1
|
Sathishkumar V, Nirmolia T, Bhattacharyya DR, Patgiri SJ. Genetic polymorphism of Plasmodium falciparum msp-1, msp-2 and glurp vaccine candidate genes in pre-artemisinin era clinical isolates from Lakhimpur district in Assam, Northeast India. Access Microbiol 2022; 4:000350. [PMID: 35812711 PMCID: PMC9260089 DOI: 10.1099/acmi.0.000350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Northeast India shares its international border with Southeast Asia and has a number of malaria endemic zones. Monitoring genetic diversity of malaria parasites is important in this area as drug resistance and increasing genetic diversity form a vicious cycle in which one favours the development of the other. This retrospective study was done to evaluate the genetic diversity patterns in Plasmodium falciparum strains circulating in North Lakhimpur area of Assam in the pre-artemisinin era and compare the findings with current diversity patterns. Methods Genomic DNA extraction was done from archived blood spot samples collected in 2006 from malaria-positive cases in Lakhimpur district of Assam, Northeast India. Three antigenic markers of genetic diversity were studied – msp-1 (block-2), msp-2 (block-3) and the glurp RII region of P. falciparum using nested PCR. Results Allelic diversity was examined in 71 isolates and high polymorphism was observed. In msp-1, eight genotypes were detected; K1 (single allele), MAD20 (six different alleles) and RO33 (single allele) allelic families were noted. Among msp-2 genotypes, 22 distinct alleles were observed out of which FC27 had six alleles and IC/3D7 had 16 alleles. In RII region of glurp, nine genotypes were obtained. Expected heterozygosity (HE) values of the three antigenic markers were 0.72, 0.81 and 0.88, respectively. Multiplicity of infection (MOI) values noted were 1.28, 1.84 and 1.04 for msp-1, msp-2 and glurp, respectively. Conclusion Results suggest a high level of genetic diversity in P. falciparum msp (block-2 of msp-1 and block-3 of msp-2) and the glurp RII region in Northeast India in the pre-artemisinin era when chloroqunine was the primary drug used for uncomplicated falciparum malaria. Comparison with current studies have revealed that the genetic diversity in these genes is still high in this region, complicating malaria vaccine research.
Collapse
Affiliation(s)
- Vinayagam Sathishkumar
- ICMR-Regional Medical Research Centre, North East Region, Dibrugarh 786001, Assam, India
| | - Tulika Nirmolia
- ICMR-Regional Medical Research Centre, North East Region, Dibrugarh 786001, Assam, India
| | | | - Saurav Jyoti Patgiri
- ICMR-Regional Medical Research Centre, North East Region, Dibrugarh 786001, Assam, India
| |
Collapse
|
2
|
Kaur H, Sehgal R, Goyal K, Makkar N, Yadav R, Bharti PK, Singh N, Sarmah NP, Mohapatra PK, Mahanta J, Bansal D, Sultan AA, Kanwar JR. Genetic diversity of Plasmodium falciparum merozoite surface protein-1 (block 2), glutamate-rich protein and sexual stage antigen Pfs25 from Chandigarh, North India. Trop Med Int Health 2017; 22:1590-1598. [PMID: 29029367 DOI: 10.1111/tmi.12990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To elucidate the genetic diversity of Plasmodium falciparum in residual transmission foci of northern India. METHODS Clinically suspected patients with malaria were screened for malaria infection by microscopy. 48 P. falciparum-infected patients were enrolled from tertiary care hospital in Chandigarh, India. Blood samples were collected from enrolled patients, genomic DNA extraction and nested PCR was performed for further species confirmation. Sanger sequencing was carried out using block 2 region of msp1, R2 region of glurp and pfs25-specific primers. RESULTS Extensive diversity was found in msp1 alleles with predominantly RO33 alleles. Overall allelic prevalence was 55.8% for RO33, 39.5% for MAD20 and 4.7% for K1. Six variants were observed in MAD20, whereas no variant was found in RO33 and K1 alleles. A phylogenetic analysis of RO33 alleles indicated more similarity to South African isolates, whereas MAD20 alleles showed similarity with South-East Asian isolates. In glurp, extensive variation was observed with eleven different alleles based on the AAU repeats. However, pfs25 showed less diversity and was the most stable among the targeted genes. CONCLUSION Our findings document the genetic diversity among circulating strains of P. falciparum in an area of India with low malaria transmission and could have implications for control strategies to reach the national goal of malaria elimination.
Collapse
Affiliation(s)
- Hargobinder Kaur
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kapil Goyal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nikita Makkar
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Richa Yadav
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Praveen K Bharti
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Jabalpur, India
| | - Neeru Singh
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Jabalpur, India
| | - Nilanju P Sarmah
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Dibrugarh, India
| | - Pradyumna K Mohapatra
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Dibrugarh, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Dibrugarh, India
| | - Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Deakin University, Geelong, Australia
| |
Collapse
|
3
|
ProGeRF: proteome and genome repeat finder utilizing a fast parallel hash function. BIOMED RESEARCH INTERNATIONAL 2015; 2015:394157. [PMID: 25811026 PMCID: PMC4355816 DOI: 10.1155/2015/394157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 01/19/2015] [Accepted: 01/31/2015] [Indexed: 12/20/2022]
Abstract
Repetitive element sequences are adjacent, repeating patterns, also called motifs, and can be of different lengths; repetitions can involve their exact or approximate copies. They have been widely used as molecular markers in population
biology. Given the sizes of sequenced genomes, various bioinformatics tools have been developed for the extraction of repetitive elements from DNA sequences. However, currently available tools do not provide options for identifying repetitive elements in the genome or proteome, displaying a user-friendly web interface, and performing-exhaustive searches. ProGeRF is a web site for extracting repetitive regions from genome and proteome sequences. It was designed to be efficient, fast, and accurate and
primarily user-friendly web tool allowing many ways to view and analyse the results. ProGeRF (Proteome and Genome Repeat Finder) is freely available as a stand-alone program, from which the users can download the source code, and as a web tool. It was developed using the hash table approach to extract perfect and imperfect repetitive regions in a (multi)FASTA file, while allowing a linear time complexity.
Collapse
|
4
|
Lima-Junior JC, Jiang J, Rodrigues-da-Silva RN, Banic DM, Tran TM, Ribeiro RY, Meyer VSE, De-Simone SG, Santos F, Moreno A, Barnwell JW, Galinski MR, Oliveira-Ferreira J. B cell epitope mapping and characterization of naturally acquired antibodies to the Plasmodium vivax merozoite surface protein-3α (PvMSP-3α) in malaria exposed individuals from Brazilian Amazon. Vaccine 2011; 29:1801-11. [PMID: 21215342 DOI: 10.1016/j.vaccine.2010.12.099] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
Abstract
The Plasmodium vivax Merozoite Surface Protein-3α (PvMSP-3α) is considered as a potential vaccine candidate. However, the detailed investigations of the type of immune responses induced in naturally exposed populations are necessary. Therefore, we aim to characterize the naturally induced antibody to PvMSP-3α in 282 individuals with different levels of exposure to malaria infections residents in Brazilian Amazon. PvMSP3 specific antibodies (IgA, IgG and IgG subclass) to five recombinant proteins and the epitope mapping by Spot-synthesis technique to full-protein sequence of amino acids (15aa sequence with overlapping sequence of 9aa) were performed. Our results indicates that PvMSP3 is highly immunogenic in naturally exposed populations, where 78% of studied individuals present IgG immune response against the full-length recombinant protein (PVMSP3-FL) and IgG subclass profile was similar to all five recombinant proteins studied with a high predominance of IgG1 and IgG3. We also observe that IgG and subclass levels against PvMSP3 are associated with malaria exposure. The PvMSP3 epitope mapping by Spot-synthesis shows a natural recognition of at least 15 antigenic determinants, located mainly in the two blocks of repeats, confirming the high immunogenicity of this region. In conclusion, PvMSP-3α is immunogenic in naturally exposed individuals to malaria infections and that antibodies to PvMSP3 are induced to several B cell epitopes. The presence of PvMSP3 cytophilic antibodies (IgG1 and IgG3), suggests that this mechanism could also occur in P. vivax.
Collapse
Affiliation(s)
- J C Lima-Junior
- Laboratory of Immunoparasitology, Institute Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Facer CA, Tanner M. Clinical trials of malaria vaccines: progress and prospects. ADVANCES IN PARASITOLOGY 1997; 39:1-68. [PMID: 9241814 DOI: 10.1016/s0065-308x(08)60044-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- C A Facer
- Department of Haematology, St Bartholomew's and The Royal London School of Medicine and Dentistry, UK
| | | |
Collapse
|
6
|
Burghaus PA, Wellde BT, Hall T, Richards RL, Egan AF, Riley EM, Ballou WR, Holder AA. Immunization of Aotus nancymai with recombinant C terminus of Plasmodium falciparum merozoite surface protein 1 in liposomes and alum adjuvant does not induce protection against a challenge infection. Infect Immun 1996; 64:3614-9. [PMID: 8751907 PMCID: PMC174271 DOI: 10.1128/iai.64.9.3614-3619.1996] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Merozoite surface protein 1 (MSP-1) of Plasmodium falciparum is an antimalarial vaccine candidate. The highly conserved 19-kDa C-terminal processing fragment of MSP-1 (MSP-1(19)) is of particular interest since it contains epitopes recognized by monoclonal antibodies which inhibit the invasion of erythrocytes in vitro. The presence of naturally acquired anti-MSP-1(19) antibodies in individuals exposed to malaria has been correlated with reduced morbidity, and immunization with an equivalent recombinant P. yoelii antigen induces substantial protection against this parasite in mice. We have expressed P. falciparum MSP-1(19) in Escherichia coli as a correctly folded protein and immunized Aotus nancymai monkeys by using the protein incorporated into liposomes and adsorbed to alum. After vaccination, the sera from these animals contained anti-MSP-1(19) antibodies, some of which competed for binding to MSP-1(19) with monoclonal antibodies that inhibit parasite invasion of erythrocytes in vitro. However, after challenge with either a homologous or a heterologous strain of parasite, all animals became parasitemic and required treatment. The immunization did not induce protection in this animal model.
Collapse
Affiliation(s)
- P A Burghaus
- Division of Parasitology, National Institute for Medical Research, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ambroise-Thomas P. [Towards a vaccination against malaria]. Rev Med Interne 1995; 16:717-23. [PMID: 7481162 DOI: 10.1016/0248-8663(96)80777-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
For 20 years, the prospect of anti-malarial vaccination has aroused many hopes, but in the end, it has mostly given rise to doubts and disappointment. If most attempts have been to no avail, this is because the issue at stake is amazingly difficult. Besides the very complex antigenic structure of the protozoa Plasmodium, there is first the existence of at least three different targets during the plasmodial cycle, then the necessity of appropriate adjuvants and, most of all, the imperfection of our experimental models. Recently, Pattaroyo and the various groups who worked with him have eventually met success with vaccine trials in man: they used a synthetic antigene, SPf66, on volunteers in South America, then on a larger population sample in East Africa. The results are still quite modest: people are protected against the malarial disease but not against the parasitemia and only in approximately 40% of cases. Nevertheless, these results have the merit of representing the first successful anti-malarial vaccination in man. Although great advances are still needed, a decisive step forward has been taken. Other types of vaccine will soon be tested by other groups (anti-gametocyte vaccines) and prospects of significant improvements are offered by the technique of DNA-vaccines. If it is now certain that one or several vaccines will be available in a near future, no one is able to set the time delay necessary to reach this stage. In any case, hoping that this type of vaccine will eradicate the disease is not realistic since a disease as complex as malaria, in terms of epidemiology, cannot be eliminated by only one method.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Ambroise-Thomas
- Département de parasitologie-mycologie médicale et moléculaire, CNRS EP 78, faculté de médecine, Grenoble, France
| |
Collapse
|