1
|
Horvath G, Nemeth J, Brubel R, Opper B, Koppan M, Tamas A, Szereday L, Reglodi D. Occurrence and Functions of PACAP in the Placenta. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-35135-3_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
2
|
|
3
|
Köves K, Kántor O, Lakatos A, Szabó E, Kirilly E, Heinzlmann A, Szabó F. Advent and recent advances in research on the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the regulation of gonadotropic hormone secretion of female rats. J Mol Neurosci 2014; 54:494-511. [PMID: 24696167 DOI: 10.1007/s12031-014-0294-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/20/2014] [Indexed: 02/06/2023]
Abstract
PACAP (ADCYAP1) was isolated from ovine hypothalami. PACAP activates three distinct receptor types: G-protein coupled PAC1, VPAC1, and VPAC2 with seven transmembrane domains. Eight splice variants of PAC1 receptor are described. A part of the hypothalamic PACAP is released into the hypophyseal portal circulation. Both hypothalamic and pituitary PACAP are involved in the dynamic control of gonadotropic hormone secretion. In female rats, PACAP in the paraventricular nucleus is upregulated in the morning and pituitary PACAP is upregulated in the late evening of the proestrus stage of the reproductive cycle. PACAP mRNA peak in the hypothalamic PVN precedes the LHRH release into the portal circulation. It is supposed that PACAP peak is evoked by the elevated estrogen on proestrous morning. At the beginning of the so-called critical period of the same day, PACAP level starts to decline allowing LHRH release into the portal circulation, resulting in the LH surge that evokes ovulation. Just before the critical period, icv-administered exogenous PACAP blocks the LH surge and ovulation. The blocking effect of PACAP is mediated through CRF and endogenous opioids. The effect of the pituitary-born PACAP depends on the intracellular cross-talk between PACAP and LHRH.
Collapse
Affiliation(s)
- Katalin Köves
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 58, H-1094, Budapest, Hungary,
| | | | | | | | | | | | | |
Collapse
|
4
|
Reglodi D, Tamas A, Koppan M, Szogyi D, Welke L. Role of PACAP in Female Fertility and Reproduction at Gonadal Level - Recent Advances. Front Endocrinol (Lausanne) 2012; 3:155. [PMID: 23248616 PMCID: PMC3518703 DOI: 10.3389/fendo.2012.00155] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/20/2012] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide, first isolated from hypothalamic extracts, but later shown in peripheral organs, such as endocrine glands, gastrointestinal system, cardiovascular system, and reproductive organs. PACAP plays a role in fertility and reproduction. Numerous studies report on the gonadal regulatory effects of PACAP at hypothalamo-hypophyseal levels. However, the local effects of PACAP at gonadal levels are also important. The present review summarizes the effects of PACAP in the ovary. PACAP and its receptors are present in the ovary, and PACAP plays a role in germ cell migration, meiotic division, follicular development, and atresia. The autocrine-paracrine hormonal effects seem to play a regulatory role in ovulation, luteinization, and follicular atrophy. Altogether, PACAP belongs to the ovarian regulatory peptides.
Collapse
Affiliation(s)
- Dora Reglodi
- Department of Anatomy, Lendulet PACAP-Research Team of the University of Pécs and Hungarian Academy of SciencesPécs, Hungary
- *Correspondence: Dora Reglodi, Department of Anatomy, University of Pécs, Szigeti u 12, 7624 Pécs, Hungary. e-mail:
| | - Andrea Tamas
- Department of Anatomy, Lendulet PACAP-Research Team of the University of Pécs and Hungarian Academy of SciencesPécs, Hungary
| | - Miklos Koppan
- Department of Obstetrics and Gynaecology, University of PécsPécs, Hungary
| | - Donat Szogyi
- Department of Obstetrics and Gynaecology, University of PécsPécs, Hungary
| | - Laura Welke
- Department of Anatomy, Ross University School of MedicineRoseau, Commonwealth of Dominica
| |
Collapse
|
5
|
Heinzlmann A, Kirilly E, Meltzer K, Szabó E, Baba A, Hashimoto H, Köves K. PACAP is transiently expressed in anterior pituitary gland of rats: in situ hybridization and cell immunoblot assay studies. Peptides 2008; 29:571-7. [PMID: 18243417 DOI: 10.1016/j.peptides.2007.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 12/13/2007] [Accepted: 12/14/2007] [Indexed: 11/24/2022]
Abstract
In this work the expression of PACAP (pituitary adenylate cyclase activating polypeptide) in rat anterior pituitary was demonstrated for the first time using in situ hybridization. The number of cells showing PACAP signal in intact male rats was negligible similarly to that of diestrous rats. In proestrous rats sacrificed at 10h there was a moderate increase in the expression and after a decrease at 16 h and 18 h, there was a transient peak at 20 h and then the number of labeled cells was declined again (22 h). In the cell immunoblot assay study it was observed that the number of PACAP blot forming (PACAP releasing) cells in an anterior pituitary cell culture changed according to a similar pattern as the number of PACAP expressing cells. The number of blots was also the highest when the animals were sacrificed in the evening of proestrus at 20h. The results obtained by in situ hybridization and cell immunoblot assay well correlate with each other. The above-mentioned results support our hypothesis that the enhanced expression and secretion of PACAP in the pituitary gland may be involved in ceasing the LH surge.
Collapse
Affiliation(s)
- Andrea Heinzlmann
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Hungary
| | | | | | | | | | | | | |
Collapse
|
6
|
Isaac ER, Sherwood NM. Pituitary adenylate cyclase-activating polypeptide (PACAP) is important for embryo implantation in mice. Mol Cell Endocrinol 2008; 280:13-9. [PMID: 17945412 DOI: 10.1016/j.mce.2007.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 08/14/2007] [Accepted: 09/05/2007] [Indexed: 11/28/2022]
Abstract
Mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP) show high mortality during the postnatal period, as well as impaired reproduction in females. This study characterizes the reproductive phenotype in female mice lacking PACAP due to targeted disruption (knockout) of the single copy pacap gene (Adcyap1) to determine the site(s) of action of PACAP in the cascade of reproductive events. PACAP null females showed normal puberty onset, estrous cycles, and seminal plugs when paired with a male of proven fertility. However, significantly fewer PACAP null females (21%) than wild-type females (100%) gave birth following mating. Although a defect was not detected in ovulation, ovarian histology or fertilization of released eggs in PACAP null females, only 13% had implanted embryos 6.5 days after mating. Associated with the decrease in implantation, prolactin and progesterone levels were significantly lower in females lacking PACAP than in wild types on day 6.5 after mating. Our evidence suggests that impaired implantation is the defect responsible for decreased fertility in PACAP null female mice.
Collapse
Affiliation(s)
- Emma R Isaac
- Biomedical Research Centre, University of Victoria, Victoria, B.C., Canada V8W 3N5
| | | |
Collapse
|
7
|
Papka RE, Workley M, Usip S, Mowa CN, Fahrenkrug J. Expression of pituitary adenylate cyclase activating peptide in the uterine cervix, lumbosacral dorsal root ganglia and spinal cord of rats during pregnancy. Peptides 2006; 27:743-52. [PMID: 16181705 DOI: 10.1016/j.peptides.2005.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 08/11/2005] [Accepted: 08/12/2005] [Indexed: 11/17/2022]
Abstract
The uterine cervix is highly innervated by the sensory nerves containing neuropeptides which change during pregnancy and are regulated, in part, by estrogen. These neuropeptides act as transmitters both in the spinal cord and cervix. The present study was undertaken to determine the expression pattern of the neuropeptide pituitary adenylate cyclase activating peptide (PACAP) in the cervix and its nerves during pregnancy and the influence of estrogen on this expression using immunohistochemistry, radioimmunoassay and RT-PCR. PACAP immunoreactivity was detected in nerves in the cervix, lumbosacral (L6-S1) dorsal root ganglia (DRG) and spinal cord. PACAP immunoreactivity was highest at day 15 of pregnancy in the cervix and dorsal spinal cord, but then decreased over the last trimester of pregnancy. However, levels of PACAP mRNA increased in the L6-S1 DRG at late pregnancy relative to early pregnancy. DRG of ovariectomized rats treated with estrogen showed increased PACAP mRNA synthesis in a dose-related manner, an effect partially blocked by the estrogen receptor (ER) antagonist ICI 182,780. We postulate that synthesis of PACAP in L6-S1 DRG and utilization in the cervix and spinal cord increase over pregnancy and this synthesis is the under influence of the estrogen-ER system. Since PACAP is expressed by sensory nerves and may have roles in nociception and vascular function, collectively, these data are consistent with the hypothesis that sensory nerve-derived neuronal factors innervate the cervix and play a role in cervical ripening.
Collapse
Affiliation(s)
- R E Papka
- Northeastern Ohio Universities College of Medicine, Department of Neurobiology, 4209 State Route 44, P.O. Box 95, Rootstown OH 44272, USA.
| | | | | | | | | |
Collapse
|
8
|
Chi L, Nixon E, Spencer F. Uterine-ovarian biochemical and developmental interactions to the postimplantation treatment with a butadiene metabolite, diepoxybutane, in pregnant rats. J Biochem Mol Toxicol 2003; 16:147-53. [PMID: 12242682 DOI: 10.1002/jbt.10021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An industrial chemical used in synthetic rubber production, 1,3-butadiene, is toxic to reproduction in rats and mice. Bioactivation of butadiene to reactive intermediates, i.e. diepoxybutane and other metabolites, is responsible for this toxicity. The present study examines the biochemical and developmental mechanisms of diepoxybutane at the feto-maternal placental axis during gestation. Female Sprague-Dawley rats were administered four daily intraperitoneal doses of diepoxybutane in groups (0.25, 0.30, 0.35, or 0.40 mmol in sesame oil per kg body weight, n = 6/group) during postimplantation (gestation days 5-8) and euthanized on gestation day 9 or 12 for retrieval of uterine and ovarian tissues, and serum for assays. The results demonstrate that this timely diepoxybutane treatment significantly decreased placental levels of pituitary adenylate cyclase-activating polypeptide mRNA expression that was measured by reverse transcription-polymerase chain reaction and of matrix metalloproteinase-9 activity that was determined by gelatin zymography, and serum progesterone levels on gestation days 9 and 12. From a developmental standpoint, fetal growth and viability were reduced in correlation with treatment-related effects of diepoxybutane on implantation losses and fetal resorptions on gestation day 9. Additionally, fetal mortality was maximally increased due to significantly pronounced, dose-independent effects on these parameters on gestation day 12. This trend towards more severe embryolethal treatment effects from gestation day 9 to 12 suggests that fetal metabolism in the gravid uteri of rats may be more sensitive to diepoxybutane exposure as pregnancy progresses. The inhibitory actions of diepoxybutane on placental pituitary adenylate cyclase-activating polypeptide expression and matrix metalloproteinase activity may contribute towards altering placental molecular support for fetal development and viability. Moreover, the reproductive toxicity of diepoxybutane in rats appears to be linked to progesterone action.
Collapse
Affiliation(s)
- Limen Chi
- Health Research Center and Biology Department, Southern University, Baton Rouge, LA, USA
| | | | | |
Collapse
|
9
|
Kántor O, Heinzlmann A, Suzuki N, Vincze E, Kocsis K, Köves K. Distribution of PACAP and its mRNA in several nonneural tissues of rats demonstrated by sandwich enzyme immunoassay and RT-PCR technique. REGULATORY PEPTIDES 2002; 109:103-5. [PMID: 12409221 DOI: 10.1016/s0167-0115(02)00192-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presence of PACAP in various organs was previously demonstrated using immunohistochemistry and radioimmunoassay. The aim of our work was to get information whether the presence of immunoreactive PACAP in various organs, mainly in the gastric mucosa, also indicates the place of its synthesis. The immunoreactive PACAP and its mRNA were measured in parallel assays using sandwich enzyme immunoassay (S-EIA) and RT-PCR technique. PACAP and its mRNA were demonstrated in the pancreas, testes, adrenal glands, ovaries, and in the oxyntic mucosa of the stomach. These results support our previous observation that PACAP is present not only in the nervous system and endocrine glands, but might be synthetized in the oxyntic mucosa of the stomach as well.
Collapse
Affiliation(s)
- Orsolya Kántor
- Department of Human Morphology and Developmental Biology, Semmelweis University, Faculty of Medicine, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
10
|
Spencer F, Chi L, Zhu M. Temporal relationships among uterine pituitary adenylate cyclase-activating polypeptide, decidual prolactin-related protein and progesterone receptor mRNAs expressions during decidualization and gestation in rats. Comp Biochem Physiol C Toxicol Pharmacol 2001; 129:25-34. [PMID: 11369298 DOI: 10.1016/s1532-0456(01)00177-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP), a novel compound with vasoactive intestinal polypeptide-like activity, was recently shown to be localized in the neuronal endings of the human uterus. The purpose of the present study was to assess the functional presence of PACAP mRNA in the decidual endometrium and its relationship to the expression levels of decidual prolactin-related protein (dPRP) and the progesterone receptor mRNAs during decidualization and pregnancy in Sprague-Dawley rats. PACAP was constitutively and temporally expressed in the decidual endometrium and gravid uterus. The time-dependent correlated expression levels of PACAP, dPRP and the progesterone receptor were induced by the neurogenic reproductive signals, i.e. the vagino-cervical/deciduogenic stimuli of decidualization and by the normal equivalent stimuli of mating/blastocyst implantation of gestation. Correlation among the mRNA expression levels of PACAP, dPRP and the progesterone receptor and the coordinated inhibitory actions of the anti-progesterone (RU-486) suggest that there is also correlated time-dependent steroid regulation of the mRNA levels of PACAP, dPRP and the progesterone receptor in the decidual and pregnant uteri. One possible functional meaning for the time-related localization of endometrial/uterine PACAP could be to facilitate endometrial blood flow and increase the availability of metabolic substrates to the developing deciduoma or embryo. The study demonstrates the potential importance of PACAP expression in the regulation of the maternal feto-placental component and suggests a prominent reproductive role for the neuropeptide in mammalian pregnancy.
Collapse
Affiliation(s)
- F Spencer
- Health Research Center, Southern University, 70813, Baton Rouge, LA, USA.
| | | | | |
Collapse
|
11
|
Spencer F, Chi L, Zhu M. A mechanistic assessment of 1,3-butadiene diepoxide-induced inhibition of uterine deciduoma proliferation in pseudopregnant rats. Reprod Toxicol 2001; 15:253-60. [PMID: 11390169 DOI: 10.1016/s0890-6238(01)00121-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Butadiene diepoxide (BDE), a reactive metabolite of 1,3-butadiene that is an important industrial chemical used in synthetic rubber production causes a dose-dependent inhibition of deciduoma development in pseudopregnant Sprague-Dawley rats. This study used 4 daily i.p. BDE doses of 0.20, 0.25, 0.30, 0.35, or 0.40 to characterize mechanisms that may be responsible for the antideciduoma effect. Pseudopregnant rats were treated either before (pseudopregnancy [PPG] days 1-4) or after (PPG days 5-9) deciduoma induction by endometrial trauma with a blunt needle. Animals were killed on PPG day 9 and evaluated for serum progesterone and endometrial protein and DNA. RT-PCR was used to measure message for estrogen receptor (ER) alpha and pituitary adenylate cyclase-activating polypeptide (PACAP). Substrate zymography and Western blotting were used respectively to measure matrix metalloproteinase (MMP)-9 and inducible nitric oxide synthase. The antideciduoma effects of BDE were associated with decreases in endometrial weight, protein, and DNA, with decreases in serum progesterone, and with decreases in PACAP message and MMP-9. A reduction in NOS was identified at the highest dose of BDE. Message for estrogen receptor (ER) alpha was not affected at any dose. We conclude that the reduction in decidual proliferation was direct and appeared to be associated with either 1) a decrease in the effectiveness of the deciduogenic stimulation and/or a weakened endometrial sensitivity to the stimulus; or 2) an effect on deciduoma development. Molecular mechanisms that apparently contributed to BDE inhibition of decidual metabolism included the synthesis of protein and DNA involved in decidual growth, the synthesis and activation of a matrix metalloproteinase for degradation of the extracellular matrix that is essential for tissue remodeling during deciduoma development, and the nitric oxide/nitric oxide synthase and pituitary adenylate cyclase-activating peptide systems that are involved in promoting vasodilation and increased vascular permeability to enhance the availability of substrates for maximal deciduoma growth. The ovotoxicity of BDE, which has previously been established, may indirectly affect decidual proliferation by reducing progesterone, the preeminent endocrine regulator of deciduoma development. The findings also suggest that BDE may possess no estrogenic action since it was associated with endometrial weight loss and unaltered levels of the estrogen receptor alpha mRNA expression.
Collapse
Affiliation(s)
- F Spencer
- Health Research Center, Southern University, Baton Rouge, Louisiana 70813, USA.
| | | | | |
Collapse
|
12
|
Arimura A. Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. THE JAPANESE JOURNAL OF PHYSIOLOGY 1998; 48:301-31. [PMID: 9852340 DOI: 10.2170/jjphysiol.48.301] [Citation(s) in RCA: 421] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
PACAP is a pleiotropic neuropeptide that belongs to the secretin/glucagon/VIP family. PACAP functions as a hypothalamic hormone, neurotransmitter, neuromodulator, vasodilator, and neurotrophic factor. Its structure has been remarkably conserved during evolution. The PACAP receptor is G protein-coupled with seven transmembrane domains and also belongs to the VIP receptor family. PACAP, but not VIP, binds to PAC1-R, whereas PACAP and VIP bind to VPAC1-R and VPAC2-R with a similar affinity. Despite the sizable homology of the structures of PACAP and VIP and their receptors, the distribution of these peptides and receptors is quite different. At least eight subtypes of PACAP specific, or PAC1-R, result from alternate splicing. Each subtype is coupled with specific signaling pathways, and its expression is tissue or cell specific. Although PACAP fulfills most requirements for a physiological hypothalamic hypophysiotropic hormone, it does not consistently stimulate secretion of the adenohypophysial hormones, except for stimulation of IL-6 release from the FS cells of the pituitary. The major regulatory role of PACAP in pituitary cells appears to be the regulation of gene expression of pituitary hormones and/or regulatory proteins that control growth and differentiation of the pituitary glandular cells. These effects appear to be exhibited directly and indirectly through a paracrine or autocrine action. Although PACAP stimulates the release of AVP, the physiological role of neurohypophysial PACAP remains unknown. One important action of PACAP in the endocrine system is its role as a potent secretagogue for adrenaline from the adrenal medulla through activation of TH. PACAP also stimulates the release of insulin and increases [Ca2+]i from pancreatic beta-cells at an extremely small concentration. The stage-specific expression of PACAP in testicular germ cells during spermatogenesis suggests its regulatory role in the maturation of germ cells. In the ovary, PACAP is transiently expressed in the granulosa cells of the preovulatory follicles and appears to be involved in the LH-induced cellular events in the ovary, including prevention of follicular apoptosis. In the central nervous system, PACAP acts as a neurotransmitter or neuromodulator, which has been supported by IHC and electrophysiological methods. More important, PACAP is a neurotrophic factor that may play an important role during the development of the brain. In the adult brain, PACAP appears to function as a neuroprotective factor that attenuates the neuronal damage resulting from various insults.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Animals
- Endocrine Glands/drug effects
- Endocrine Glands/physiology
- Female
- Humans
- Male
- Molecular Sequence Data
- Nervous System/drug effects
- Nervous System Physiological Phenomena
- Neuropeptides/genetics
- Neuropeptides/pharmacology
- Neuropeptides/physiology
- Neurosecretory Systems/drug effects
- Neurosecretory Systems/physiology
- Ovary/drug effects
- Ovary/physiology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/chemistry
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/physiology
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Sequence Homology, Amino Acid
- Signal Transduction
- Testis/drug effects
- Testis/physiology
- Tissue Distribution
Collapse
Affiliation(s)
- A Arimura
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|