Cervical Ganglion/cytology
- Superior Cervical Ganglion/drug effects
- Sympathetic Nervous System/drug effects
- Sympathetic Nervous System/metabolism
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- C E Hill
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra
| | | | | |
Collapse
|
12
|
Ishigooka M, Nakada T. Analysis of regional norepinephrine content in the rabbit bladder after acute electrical pelvic floor stimulation. J Urol 1993; 150:235-8. [PMID: 8510263 DOI: 10.1016/s0022-5347(17)35453-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Experiments were carried out to evaluate the regional norepinephrine (NE) content of the rabbit bladder after acute electrical pelvic floor stimulation (EPFS). After 30 minutes of EPFS, the content of NE increased significantly in both the bladder base and body (p < 0.05). Furthermore, this increased NE content continued for 1 to 2 hours after cessation of stimulation. The content of NE in the bladder base and body in rabbits treated with alpha-methyl-paratyrosine (AMT) was lower than in the control group. Application of EPFS increased NE content in the bladder even in animals pretreated with AMT. Based on these findings, during EPFS the hypogastric nerve would be presumed to play a significant role in bladder inhibition. Increased synthesis of NE probably did not play an important role in elevation of NE content after EPFS.
Collapse
Affiliation(s)
- M Ishigooka
- Department of Urology, Yamagata University, School of Medicine, Japan
| | | |
Collapse
|