1
|
Briggs JW, Ren L, Chakrabarti KR, Tsai YC, Weissman AM, Hansen RJ, Gustafson DL, Khan YA, Dinman JD, Khanna C. Activation of the unfolded protein response in sarcoma cells treated with rapamycin or temsirolimus. PLoS One 2017; 12:e0185089. [PMID: 28926611 PMCID: PMC5605117 DOI: 10.1371/journal.pone.0185089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/06/2017] [Indexed: 01/21/2023] Open
Abstract
Activation of the unfolded protein response (UPR) in eukaryotic cells represents an evolutionarily conserved response to physiological stress. Here, we report that the mTOR inhibitors rapamycin (sirolimus) and structurally related temsirolimus are capable of inducing UPR in sarcoma cells. However, this effect appears to be distinct from the classical role for these drugs as mTOR inhibitors. Instead, we detected these compounds to be associated with ribosomes isolated from treated cells. Specifically, temsirolimus treatment resulted in protection from chemical modification of several rRNA residues previously shown to bind rapamycin in prokaryotic cells. As an application for these findings, we demonstrate maximum tumor cell growth inhibition occurring only at doses which induce UPR and which have been shown to be safely achieved in human patients. These results are significant because they challenge the paradigm for the use of these drugs as anticancer agents and reveal a connection to UPR, a conserved biological response that has been implicated in tumor growth and response to therapy. As a result, eIF2 alpha phosphorylation and Xbp-1 splicing may serve as useful biomarkers of treatment response in future clinical trials using rapamycin and rapalogs.
Collapse
Affiliation(s)
- Joseph W. Briggs
- Tumor Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Ling Ren
- Tumor Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kristi R. Chakrabarti
- Tumor Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Allan M. Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Ryan J. Hansen
- Colorado State University Flint Animal Cancer Center, Fort Collins, Colorado, United States of America
| | - Daniel L. Gustafson
- Colorado State University Flint Animal Cancer Center, Fort Collins, Colorado, United States of America
| | - Yousuf A. Khan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Chand Khanna
- Tumor Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
2
|
Nicoletti F, Lapenta C, Lamenta C, Donati S, Spada M, Ranazzi A, Cacopardo B, Mangano K, Belardelli F, Perno C, Aquaro S. Inhibition of human immunodeficiency virus (HIV-1) infection in human peripheral blood leucocytes-SCID reconstituted mice by rapamycin. Clin Exp Immunol 2009; 155:28-34. [PMID: 19076826 DOI: 10.1111/j.1365-2249.2008.03780.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The capacity of the immunomodulatory drug rapamycin (RAPA) to inhibit replication of the CCR5 strain of human immunodeficiency virus (HIV) in vitro prompted us to test its effects in a murine preclinical model of HIV infection. RAPA (0.6 or 6 mg/kg body weight) or its vehicle were administered daily, per os, to SCID mice reconstituted with human peripheral blood leucocytes (hu-PBL) starting 2 days before the intraperitoneal challenge with the R5 tropic SF162 strain of HIV-1 (1000 50% tissue culture infective dose/ml). Relative to hu-PBL-SCID mice that received no treatment, HIV-infected hu-PBL-SCID mice treated with the vehicle control for 3 weeks exhibited a severe depletion of CD4(+) cells (90%), an increase in CD8(+) cells and an inversion of the CD4(+)/CD8(+) cell ratio. In contrast, treatment of HIV-infected mice with RAPA prevented a decrease in CD4(+) cells and the increase of CD8(+) cells, thereby preserving the original CD4(+):CD8(+) cell ratio. Viral infection also resulted in the detection of HIV-DNA within peritoneal cells and spleen, and lymph node tissues of the vehicle-treated mice within 3 weeks of the viral challenge. In contrast, treatment with RAPA decreased cellular provirus integration and reduced HIV-RNA levels in the blood. Furthermore, in co-cultivation assays, spleens from RAPA-treated mice exhibited a reduced capacity for infecting allogeneic T cells which was dose-dependent. These data show that RAPA possesses powerful anti-viral activity against R5 strains of HIV in vivo and support the use of additional studies to evaluate the potential application of this drug in the management of HIV patients.
Collapse
Affiliation(s)
- F Nicoletti
- Department of Biomedical Sciences, Section of Clinical Pathology and Molecular Oncology, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Buerke M, Guckenbiehl M, Schwertz H, Buerke U, Hilker M, Platsch H, Richert J, Bomm S, Zimmerman GA, Lindemann S, Mueller-Werdan U, Werdan K, Darius H, Weyrich AS. Intramural delivery of Sirolimus prevents vascular remodeling following balloon injury. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1774:5-15. [PMID: 16920414 PMCID: PMC2275912 DOI: 10.1016/j.bbapap.2006.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 04/04/2006] [Accepted: 04/24/2006] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Several studies have demonstrated that Sirolimus-eluting stents reduce restenosis in patients with coronary artery disease. Here, we tested whether direct delivery of Sirolimus into the vessel wall during balloon angioplasty can modify vascular remodeling over several weeks. METHODS AND RESULTS During angioplasty of the rabbit iliac artery we administered an intramural infusion of Sirolimus or its vehicle directly through a balloon catheter into the vessel wall. After 3 weeks neointimal formation was decreased (0.71+/-0.1 vs. 1.4+/-0.12 intima/media ratio), and this process was attributed to the inhibitory properties of Sirolimus on ECM deposition and smooth muscle cell proliferation. Sirolimus also significantly reduced the deposition of elastin, collagen III and fibronectin within the vascular wall. In parallel, proteomic profiles of arterial wall segments were obtained and 485 protein spots were consistently matched between non-dilated and dilated vessels. Differential expression of 12 proteins were observed between the groups and direct sequencing of digested peptides was performed. Local delivery of sirolimus during angioplasty attenuated the expression of structural proteins that included lamin A, vimentin, alpha-1-antitrypsin, and alpha-actin. CONCLUSIONS Local administration of Sirolimus during angioplasty prevents smooth muscle cell proliferation associated with vascular remodeling as well as the expression of extracellular matrix and structural proteins. Therefore, local injection of Sirolimus during balloon inflation may be an alternative therapeutic approach for preventing restenosis in small stenotic vessels (i.e., <2.5 mm).
Collapse
Affiliation(s)
- Michael Buerke
- Department of Medicine III, Martin-Luther-University, Ernst-Grube-Str. 40, 06097 Halle, and Department of Cardiology, Neu-Kölln-Hospital, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Gaben AM, Saucier C, Bedin M, Barbu V, Mester J. Rapamycin inhibits cdk4 activation, p 21WAF1/CIP1 expression and G1-phase progression in transformed mouse fibroblasts. Int J Cancer 2003; 108:200-6. [PMID: 14639603 DOI: 10.1002/ijc.11521] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rapamycin, a bacterial macrolide antibiotic, is a potent immunosuppressant agent that blocks cell proliferation by inhibiting the G1/S transition in several cell types. In sensitive cells, rapamycin inhibits the phosphorylation of p70 S6K and of Rb; however, the precise mechanisms involved have not been elucidated. In the mouse BP-A31 fibroblasts, synchronised in G0/G1 phase by serum starvation and induced to reinitiate the G1-phase progression, rapamycin inhibited the entry into S phase. The effect of rapamycin was situated in early G1 phase. The assembly of the cyclin D1/cdk4 complexes that phosphorylate Rb early in the G1 phase was not modified by the drug. Nevertheless, an inhibition of the activation of cyclin D1/cdk4 and cyclin E/cdk2 as well as of Rb phosphorylation accompanied the cell cycle arrest. Remarkably, rapamycin reduced the level of total p21(WAF1/CIP1) as well as that of p21(WAF1/CIP1) associated with the cyclin D1/cdk4 complexes. Besides its inhibitory activity toward cdk, p21(WAF1/CIP1) has been recently found to participate in the formation/stabilisation/nuclear translocation of cyclin D1/cdk4 complexes. We propose that the inhibition of the expression of p21(WAF1/CIP1) is a mechanism by which rapamycin inhibits the triggering of the cdk cascade in the BP-A31 cells.
Collapse
|
5
|
Obexer P, Certa U, Kofler R, Helmberg A. Expression profiling of glucocorticoid-treated T-ALL cell lines: rapid repression of multiple genes involved in RNA-, protein- and nucleotide synthesis. Oncogene 2001; 20:4324-36. [PMID: 11466613 DOI: 10.1038/sj.onc.1204573] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2001] [Revised: 04/02/2001] [Accepted: 04/03/2001] [Indexed: 11/08/2022]
Abstract
To arrive at a better understanding of the effects of the glucocorticoid component of chemotherapy protocols on lymphocytic leukemia cells, we analysed early responses of T-lymphocytic leukemia cell lines Jurkat and CEM-C7, both of which undergo apoptosis in response to dexamethasone, via gene chips. Among genes identified as repressed, a notable cluster seemed to be of importance for the processes of transcription, mRNA splicing and protein synthesis. Consequently, we assessed time-resolved uptake of uridine and methionine to monitor RNA and protein synthesis, along with parameters quantifying apoptosis. Repression of uptake to about 65% of that in untreated cells preceded the first sign of apoptosis by several hours in both cell lines. In addition to this general repression of RNA and protein synthesis, several genes were found to be regulated that may contribute to synergistic action of glucocorticoids with other components of frequently used chemotherapy protocols such as antimetabolites, methotrexate and alkylating agents.
Collapse
Affiliation(s)
- P Obexer
- Institute of Pathophysiology, University of Innsbruck, Medical School, A 6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
6
|
Peterson RT, Desai BN, Hardwick JS, Schreiber SL. Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proc Natl Acad Sci U S A 1999; 96:4438-42. [PMID: 10200280 PMCID: PMC16350 DOI: 10.1073/pnas.96.8.4438] [Citation(s) in RCA: 393] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The FKBP12-rapamycin-associated protein (FRAP; also called RAFT1/mTOR) regulates translation initiation and entry into the cell cycle. Depriving cells of amino acids or treating them with the small molecule rapamycin inhibits FRAP and results in rapid dephosphorylation and inactivation of the translational regulators 4E-BP1(eukaryotic initiation factor 4E-binding protein 1) and p70(s6k) (the 70-kDa S6 kinase). Data published recently have led to the view that FRAP acts as a traditional mitogen-activated kinase, directly phosphorylating 4E-BP1 and p70(s6k) in response to mitogenic stimuli. We present evidence that FRAP controls 4E-BP1 and p70(s6k) phosphorylation indirectly by restraining a phosphatase. A calyculin A-sensitive phosphatase is required for the rapamycin- or amino acid deprivation-induced dephosphorylation of p70(s6k), and treatment of Jurkat I cells with rapamycin increases the activity of the protein phosphatase 2A (PP2A) toward 4E-BP1. PP2A is shown to associate with p70(s6k) but not with a mutated p70(s6k) that is resistant to rapamycin- and amino acid deprivation-mediated dephosphorylation. FRAP also is shown to phosphorylate PP2A in vitro, consistent with a model in which phosphorylation of PP2A by FRAP prevents the dephosphorylation of 4E-BP1 and p70(s6k), whereas amino acid deprivation or rapamycin treatment inhibits FRAP's ability to restrain the phosphatase.
Collapse
Affiliation(s)
- R T Peterson
- Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
7
|
|
8
|
|
9
|
Chen J, Zheng XF, Brown EJ, Schreiber SL. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci U S A 1995; 92:4947-51. [PMID: 7539137 PMCID: PMC41824 DOI: 10.1073/pnas.92.11.4947] [Citation(s) in RCA: 422] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Complexed with its intracellular receptor, FKBP12, the natural product rapamycin inhibits G1 progression of the cell cycle in a variety of mammalian cell lines and in the yeast Saccharomyces cerevisae. Previously, a mammalian protein that directly associates with FKBP12-rapamycin has been identified and its encoding gene has been cloned from both human (designated FRAP) [Brown, E.J., Albers, M.W., Shin, T.B., Ichikawa, K., Keith, C.T., Lane, W.S. & Schreiber, S.L. (1994) Nature (London) 369, 756-758] and rat (designated RAFT) [Sabatini, D.M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S.H. (1994) Cell 78, 35-43]. The full-length FRAP is a 289-kDa protein containing a putative phosphatidylinositol kinase domain. Using an in vitro transcription/translation assay method coupled with proteolysis studies, we have identified an 11-kDa FKBP12-rapamycin-binding domain within FRAP. This minimal binding domain lies N-terminal to the kinase domain and spans residues 2025-2114. In addition, we have carried out mutagenesis studies to investigate the role of Ser2035, a potential phosphorylation site for protein kinase C within this domain. We now show that the FRAP Ser2035-->Ala mutant displays similar binding affinity when compared with the wild-type protein, whereas all other mutations at this site, including mimics of phosphoserine, abolish binding, presumably due to either unfavorable steric interactions or induced conformational changes.
Collapse
Affiliation(s)
- J Chen
- Howard Hughes Medical Institute, Department of Chemistry, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
10
|
Abstract
The search for immunosuppressant drugs to increase the success of organ transplantation led to the discovery of the immunophilins, proteins that interface with a range of signal transduction systems inside cells, especially in the nervous and immune systems. Here we review how these interesting molecules work and consider their therapeutic potential.
Collapse
Affiliation(s)
- S H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
11
|
Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994; 369:756-8. [PMID: 8008069 DOI: 10.1038/369756a0] [Citation(s) in RCA: 1513] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The structurally related natural products rapamycin and FK506 bind to the same intracellular receptor, FKBP12, yet the resulting complexes interfere with distinct signalling pathways. FKBP12-rapamycin inhibits progression through the G1 phase of the cell cycle in osteosarcoma, liver and T cells as well as in yeast, and interferes with mitogenic signalling pathways that are involved in G1 progression, namely with activation of the protein p70S6k (refs 5, 11-13) and cyclin-dependent kinases. Here we isolate a mammalian FKBP-rapamycin-associated protein (FRAP) whose binding to structural variants of rapamycin complexed to FKBP12 correlates with the ability of these ligands to inhibit cell-cycle progression. Peptide sequences from purified bovine FRAP were used to isolate a human cDNA clone that is highly related to the DRR1/TOR1 and DRR2/TOR2 gene products from Saccharomyces cerevisiae. Although it has not been previously demonstrated that either of the DRR/TOR gene products can bind the FKBP-rapamycin complex directly, these yeast genes have been genetically linked to a rapamycin-sensitive pathway and are thought to encode lipid kinases.
Collapse
Affiliation(s)
- E J Brown
- Department of Chemistry, Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | | | | | | | |
Collapse
|