1
|
Kowal EA, Wickramaratne S, Kotapati S, Turo M, Tretyakova N, Stone MP. Major groove orientation of the (2S)-N(6)-(2-hydroxy-3-buten-1-yl)-2'-deoxyadenosine DNA adduct induced by 1,2-epoxy-3-butene. Chem Res Toxicol 2014; 27:1675-86. [PMID: 25238403 PMCID: PMC4203389 DOI: 10.1021/tx500159w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Indexed: 02/08/2023]
Abstract
1,3-Butadiene (BD) is an environmental and occupational toxicant classified as a human carcinogen. It is oxidized by cytochrome P450 monooxygenases to 1,2-epoxy-3-butene (EB), which alkylates DNA. BD exposures lead to large numbers of mutations at A:T base pairs even though alkylation of guanines is more prevalent, suggesting that one or more adenine adducts of BD play a role in BD-mediated genotoxicity. However, the etiology of BD-mediated genotoxicity at adenine remains poorly understood. EB alkylates the N(6) exocyclic nitrogen of adenine to form N(6)-(hydroxy-3-buten-1-yl)-2'-dA ((2S)-N(6)-HB-dA) adducts ( Tretyakova , N. , Lin , Y. , Sangaiah , R. , Upton , P. B. , and Swenberg , J. A. ( 1997 ) Carcinogenesis 18 , 137 - 147 ). The structure of the (2S)-N(6)-HB-dA adduct has been determined in the 5'-d(C(1)G(2)G(3)A(4)C(5)Y(6)A(7)G(8)A(9)A(10)G(11))-3':5'-d(C(12)T(13)T(14)C(15)T(16)T(17)G(18)T(19) C(20)C(21)G(22))-3' duplex [Y = (2S)-N(6)-HB-dA] containing codon 61 (underlined) of the human N-ras protooncogene, from NMR spectroscopy. The (2S)-N(6)-HB-dA adduct was positioned in the major groove, such that the butadiene moiety was oriented in the 3' direction. At the Cα carbon, the methylene protons of the modified nucleobase Y(6) faced the 5' direction, which placed the Cβ carbon in the 3' direction. The Cβ hydroxyl group faced toward the solvent, as did carbons Cγ and Cδ. The Cβ hydroxyl group did not form hydrogen bonds with either T(16) O(4) or T(17) O(4). The (2S)-N(6)-HB-dA nucleoside maintained the anti conformation about the glycosyl bond, and the modified base retained Watson-Crick base pairing with the complementary base (T(17)). The adduct perturbed stacking interactions at base pairs C(5):G(18), Y(6):T(17), and A(7):T(16) such that the Y(6) base did not stack with its 5' neighbor C(5), but it did with its 3' neighbor A(7). The complementary thymine T(17) stacked well with both 5' and 3' neighbors T(16) and G(18). The presence of the (2S)-N(6)-HB-dA resulted in a 5 °C reduction in the Tm of the duplex, which is attributed to less favorable stacking interactions and adduct accommodation in the major groove.
Collapse
Affiliation(s)
- Ewa A. Kowal
- Department
of Chemistry, Center in Molecular Toxicology, Vanderbilt Ingram Cancer
Center, and Center for Structural Biology, Vanderbilt University, 2201 West End Avenue, Nashville, Tennessee 37235, United States
| | - Susith Wickramaratne
- Department
of Medicinal Chemistry, Masonic Cancer Center, and Department of Chemistry, University of Minnesota, Minneapolis Minnesota 55455, United States
| | - Srikanth Kotapati
- Department
of Medicinal Chemistry, Masonic Cancer Center, and Department of Chemistry, University of Minnesota, Minneapolis Minnesota 55455, United States
| | - Michael Turo
- Department
of Chemistry, Center in Molecular Toxicology, Vanderbilt Ingram Cancer
Center, and Center for Structural Biology, Vanderbilt University, 2201 West End Avenue, Nashville, Tennessee 37235, United States
| | - Natalia Tretyakova
- Department
of Medicinal Chemistry, Masonic Cancer Center, and Department of Chemistry, University of Minnesota, Minneapolis Minnesota 55455, United States
| | - Michael P. Stone
- Department
of Chemistry, Center in Molecular Toxicology, Vanderbilt Ingram Cancer
Center, and Center for Structural Biology, Vanderbilt University, 2201 West End Avenue, Nashville, Tennessee 37235, United States
| |
Collapse
|
2
|
Cheng X, Zhang T, Zhao J, Zhou J, Shao H, Zhou Z, Kong F, Feng N, Sun Y, Shan B, Xia Z. The association between genetic damage in peripheral blood lymphocytes and polymorphisms of three glutathione S-transferases in Chinese workers exposed to 1,3-butadiene. Mutat Res 2012; 750:139-46. [PMID: 23159492 DOI: 10.1016/j.mrgentox.2012.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 10/09/2012] [Accepted: 10/20/2012] [Indexed: 11/25/2022]
Abstract
1,3-Butadiene (BD) has been classified as a human carcinogen, group I; however, the relationship between polymorphisms of glutathione S-transferases that metabolize BD and chromosomal damage is not clear. The present study used sister chromatid exchange (SCE) and cytokinesis-block micronucleus (CBMN) assays to detect chromosomal damage in peripheral lymphocytes of 44 BD-exposed workers and 39 non-exposed healthy controls. PCR and PCR-RFLP were employed to detect three known glutathione S-transferase polymorphisms GSTT1, GSTM1, and GSTP1 (Ile105Val). The data demonstrated that the micronucleus (CBMN) frequency in BD-exposed workers was significantly higher than that in controls (frequency ratio (FR)=1.48, 95% CI: 1.14-1.91, P<0.01), and the CBMN frequency was higher in workers exposed to higher cumulative BD levels (FR=1.70, 95% CI: 1.28-2.27, P<0.01). However, differences in SCE frequency were not observed (FR=1.14, 95% CI: 0.81-1.61, P>0.05). Among exposed workers, chromosomal damage was related to BD exposure levels (FR=1.35, 95% CI: 1.02-1.80, P<0.05); age, older workers exhibited higher MN frequencies than younger workers (FR=1.45, 95% CI: 1.14-1.84, P<0.05); and years of work, those with more years of work exhibited higher MN frequencies than those with fewer years (FR=1.40, 95% CI: 1.10-1.77, P<0.05). Multivariate Poisson regression analysis showed that those who carried GSTM1 (-) (FR=1.48, 95% CI: 1.14-1.92) or GSTT1 (-) (FR=1.42, 95% CI: 1.10-1.83) genotypes, and especially those who carried both (FR=2.10, 95% CI: 1.43-3.09) exhibited significantly higher MN frequencies than those carrying GSTM1 (+), GSTT1 (+) genotypes or their combination. The GSTP1 Val genotype did not affect MN frequency (P>0.05). Our results suggested that higher levels of BD exposure in the workplace resulted in increased chromosomal damage, and that polymorphisms in GSTT1 and GSTM1 genes might modulate the genotoxic effects of BD exposure. Furthermore, the GSTT1 and GSTM1 polymorphisms exhibited an additive effect. Finally, urinary DHBMA was found to provide a biomarker that correlated with airborne BD levels.
Collapse
Affiliation(s)
- Xuemei Cheng
- The Department of Occupational Health, School of Public Health of Fudan University, and the Key Laboratory of Public Health and Safety of the Ministry of Education of China, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Xu W, Merritt WK, Nechev LV, Harris TM, Harris CM, Lloyd RS, Stone MP. Structure of the 1,4-Bis(2'-deoxyadenosin-N(6)-yl)-2S,3S-butanediol intrastrand DNA cross-link arising from butadiene diepoxide in the human N-ras codon 61 sequence. Chem Res Toxicol 2007; 20:187-98. [PMID: 17256975 PMCID: PMC2597494 DOI: 10.1021/tx060210a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The 1,4-bis(2'-deoxyadenosin-N(6)-yl)-2S,3S-butanediol intrastrand DNA cross-link arises from the bis-alkylation of tandem N(6)-dA sites in DNA by R,R-butadiene diepoxide (BDO(2)). The oligodeoxynucleotide 5'-d(C(1)G(2)G(3)A(4)C(5)X(6)Y(7)G(8)A(9)A(10)G(11))-3'.5'-d(C(12)T(13)T(14)C(15)T(16)T(17)G(18)T(19)C(20)C(21)G(22))-3' contains the BDO(2) cross-link between the second and third adenines of the codon 61 sequence (underlined) of the human N-ras protooncogene and is named the (S,S)-BD-(61-2,3) cross-link (X,Y = cross-linked adenines). NMR analysis reveals that the cross-link is oriented in the major groove of duplex DNA. Watson-Crick base pairing is perturbed at base pair X(6).T(17), whereas base pairing is intact at base pair Y(7).T(16). The cross-link appears to exist in two conformations, in rapid exchange on the NMR time scale. In the first conformation, the beta-OH is predicted to form a hydrogen bond with T(16) O(4), whereas in the second, the beta-OH is predicted to form a hydrogen bond with T(17) O(4). In contrast to the (R,R)-BD-(61-2,3) cross-link in the same sequence (Merritt, W. K., Nechev, L. V., Scholdberg, T. A., Dean, S. M., Kiehna, S. E., Chang, J. C., Harris, T. M., Harris, C. M., Lloyd, R. S., and Stone, M. P. (2005) Biochemistry 44, 10081-10092), the anti-conformation of the two hydroxyl groups at C(beta) and C(gamma) with respect to the C(beta)-C(gamma) bond results in a decreased twist between base pairs X(6).T(17) and Y(7).T(16), and an approximate 10 degrees bending of the duplex. These conformational differences may account for the differential mutagenicity of the (S,S)- and (R,R)-BD-(61-2,3) cross-links and suggest that stereochemistry plays a role in modulating biological responses to these cross-links (Kanuri, M., Nechev, L. V., Tamura, P. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2002) Chem. Res. Toxicol. 15, 1572-1580).
Collapse
Affiliation(s)
- Wen Xu
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | | | | | - Thomas M. Harris
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Constance M. Harris
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | | | - Michael P. Stone
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
4
|
Sapkota A, Halden RU, Dominici F, Groopman JD, Buckley TJ. Urinary biomarkers of 1,3-butadiene in environmental settings using liquid chromatography isotope dilution tandem mass spectrometry. Chem Biol Interact 2006; 160:70-9. [PMID: 16423335 DOI: 10.1016/j.cbi.2005.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 12/12/2005] [Accepted: 12/13/2005] [Indexed: 11/21/2022]
Abstract
Although, 1,3-butadiene is a known human carcinogen emitted from mobile sources, little is known about traffic-related human exposure to this toxicant. This pilot study was designed to characterize traffic-related environmental exposure to 1,3-butadiene and evaluate its urinary mercapturic acids as biomarkers of exposure in these settings. Personal air samples and multiple urine samples were collected on two separate occasions from three groups of individuals that differed by spatial proximity as well as intensity of traffic: (i) toll collectors, (ii) urban-weekday and (iii) suburban-weekend group. Air samples were analyzed using thermal desorption followed by GC/MS and urine samples were analyzed using isotope dilution liquid chromatography tandem mass spectrometry (ID-LC-MS/MS) for two mercapturic acids of 1,3-butadiene: monohydroxy-3-butenyl mercapturic acid (MHBMA) and 1,2-dihydroxybutyl mercapturic acid (DHBMA). Exposure differed between groups (p<0.05) with median values of 2.38, 1.62 and 0.88 microg/m(3) for toll collectors, the urban-weekday group and the suburban-weekend group, respectively. A refined ID-LC-MS/MS method enabled detection of MHBMA, previously detected only in occupational settings, with high frequency. MHBMA and DHBMA were detected in 95 and 100% of urine samples at levels (mean+/-S.D.) of 9.7+/-9.5, 6.0+/-4.3 and 6.8+/-2.6 ng/mL for MHBMA and 378+/-196, 258+/-133 and 306+/-242 ng/mL for DHBMA for the three different groups, respectively. Mean biomarker levels were higher among the toll collectors compared to the other two groups, however, the differences were not statistically significant (p>0.05). This study is the first to evaluate 1,3-butadiene biomarkers for subtle differences in environmental exposures. However, additional research will be required to ascertain whether the lack of statistical association observed here is real or attributable to unexpectedly small differences in exposure between groups (<1 microg/m(3)), non-specificity of the biomarker at low exposure, and/or small sample size.
Collapse
Affiliation(s)
- Amir Sapkota
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
5
|
Merritt WK, Nechev LV, Scholdberg TA, Dean SM, Kiehna SE, Chang JC, Harris TM, Harris CM, Lloyd RS, Stone MP. Structure of the 1,4-bis(2'-deoxyadenosin-N6-yl)-2R,3R-butanediol cross-link arising from alkylation of the human N-ras codon 61 by butadiene diepoxide. Biochemistry 2005; 44:10081-92. [PMID: 16042385 PMCID: PMC2585418 DOI: 10.1021/bi047263g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The solution structure of the 1,4-bis(2'-deoxyadenosin-N(6)-yl)-2R,3R-butanediol cross-link arising from N(6)-dA alkylation of nearest-neighbor adenines by butadiene diepoxide (BDO(2)) was determined in the oligodeoxynucleotide 5'-d(CGGACXYGAAG)-3'.5'-d(CTTCTTGTCCG)-3'. This oligodeoxynucleotide contained codon 61 (underlined) of the human N-ras protooncogene. The cross-link was accommodated in the major groove of duplex DNA. At the 5'-side of the cross-link there was a break in Watson-Crick base pairing at base pair X(6).T(17), whereas at the 3'-side of the cross-link at base pair Y(7).T(16), base pairing was intact. Molecular dynamics calculations carried out using a simulated annealing protocol, and restrained by a combination of 338 interproton distance restraints obtained from (1)H NOESY data and 151 torsion angle restraints obtained from (1)H and (31)P COSY data, yielded ensembles of structures with good convergence. Helicoidal analysis indicated an increase in base pair opening at base pair X(6).T(17), accompanied by a shift in the phosphodiester backbone torsion angle beta P5'-O5'-C5'-C4' at nucleotide X(6). The rMD calculations predicted that the DNA helix was not significantly bent by the presence of the four-carbon cross-link. This was corroborated by gel mobility assays of multimers containing nonhydroxylated four-carbon N(6),N(6)-dA cross-links, which did not predict DNA bending. The rMD calculations suggested the presence of hydrogen bonding between the hydroxyl group located on the beta-carbon of the four-carbon cross-link and T(17) O(4), which perhaps stabilized the base pair opening at X(6).T(17) and protected the T(17) imino proton from solvent exchange. The opening of base pair X(6).T(17) altered base stacking patterns at the cross-link site and induced slight unwinding of the DNA duplex. The structural data are interpreted in terms of biochemical data suggesting that this cross-link is bypassed by a variety of DNA polymerases, yet is significantly mutagenic [Kanuri, M., Nechev, L. V., Tamura, P. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2002) Chem. Res. Toxicol. 15, 1572-1580].
Collapse
Affiliation(s)
- W. Keither Merritt
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | | | | | - Stephen M. Dean
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Sarah E. Kiehna
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Johanna C. Chang
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Thomas M. Harris
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Constance M. Harris
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | | | - Michael P. Stone
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
6
|
Merritt WK, Kowalczyk A, Scholdberg TA, Dean SM, Harris TM, Harris CM, Lloyd RS, Stone MP. Dual roles of glycosyl torsion angle conformation and stereochemical configuration in butadiene oxide-derived N1 beta-hydroxyalkyl deoxyinosine adducts: a structural perspective. Chem Res Toxicol 2005; 18:1098-107. [PMID: 16022502 PMCID: PMC2584607 DOI: 10.1021/tx050023x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The solution structure of the N1-[1-hydroxy-3-buten-2(R)-yl]-2'-deoxyinosine adduct arising from the alkylation of adenine N1 by butadiene epoxide (BDO), followed by deamination to deoxyinosine, was determined in the oligodeoxynucleotide 5'-d(CGGACXAGAAG)-3'.5'-d(CTTCTTGTCCG)-3'. This oligodeoxynucleotide contained the BDO adduct at the second position of codon 61 of the human N-ras protooncogene (underlined) and was named the ras61 R-N1-BDO-(61,2) adduct. 1H NMR revealed a weak C5 H1' to X6 H8 nuclear Overhauser effects (NOE), followed by an intense X6 H8 to X6 H1' NOE. Simultaneously, the X6 H8 to X6 H3' NOE was weak. The resonances arising from the T16 and T17 imino protons were not observed. 1H NOEs between the butadiene moiety and the DNA positioned the adduct in the major groove. Structural refinement based upon a total of 394 NOE-derived distance restraints and 151 torsion angle restraints yielded a structure in which the modified deoxyinosine was in the syn conformation about the glycosyl bond, with a glycosyl bond angle of 83 degrees , and T17, the complementary nucleotide, was stacked into the helix but not hydrogen bonded with the adducted inosine. The refined structure provides a plausible hypothesis as to why these N1 deoxyinosine adducts strongly code for the incorporation of dCTP during trans lesion DNA replication, irrespective of stereochemistry, both in Escherichia coli [Rodriguez, D. A., Kowalczyk, A., Ward, J. B. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2001) Environ. Mol. Mutagen. 38, 292-296] and in mammalian cells [Kanuri, M., Nechev, L. N., Tamura, P. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2002) Chem. Res. Toxicol. 15, 1572-1580]. Rotation of the N1 deoxyinosine adduct into the syn conformation may facilitate incorporation of dCTP via Hoogsteen type templating with deoxyinosine, generating A to G mutations. However, conformational differences between the R- and the S-N1-BDO-(61,2) adducts, involving the positioning of the butenyl moiety in the major groove of DNA, suggest that adduct stereochemistry plays a secondary role in modulating the biological response to these adducts.
Collapse
Affiliation(s)
- W. Keither Merritt
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Agnieszka Kowalczyk
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Tandace A. Scholdberg
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Stephen M. Dean
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Thomas M. Harris
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Constance M. Harris
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - R. Stephen Lloyd
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Michael P. Stone
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
7
|
Sapkota A, Buckley TJ. The mobile source effect on curbside 1,3-butadiene, benzene, and particle-bound polycyclic aromatic hydrocarbons assessed at a tollbooth. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2003; 53:740-748. [PMID: 12828334 DOI: 10.1080/10473289.2003.10466212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
On-road mobile sources contribute substantially to ambient air concentrations of the carcinogens 1,3-butadiene, benzene, and polycyclic aromatic hydrocarbons (PAHs). The current study measured benzene and 1,3-butadiene at the Baltimore Harbor Tunnel tollbooth over 3-hr intervals on seven weekdays (n = 56). Particle-bound PAH was measured on a subset of three days. The 3-hr outdoor 1,3-butadiene levels varied according to time of day and traffic volume. The minimum occurred at night (12 a.m.-3 a.m.) with a mean of 2 microg/m3 (SD = 1.3, n = 7), while the maximum occurred during the morning rush hour (6 a.m.-9 a.m.) with a mean of 11.9 microg/m3 (SD = 4.6, n = 7). The corresponding traffic counts were 1413 (SD = 144) and 16,893 (SD = 692), respectively. During the same intervals, mean benzene concentration varied from 3 microg/m3 (SD = 3.1, n = 7) to 22.3 microg/m3 (SD = 7.6, n = 7). Median PAH concentrations ranged from 9 to 199 ng/m3. Using multivariate regression, a significant association (p < 0.001) between traffic and curbside concentration was observed. Much of the pollutant variability (1,3-butadiene 62%, benzene 77%, and PAH 85%) was explained by traffic volume, class, and meteorology. Results suggest > 2-axle vehicles emit 60, 32, and 9 times more PAH, 1,3-butadiene, and benzene, respectively, than do 2-axle vehicles. This study provides a model for estimating curbside pollution levels associated with traffic that may be relevant to exposures in the urban environment.
Collapse
Affiliation(s)
- Amir Sapkota
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|