1
|
Roy M, Wang Q, Guo X, Stäb D, Jin N, Lim RP, Ooi A, Chakraborty S. Enhancing the predictive capability of magnetic resonance imaging using medical data-supervised cardiovascular flow simulations: A case study for analyzing patient-specific flow in the human aorta. Comput Biol Med 2025; 190:110103. [PMID: 40187179 DOI: 10.1016/j.compbiomed.2025.110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Detailed hemodynamic parameters are essential for managing cardiovascular diseases, as they reveal blood flow dynamics that affect disease progression and treatment. However, even such advanced techniques as 4D Phase Contrast MRI face challenges in providing accurate, high-resolution data due to limitations in spatial and temporal resolution and image artifacts. Computational Fluid Dynamics (CFD) can estimate these parameters theoretically, but patient-specific accuracy may be compromised due to assumptions in boundary conditions and material properties. METHOD Here, we aim to circumvent current limitations in medical imaging and CFD simulations by creating a comprehensive cardiovascular analytics model informed by clinical data. We develop a patient-specific simulation framework by deriving critical geometric parameters, boundary conditions, and aortic wall material properties directly from medical investigation and imaging data. This detailed information is subsequently integrated into Fluid-Structure-Interaction simulations to predict such key hemodynamic indicators as pressure distribution, wall deformation, time-averaged wall shear stress and oscillatory shear index to better assess individual vascular health. This approach effectively links imaging technology with computational modeling, as evidenced from our findings based on the medical imaging data of a representative human subject. RESULTS AND CONCLUSION The results reveal that such amalgamation of patient-specific parameters enhances the simulation's accuracy, offering a more comprehensive and precise assessment of cardiovascular health than the traditional generic approaches. This comprehensive framework thus has potential to become an invaluable clinical tool, enhancing the accuracy of hemodynamic assessment, moving toward more personalized care and informing effective treatment decision-making.
Collapse
Affiliation(s)
- Manideep Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Qingdi Wang
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Xiaojing Guo
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Daniel Stäb
- MR Research Collaborations, Siemens Healthcare Pty Limited, Melbourne, VIC, 3153, Australia
| | - Ning Jin
- Siemens Medical Solutions Inc. Malvern, PA, 19355, USA
| | - Ruth P Lim
- Departments of Radiology and Surgery, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia; Department of Radiology, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Andrew Ooi
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Suman Chakraborty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India; Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
2
|
Castro R, Gullette S, Whalen C, Mattie FJ, Ge X, Ross AC, Neuberger T. High-field magnetic resonance microscopy of aortic plaques in a mouse model of atherosclerosis. MAGMA (NEW YORK, N.Y.) 2023; 36:887-896. [PMID: 37421501 PMCID: PMC10667155 DOI: 10.1007/s10334-023-01102-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 07/10/2023]
Abstract
OBJECTIVES Pre-clinical models of human atherosclerosis are extensively used; however, traditional histological methods do not allow for a holistic view of vascular lesions. We describe an ex-vivo, high-resolution MRI method that allows the 3 dimensional imaging of the vessel for aortic plaque visualization and quantification. MATERIALS AND METHODS Aortas from apolipoprotein-E-deficient (apoE-/-) mice fed an atherogenic diet (group 1) or a control diet (group 2) were subjected to 14 T MR imaging using a 3D gradient echo sequence. The obtained data sets were reconstructed (Matlab), segmented, and analyzed (Avizo). The aortas were further sectioned and subjected to traditional histological analysis (Oil-Red O and hematoxylin staining) for comparison. RESULTS A resolution up to 15 × 10x10 μm3 revealed that plaque burden (mm3) was significantly (p < 0.05) higher in group 1 (0.41 ± 0.25, n = 4) than in group 2 (0.01 ± 0.01, n = 3). The achieved resolution provided similar detail on the plaque and the vessel wall morphology compared with histology. Digital image segmentation of the aorta's lumen, plaque, and wall offered three-dimensional visualizations of the entire, intact aortas. DISCUSSION 14 T MR microscopy provided histology-like details of pathologically relevant vascular lesions. This work may provide the path research needs to take to enable plaque characterization in clinical applications.
Collapse
Affiliation(s)
- Rita Castro
- Department of Nutritional Sciences, Penn State University, PA, 16802, University Park, USA
- Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sean Gullette
- Huck Institutes of The Life Sciences, Penn State University, PA, 16802, University Park, USA
| | - Courtney Whalen
- Department of Nutritional Sciences, Penn State University, PA, 16802, University Park, USA
| | - Floyd J Mattie
- Department of Nutritional Sciences, Penn State University, PA, 16802, University Park, USA
| | - Ximing Ge
- Department of Nutritional Sciences, Penn State University, PA, 16802, University Park, USA
| | - A Catharine Ross
- Department of Nutritional Sciences, Penn State University, PA, 16802, University Park, USA
| | - Thomas Neuberger
- Huck Institutes of The Life Sciences, Penn State University, PA, 16802, University Park, USA.
- Department of Biomedical Engineering, Penn State University, PA, 16802, University Park, USA.
| |
Collapse
|
3
|
Whittington B, Dweck MR, van Beek EJR, Newby D, Williams MC. PET-MRI of Coronary Artery Disease. J Magn Reson Imaging 2023; 57:1301-1311. [PMID: 36524452 DOI: 10.1002/jmri.28554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Simultaneous positron emission tomography and magnetic resonance imaging (PET-MRI) combines the anatomical detail and tissue characterization of MRI with the functional information from PET. Within the coronary arteries, this hybrid technique can be used to identify biological activity combined with anatomically high-risk plaque features to better understand the processes underlying coronary atherosclerosis. Furthermore, the downstream effects of coronary artery disease on the myocardium can be characterized by providing information on myocardial perfusion, viability, and function. This review will describe the current capabilities of PET-MRI in coronary artery disease and discuss the limitations and future directions of this emerging technique. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Beth Whittington
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
| | | | - David Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
| | - Michelle C Williams
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Li Q, Cai M, Wang H, Chen L. Diagnostic Performance of Contrast-Enhanced Ultrasound and High-Resolution Magnetic Resonance Imaging for Carotid Atherosclerotic Plaques: A Systematic Review and Meta-Analysis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:739-749. [PMID: 36321389 DOI: 10.1002/jum.16122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES The aim of this meta-analysis was to evaluate the diagnostic value of contrast-enhanced ultrasound (CEUS) and high-resolution magnetic resonance imaging (HR-MRI) in patients with carotid vulnerable plaques. METHODS A systematic review was conducted in PubMed, Embase, Cochrane Library, and Web of Science using the search terms carotid artery, atherosclerotic plaque, CEUS, contrast-enhanced ultrasound, HR-MRI, and high-resolution magnetic resonance. Studies published since the establishment of the library until December 2021 were retrieved. The statistical analyses were performed with Meta-DiSc version 1.4. Beyond that, the potential sources of heterogeneity for CEUS and HR-MRI were explored. RESULTS Nine articles were included in this study. For CEUS, the pooled sensitivity and specificity for detecting carotid vulnerable plaques 91% (95% confidence interval [CI]: 84%, 95%) and 67% (95% CI: 54%, 79%), respectively. For HR-MRI, the pooled sensitivity and specificity were 78% (95% CI: 72%, 83%) and 65% (95% CI, 56%, 73%), respectively. The area under the summary receiver operating characteristic curve for CEUS and HR-MRI were 0.9218 and 0.8129, respectively. However, the difference in diagnostic accuracy between CEUS and HR-MRI diagnostic accuracy was not statistically significant. CONCLUSIONS The study shows that the sensitivity of CEUS was higher than that of HR-MRI, and the specificity was similar to HR-MRI. CEUS and HR-MRI provide a similar diagnostic yield in detecting a vulnerable plaque. Thus, CEUS may be a useful tool for the diagnosis of carotid vulnerable plaques.
Collapse
Affiliation(s)
- Qiuping Li
- Department of Ultrasonography, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Miaomiao Cai
- Department of Ultrasonography, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Wang
- Department of Ultrasonography, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Libo Chen
- Department of Ultrasonography, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Izquierdo-Garcia D, Diyabalanage H, Ramsay IA, Rotile NJ, Mauskapf A, Choi JK, Witzel T, Humblet V, Jaffer FA, Brownell AL, Tawakol A, Catana C, Conrad MF, Caravan P, Ay I. Imaging High-Risk Atherothrombosis Using a Novel Fibrin-Binding Positron Emission Tomography Probe. Stroke 2022; 53:595-604. [PMID: 34965737 PMCID: PMC8792326 DOI: 10.1161/strokeaha.121.035638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE High-risk atherosclerosis is an underlying cause of cardiovascular events, yet identifying the specific patient population at immediate risk is still challenging. Here, we used a rabbit model of atherosclerotic plaque rupture and human carotid endarterectomy specimens to describe the potential of molecular fibrin imaging as a tool to identify thrombotic plaques. METHODS Atherosclerotic plaques in rabbits were induced using a high-cholesterol diet and aortic balloon injury (N=13). Pharmacological triggering was used in a group of rabbits (n=9) to induce plaque disruption. Animals were grouped into thrombotic and nonthrombotic plaque groups based on gross pathology (gold standard). All animals were injected with a novel fibrin-specific probe 68Ga-CM246 followed by positron emission tomography (PET)/magnetic resonance imaging 90 minutes later. 68Ga-CM246 was quantified on the PET images using tissue-to-background (back muscle) ratios and standardized uptake value. RESULTS Both tissue-to-background (back muscle) ratios and standardized uptake value were significantly higher in the thrombotic versus nonthrombotic group (P<0.05). Ex vivo PET and autoradiography of the abdominal aorta correlated positively with in vivo PET measurements. Plaque disruption identified by 68Ga-CM246 PET agreed with gross pathology assessment (85%). In ex vivo surgical specimens obtained from patients undergoing elective carotid endarterectomy (N=12), 68Ga-CM246 showed significantly higher binding to carotid plaques compared to a D-cysteine nonbinding control probe. CONCLUSIONS We demonstrated that molecular fibrin PET imaging using 68Ga-CM246 could be a useful tool to diagnose experimental and clinical atherothrombosis. Based on our initial results using human carotid plaque specimens, in vivo molecular imaging studies are warranted to test 68Ga-CM246 PET as a tool to stratify risk in atherosclerotic patients.
Collapse
Affiliation(s)
- David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA,Harvard-MIT Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Ian A. Ramsay
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA,Collagen Medical, LLC, Belmont, MA,The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA,The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
| | - Adam Mauskapf
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ji-Kyung Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | | | - Farouc A. Jaffer
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Ahmed Tawakol
- Nuclear Cardiology, Division of Cardiology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA,The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
| | - Mark F. Conrad
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA,The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
| | - Ilknur Ay
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| |
Collapse
|
6
|
Cervical Carotid Plaque MRI : Review of Atherosclerosis Imaging Features and their Histologic Underpinnings. Clin Neuroradiol 2021; 31:295-306. [PMID: 33398451 DOI: 10.1007/s00062-020-00987-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Magnetic resonance (MR) imaging is considered the gold standard for non-invasive evaluation of carotid artery plaque morphology and composition. A number of studies have demonstrated the clinical utility of MR plaque imaging in the risk stratification of carotid atherosclerotic disease, determination of stroke etiology, and identification of surgical and endovascular candidates for carotid revascularization procedures. The MR plaque imaging also provides researchers and clinicians with valuable insights into the pathogenesis, natural history and composition of carotid atherosclerotic disease. Nevertheless, the field of MR plaque imaging is complex, and requires a thorough knowledge of the histologic basis for how various plaque features appear on imaging. This article details the pathogenesis and histology of atherosclerosis, reviews the expected appearance of different plaque components, and describes how MR imaging features may be related to symptomatology or predict future ischemic events.
Collapse
|
7
|
Carotid Artery Plaque Identification and Display System (MRI-CAPIDS) Using Opensource Tools. Diagnostics (Basel) 2020; 10:diagnostics10121111. [PMID: 33371362 PMCID: PMC7767364 DOI: 10.3390/diagnostics10121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
Magnetic resonance imaging (MRI) represents one modality in atherosclerosis risk assessment, by permitting the classification of carotid plaques into either high- or low-risk lesions. Although MRI is generally used for observing the impact of atherosclerosis on vessel lumens, it can also show both the size and composition of itself, as well as plaque information, thereby providing information beyond that of simple stenosis. Software systems are a valuable aid in carotid artery stenosis assessment wherein commercial software is readily available but is not accessible to all practitioners because of its often high cost. This study focuses on the development of a software system designed entirely for registration, marking, and 3D visualization of the wall and lumen, using freely available open-source tools and libraries. It was designed to be free from “feature bloat” and avoid “feature-creep.” The image loading and display module of the modified QDCM library was improved by a minimum of 10,000%. A Bezier function was used in order to smoothen the curve of the polygon (referring to the shape formed by the marked points) by interpolating additional points between the marked points. This smoother curve led to a smoother 3D view of the lumen and wall.
Collapse
|
8
|
Wüst RCI, Calcagno C, Daal MRR, Nederveen AJ, Coolen BF, Strijkers GJ. Emerging Magnetic Resonance Imaging Techniques for Atherosclerosis Imaging. Arterioscler Thromb Vasc Biol 2020; 39:841-849. [PMID: 30917678 DOI: 10.1161/atvbaha.118.311756] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atherosclerosis is a prevalent disease affecting a large portion of the population at one point in their lives. There is an unmet need for noninvasive diagnostics to identify and characterize at-risk plaque phenotypes noninvasively and in vivo, to improve the stratification of patients with cardiovascular disease, and for treatment evaluation. Magnetic resonance imaging is uniquely positioned to address these diagnostic needs. However, currently available magnetic resonance imaging methods for vessel wall imaging lack sufficient discriminative and predictive power to guide the individual patient needs. To address this challenge, physicists are pushing the boundaries of magnetic resonance atherosclerosis imaging to increase image resolution, provide improved quantitative evaluation of plaque constituents, and obtain readouts of disease activity such as inflammation. Here, we review some of these important developments, with specific focus on emerging applications using high-field magnetic resonance imaging, the use of quantitative relaxation parameter mapping for improved plaque characterization, and novel 19F magnetic resonance imaging technology to image plaque inflammation.
Collapse
Affiliation(s)
- Rob C I Wüst
- From the Biomedical Engineering and Physics (R.C.I.W., M.R.R.D., B.F.C., G.J.S.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Claudia Calcagno
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York (C.C., G.J.S.)
| | - Mariah R R Daal
- From the Biomedical Engineering and Physics (R.C.I.W., M.R.R.D., B.F.C., G.J.S.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Aart J Nederveen
- Radiology and Nuclear Medicine (A.J.N.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Bram F Coolen
- From the Biomedical Engineering and Physics (R.C.I.W., M.R.R.D., B.F.C., G.J.S.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Gustav J Strijkers
- From the Biomedical Engineering and Physics (R.C.I.W., M.R.R.D., B.F.C., G.J.S.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands.,Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York (C.C., G.J.S.)
| |
Collapse
|
9
|
Jodas DS, Pereira AS, Tavares JMRS. Classification of calcified regions in atherosclerotic lesions of the carotid artery in computed tomography angiography images. Neural Comput Appl 2019. [DOI: 10.1007/s00521-019-04183-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Dweck MR, Robson PM, Rudd JH, Fayad ZA. Atherosclerotic Plaque Imaging. CARDIOVASCULAR MAGNETIC RESONANCE 2019:335-342.e3. [DOI: 10.1016/b978-0-323-41561-3.00028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Mihalko E, Huang K, Sproul E, Cheng K, Brown AC. Targeted Treatment of Ischemic and Fibrotic Complications of Myocardial Infarction Using a Dual-Delivery Microgel Therapeutic. ACS NANO 2018; 12:7826-7837. [PMID: 30016078 DOI: 10.1021/acsnano.8b01977] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Myocardial infarction (MI), commonly known as a heart attack, affects millions of people worldwide and results in significant death and disabilities. A major cause of MI is fibrin-rich thrombus formation that occludes the coronary arteries, blocking blood flow to the heart and causing fibrin deposition. In treating MI, re-establishing blood flow is critical. However, ischemia reperfusion (I/R) injury itself can also occur and contributes to cardiac fibrosis. Fibrin-specific poly( N-isopropylacrylamide) nanogels (FSNs) comprised of a core-shell colloidal hydrogel architecture are utilized in this study to design a dual-delivery system that simultaneously addresses the need to (1) re-establish blood flow and (2) inhibit cardiac fibrosis following I/R injury. These therapeutic needs are met by controlling the release of a fibrinolytic protein, tissue plasminogen activator (tPA), and a small molecule cell contractility inhibitor (Y-27632). In vitro, tPA and Y-27632-loaded FSNs rapidly degrade fibrin and decrease cardiac cell stress fiber formation and connective tissue growth factor expression, which are both upregulated in cardiac fibrosis. In vivo, FSNs localize to fibrin in injured heart tissue and, when loaded with tPA and Y-27632, showed significant improvement in left ventricular ejection fraction 2 and 4 weeks post-I/R as well as significantly decreased infarct size, α-smooth muscle actin expression, and connective tissue growth factor expression 4 weeks post-I/R. Together, these data demonstrate the feasibility of this targeted therapeutic strategy to improve cardiac function following MI.
Collapse
|
12
|
Khosa F, Clough RE, Wang X, Madhuranthakam AJ, Greenman RL. The potential role of IDEAL MRI for identification of lipids and hemorrhage in carotid artery plaques. Magn Reson Imaging 2018; 49:25-31. [DOI: 10.1016/j.mri.2017.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/03/2017] [Indexed: 02/06/2023]
|
13
|
Kuroiwa Y, Yamashita A, Imamura T, Asada Y. [7. Basic Research and Clinical Applications of Magnetic Resonance Imaging: Qualitative Assessment of Cardiovascular Diseases]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2018; 74:599-605. [PMID: 29925755 DOI: 10.6009/jjrt.2018_jsrt_74.6.599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Yasuyoshi Kuroiwa
- Department of Radiological Technology, Koga General Hospital
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| | | | - Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| |
Collapse
|
14
|
Noguchi T, Nakao K, Asaumi Y, Morita Y, Otsuka F, Kataoka Y, Hosoda H, Miura H, Fukuda T, Yasuda S. Noninvasive Coronary Plaque Imaging. J Atheroscler Thromb 2017; 25:281-293. [PMID: 29225326 PMCID: PMC5906180 DOI: 10.5551/jat.rv17019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Early identification of high-risk or vulnerable atherosclerotic plaques prone to rupture and performing preemptive therapy prior to catastrophic cardiovascular events are optimal goals of plaque imaging. Despite the advances in imaging modalities to identify vulnerable characteristics, the predictive value of the imaging techniques in the clinical setting is still developing. In this regard, reliable and high-sensitive imaging modalities identifying vulnerable plaque characters that may lead to future cardiovascular events will be useful. In this review article, we describe a current non-invasive plaque imaging technique to identify high-risk coronary plaque features.
Collapse
Affiliation(s)
- Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Kazuhiro Nakao
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Yoshiaki Morita
- Department of Radiology, National Cerebral and Cardiovascular Center
| | - Fumiyuki Otsuka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Yu Kataoka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hayato Hosoda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hiroyuki Miura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Tetsuya Fukuda
- Department of Radiology, National Cerebral and Cardiovascular Center
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| |
Collapse
|
15
|
Yamashita K, Hiwatashi A, Togao O, Kondo M, Kikuchi K, Inoguchi T, Maehara J, Kyuragi Y, Honda H. Additive value of "otosclerosis-weighted" images for the CT diagnosis of fenestral otosclerosis. Acta Radiol 2017; 58:1215-1221. [PMID: 28090791 DOI: 10.1177/0284185116687172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Otosclerotic foci are usually seen as minute low-density lesions and this may be attributed to relatively low sensitivity on visual assessment using computed tomography (CT). Otosclerotic foci can be detected by using the accurate region of interest (ROI) setting, while small ROI settings by less-experienced radiologists may result in false negative findings. Purpose To evaluate the diagnostic ability of our proposed method ("otosclerosis-weighted" imaging [OWI]), which is based on reversing the density, compared with conventional CT (CCT) imaging alone. Material and Methods Temporal bone CTs of consecutive patients with otosclerosis were analyzed. Gender- and age-matched control participants were also included. All CT images were obtained using a 64-detector row scanner. OWI was obtained by extracting the temporal bone region using the threshold technique and reversing the density (black to white). Four independent radiologists took part in two reading sessions. In the first session, the observers read only CCT imaging. In the second session, they read OWI along with the CCT imaging. Sensitivity was assessed for the four readers. Results Thirty temporal bones of 25 patients with otosclerosis (3 men, 22 women; mean age, 53.9 ± 9.0 years) and 30 temporal bones of 30 control participants (4 men, 26 women; mean age, 44.0 ± 16.2 years) were included. For all observers, reading with a combination of the two methods was associated with a higher sensitivity (63.3-80.0%) than with conventional CT images alone (30.0-60.0%; P < 0.05, each). Conclusion Application of our proposed method based on threshold value may help detect foci of fenestral otosclerosis.
Collapse
Affiliation(s)
- Koji Yamashita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Kondo
- Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Inoguchi
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junki Maehara
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Kyuragi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Honda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Zhu J, Bornstedt A, Merkle N, Liu N, Rottbauer W, Ma G, Rasche V. T2-prepared segmented 3D-gradient-echo for fast T2-weighted high-resolution three-dimensional imaging of the carotid artery wall at 3T: a feasibility study. Biomed Eng Online 2016; 15:165. [PMID: 28155713 PMCID: PMC5259811 DOI: 10.1186/s12938-016-0276-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND The multi-contrast assessment of the carotid artery wall has become an important diagnostic tool for the characterization of atherosclerotic plaque and vessel wall thickening. For providing the required T1-, T2-, and proton density weighted contrast, multi-slice turbo spin echo (TSE) techniques are normally applied. The straightforward extension of the TSE techniques to volumetric imaging of large sections of the carotid arteries is limited by the resulting long acquisition times. Where the acquisition of a T1-weighted contrast can be accelerated by applying a T1-weighted fast gradient echo technique, acceleration of the T2-weighted contrast is not as straightforward. METHODS In this work, the combination of a T2 preparation and a conventional fast gradient echo technique (T2P-3DGE) was evaluated for rapid acquisition of a T2-weighted image contrast. Acquisition parameters were optimized in an initial in vitro study in direct comparison to the conventional T2-weighted TSE (T2W-3DTSE) technique. Subsequently, the T2P-3DGE technique was evaluated in vivo. RESULTS In direct comparison, the T2P-3DGE sequence provided similar T2 contrast as the respective T2W-3DTSE sequence. After correction of an observed intensity offset, most likely caused by the additional T1-weighting of the T2P-3DGE sequence, no significant difference between the two T2-weighted sequences were observed in phantom data. The good correlation of the image contrast between the two sequences was confirmed in the initial in-vivo study, proving a potential reduction of the scan time for T2P-3DGE to 25% of the respective T2W-3DTSE technique. CONCLUSION The in vitro as well as the in vivo results clearly indicate the potential of the T2P-3DGE technique for providing similar T2 image contrast as in the conventional techniques. Thereby, the acquisition times could be substantially reduced to about 25% of the respective 3D-TSE technique.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China.,Department of Internal Medicine II, University Hospital of Ulm, Ulm, Germany
| | - Axel Bornstedt
- Department of Internal Medicine II, University Hospital of Ulm, Ulm, Germany
| | - Nico Merkle
- Department of Internal Medicine II, University Hospital of Ulm, Ulm, Germany
| | - Naifeng Liu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, University Hospital of Ulm, Ulm, Germany
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China.
| | - Volker Rasche
- Department of Internal Medicine II, University Hospital of Ulm, Ulm, Germany.
| |
Collapse
|
17
|
Sakakura K, Yasu T, Kobayashi Y, Katayama T, Sugawara Y, Funayama H, Takagi Y, Ikeda N, Ishida T, Tsuruya Y, Kubo N, Saito M. Noninvasive Tissue Characterization of Coronary Arterial Plaque by 16-Slice Computed Tomography in Acute Coronary Syndrome. Angiology 2016; 57:155-60. [PMID: 16518522 DOI: 10.1177/000331970605700204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Noninvasive characterization of coronary plaques is challenging for cardiologists. The authors’ goal was to explore the clinical feasibility of newly developed 16-slice computed tomography (CT) in tissue characterization of coronary arterial plaques in patients with acute coronary syndrome. Sixteen patients with acute coronary syndrome underwent 16-slice CT (Aquillion, Toshiba) and coronary arteriography with intravascular ultrasound (IVUS) within 7 days. Twenty-three plaques were classified by IVUS according to plaque echogenicity: 6 soft plaques, 11 intermediate plaques, and 6 calcified plaques. Mean (±SD) CT numbers (Hounsfield units [HU]) of these 3 types of plaques were 50.6 ±14.8 HU, 131 ±21.0 HU, and 721 ±231 HU, respectively. Sixteen-slice CT facilitates noninvasive tissue characterization of coronary arterial plaques.
Collapse
Affiliation(s)
- Kenichi Sakakura
- First Department of Integrated Medicine, Omiya Medical Center, Jichi Medical School, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Atherosclerosis is a systemic condition that eventually evolves into vulnerable plaques and cardiovascular events. Pathology studies reveal that rupture-prone atherosclerotic plaques have a distinct morphology, namely a thin, inflamed fibrous cap covering a large lipidic and necrotic core. With the fast development of imaging techniques in the last decades, detecting vulnerable plaques thereby identifying individuals at high risk for cardiovascular events has become of major interest. Yet, in current clinical practice, there is no routine use of any vascular imaging modality to assess plaque characteristics as each unique technique has its pros and cons. This review describes the techniques that may evolve into screening tool for the detection of the vulnerable plaque. Finally, it seems that plaque morphology has been changing in the last decades leading to a higher prevalence of 'stable' atherosclerotic plaques, possibly due to the implementation of primary prevention strategies or other approaches. Therefore, the nomenclature of vulnerable plaque lesions should be very carefully defined in all studies.
Collapse
Affiliation(s)
- I Gonçalves
- Department of Cardiology and Clinical Sciences Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | - H den Ruijter
- Laboratory of Experimental Cardiology and Research Laboratory Clinical Chemistry (LKCH), UMCU, Utrecht, the Netherlands
| | - M Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185Cambridge St., Boston, MA02114, USA
| | - G Pasterkamp
- Laboratory of Experimental Cardiology and Research Laboratory Clinical Chemistry (LKCH), UMCU, Utrecht, the Netherlands
| |
Collapse
|
19
|
Xu P, Lv L, Li S, Ge H, Rong Y, Hu C, Xu K. Use of high-resolution 3.0-T magnetic resonance imaging to characterize atherosclerotic plaques in patients with cerebral infarction. Exp Ther Med 2015; 10:2424-2428. [PMID: 26668651 DOI: 10.3892/etm.2015.2815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 09/01/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to evaluate the utility of high-resolution magnetic resonance imaging (MRI) in the characterization of atherosclerotic plaques in patients with acute and non-acute cerebral infarction. High-resolution MRI of unilateral stenotic middle cerebral arteries was performed to evaluate the degree of stenosis, the wall and plaque areas, plaque enhancement patterns and lumen remodeling features in 15 and 17 patients with acute and non-acute cerebral infarction, respectively. No significant difference was identified in the vascular stenosis rate between acute and non-acute patients. Overall, plaque eccentricity was observed in 29 patients, including 13 acute and 16 non-acute cases, with no significant difference identified between these groups. The wall area of stenotic arteries and the number of cases with plaque enhancement were significantly greater in the acute patients, but no significant difference in plaque or lumen area was identified between the 2 patient groups. Lumen remodeling patterns of stenotic arteries significantly differed between the acute and non-acute patients; the former predominantly demonstrated positive remodeling, and the latter group demonstrated evidence of negative remodeling. In conclusion, patients with acute and non-acute cerebral infarction exhibit specific characteristics in stenotic arteries and plaques, which can be effectively evaluated by high-resolution MRI.
Collapse
Affiliation(s)
- Peng Xu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R. China
| | - Lulu Lv
- Department of Computed Tomography and Magnetic Resonance Imaging, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Shaodong Li
- Department of Radiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R. China
| | - Haitao Ge
- Department of Radiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R. China
| | - Yutao Rong
- Department of Radiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R. China
| | - Chunfeng Hu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R. China
| | - Kai Xu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R. China
| |
Collapse
|
20
|
Medical Management of Serum Lipids and Coronary Heart Disease. Coron Artery Dis 2015. [DOI: 10.1007/978-1-4471-2828-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Fan Z, Yu W, Xie Y, Dong L, Yang L, Wang Z, Conte AH, Bi X, An J, Zhang T, Laub G, Shah PK, Zhang Z, Li D. Multi-contrast atherosclerosis characterization (MATCH) of carotid plaque with a single 5-min scan: technical development and clinical feasibility. J Cardiovasc Magn Reson 2014; 16:53. [PMID: 25184808 PMCID: PMC4222690 DOI: 10.1186/s12968-014-0053-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/08/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Multi-contrast weighted imaging is a commonly used cardiovascular magnetic resonance (CMR) protocol for characterization of carotid plaque composition. However, this approach is limited in several aspects including low slice resolution, long scan time, image mis-registration, and complex image interpretation. In this work, a 3D CMR technique, named Multi-contrast Atherosclerosis Characterization (MATCH), was developed to mitigate the above limitations. METHODS MATCH employs a 3D spoiled segmented fast low angle shot readout to acquire data with three different contrast weightings in an interleaved fashion. The inherently co-registered image sets, hyper T1-weighting, gray blood, and T2-weighting, are used to detect intra-plaque hemorrhage (IPH), calcification (CA), lipid-rich necrotic core (LRNC), and loose-matrix (LM). The MATCH sequence was optimized by computer simulations and testing on four healthy volunteers and then evaluated in a pilot study of six patients with carotid plaque, using the conventional multi-contrast protocol as a reference. RESULTS On MATCH images, the major plaque components were easy to identify. Spatial co-registration between the three image sets with MATCH was particularly helpful for the reviewer to discern co-existent components in an image and appreciate their spatial relation. Based on Cohen's kappa tests, moderate to excellent agreement in the image-based or artery-based component detection between the two protocols was obtained for LRNC, IPH, CA, and LM, respectively. Compared with the conventional multi-contrast protocol, the MATCH protocol yield significantly higher signal contrast ratio for IPH (3.1±1.3 vs. 0.4±0.3, p<0.001) and CA (1.6±1.5 vs. 0.7±0.6, p=0.012) with respect to the vessel wall. CONCLUSIONS To the best of our knowledge, the proposed MATCH sequence is the first 3D CMR technique that acquires spatially co-registered multi-contrast image sets in a single scan for characterization of carotid plaque composition. Our pilot clinical study suggests that the MATCH-based protocol may outperform the conventional multi-contrast protocol in several respects. With further technical improvements and large-scale clinical validation, MATCH has the potential to become a CMR method for assessing the risk of plaque disruption in a clinical workup.
Collapse
Affiliation(s)
- Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wei Yu
- Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Li Dong
- Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lixin Yang
- Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhanhong Wang
- Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | | | - Xiaoming Bi
- MR R&D, Siemens Healthcare, Los Angeles, CA, USA
| | - Jing An
- MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
| | - Tianjing Zhang
- MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
| | - Gerhard Laub
- MR R&D, Siemens Healthcare, Los Angeles, CA, USA
| | - Prediman Krishan Shah
- Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Atherosclerosis Prevention and Management Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zhaoqi Zhang
- Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Watanabe Y, Nagayama M, Sakata A, Okumura A, Amoh Y, Ishimori T, Nakashita S, Dodo Y. Evaluation of Fibrous Cap Rupture of Atherosclerotic Carotid Plaque with Thin-Slice Source Images of Time-of-Flight MR Angiography. Ann Vasc Dis 2014; 7:127-33. [PMID: 24995056 DOI: 10.3400/avd.oa.13-00101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/08/2014] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate the ability of source image of time-of-flight magnetic resonance angiography (TOF-MRA) in the detection of fibrous cap rupture of atherosclerotic carotid plaques. MATERIALS AND METHODS From the database of radiological information in our hospital, 35 patients who underwent carotid MR imaging and subsequent carotid endoarterectomy within 2 weeks were included in this retrospective study. MR imaging included thin-slice time-of-flight MR angiography, black-blood T1- and T2-weighted imaging. Sensitivity, specificity and accuracy were calculated for the detection of fibrous cap rupture with source image of TOF-MRA. The Cohen k coefficient was also calculated to quantify the degree of concordance of source image of TOF-MRA with histopathological data. RESULTS Sensitivity, specificity and accuracy in the detection of fibrous cap rupture were 90% (95%CI: 81-98), 69% (95%CI: 56-82) and 79% (95%CI: 71-87) with a k value of 0.59. The false positives (n = 15) were caused by partial-volume averaging between fibrous cap and lumen at the shoulder of carotid plaque. The false negatives (n = 5) were underestimated as partial thinning of fibrous cap. CONCLUSION Source image of TOF-MRA can be useful in the detection of fibrous cap rupture with high sensitivity, but further technical improvement should be necessary to overcome shortcomings causing image degradation.
Collapse
Affiliation(s)
- Yuji Watanabe
- Department of Radiology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Masako Nagayama
- Department of Radiology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Akihiko Sakata
- Department of Radiology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Akira Okumura
- Department of Radiology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Yoshiki Amoh
- Department of Radiology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Takayoshi Ishimori
- Department of Radiology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Satoru Nakashita
- Department of Radiology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| | - Yoshihiro Dodo
- Department of Radiology, Kurashiki Central Hospital, Kurashiki, Okayama, Japan
| |
Collapse
|
23
|
Teresa Albelda M, Garcia-España E, Frias JC. Visualizing the atherosclerotic plaque: a chemical perspective. Chem Soc Rev 2014; 43:2858-76. [PMID: 24526041 DOI: 10.1039/c3cs60410a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atherosclerosis is the major underlying pathologic cause of coronary artery disease. An early detection of the disease can prevent clinical sequellae such as angina, myocardial infarction, and stroke. The different imaging techniques employed to visualize the atherosclerotic plaque provide information of diagnostic and prognostic value. Furthermore, the use of contrast agents helps to improve signal-to-noise ratio providing better images. For nuclear imaging techniques and optical imaging these agents are absolutely necessary. We report on the different contrast agents that have been used, are used or may be used in future in animals, humans, or excised tissues for the distinct imaging modalities for atherosclerotic plaque imaging.
Collapse
Affiliation(s)
- Ma Teresa Albelda
- Universidad de Valencia, Instituto de Ciencia Molecular, Edificio de Institutos de Paterna, c/ Catedrático José Beltrán 2, 46071 Valencia, Spain
| | | | | |
Collapse
|
24
|
Sadat U, Teng Z, Gillard JH. Biomechanical structural stresses of atherosclerotic plaques. Expert Rev Cardiovasc Ther 2014; 8:1469-81. [DOI: 10.1586/erc.10.130] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
|
26
|
Verjans JW, Jaffer FA. Biological imaging of atherosclerosis: moving beyond anatomy. J Cardiovasc Transl Res 2013; 6:681-94. [PMID: 23733542 DOI: 10.1007/s12265-013-9474-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/09/2013] [Indexed: 12/27/2022]
Abstract
Biological or molecular imaging is now providing exciting new strategies to study atherosclerosis in both animals and humans. These technologies hold the promise to provide disease-specific, molecular information within the context of a systemic or organ-specific disease beyond traditional anatomical-based imaging. By integration of biological, chemical, and anatomical imaging knowledge into diagnostic strategies, a more comprehensive and predictive picture of atherosclerosis is likely to emerge. As such, biological imaging is well positioned to study different stages of atherosclerosis and its treatment, including the sequence of atheroma initiation, progression, and plaque rupture. In this review, we describe the evolving concepts in atherosclerosis imaging with a focus on coronary artery disease, and we provide an overview of recent exciting translational developments in biological imaging. The illuminated examples and discussions will highlight how biological imaging is providing new clinical approaches to identify high-risk plaques, and to streamline the development process of new atherosclerosis therapies.
Collapse
Affiliation(s)
- Johan W Verjans
- Massachusetts General Hospital, Cardiovascular Research Center, Harvard Medical School, 185 Cambridge Street, Simches Building, Room 3206, Boston, MA, 02114, USA
| | | |
Collapse
|
27
|
Imaging Atherosclerotic Plaques with MRI: Role of Contrast Agents. CURRENT CARDIOVASCULAR IMAGING REPORTS 2013. [DOI: 10.1007/s12410-012-9179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Hyafil F, Feldman L, Le Guludec D, Fayad ZA. Evaluating Efficacy of Pharmaceutical Interventions in Atherosclerosis: Role of Magnetic Resonance Imaging and Positron Emission Tomography. ACTA ACUST UNITED AC 2012; 79:689-704. [DOI: 10.1002/msj.21349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Zhao XQ, Kerwin WS. Utilizing imaging tools in lipidology: examining the potential of MRI for monitoring cholesterol therapy. ACTA ACUST UNITED AC 2012. [PMID: 23197995 DOI: 10.2217/clp.12.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lipid abnormalities play important roles in the development of atherosclerosis. Lipid therapies result in alterations in atherosclerotic plaques including halting of progression of the plaque, lipid transport out of the plaque and reducing inflammatory activity, which lead to plaque morphologies that are less prone to disruption, the main cause of clinical events. In order to investigate and monitor plaque morphological changes during lipid therapy in vivo we need an imaging method that can provide accurate assessment of plaque tissue components and activity. MRI of atherosclerosis has been validated as a reliable assessment of the size of the vessel lumen, but also the size of the plaque, its tissue composition and plaque activity, including inflammation. The purpose of this review is to summarize the state of evidence for the direct assessment of atherosclerotic plaque and its change by MRI, and to establish the proven role of MRI of atherosclerosis in pharmaceutical trials with lipid therapy.
Collapse
Affiliation(s)
- Xue-Qiao Zhao
- University of Washington School of Medicine, Seattle, WA 98105, USA
| | | |
Collapse
|
30
|
von Bary C, Makowski M, Preissel A, Keithahn A, Warley A, Spuentrup E, Buecker A, Lazewatsky J, Cesati R, Onthank D, Schickl N, Schachoff S, Hausleiter J, Schömig A, Schwaiger M, Robinson S, Botnar R. MRI of coronary wall remodeling in a swine model of coronary injury using an elastin-binding contrast agent. Circ Cardiovasc Imaging 2011; 4:147-55. [PMID: 21378029 DOI: 10.1161/circimaging.109.895607] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND The extracellular matrix (ECM) plays an important role in the pathogenesis of atherosclerosis and in-stent restenosis. Elastin is an essential component of the ECM. ECM degradation can lead to plaque destabilization, whereas enhanced synthesis typically leads to vessel wall remodeling resulting in arterial stenosis or in-stent restenosis after stent implantation. The objective of this study was to demonstrate the feasibility of MRI of vascular remodeling using a novel elastin-binding contrast agent (BMS-753951). METHODS AND RESULTS Coronary injury was induced in 6 pigs by endothelial denudation and stent placement. At day 28, delayed-enhancement MRI coronary vessel wall imaging was performed before and after injection of gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA). Two days later, DE-MRI was repeated after administration of BMS-753951. Contrast-to-noise-ratio and areas of enhancement were determined. Delayed-enhancement MRI with BMS-753951 caused strong enhancement of the aortic, pulmonary artery, and injured coronary artery walls, whereas Gd-DTPA did not. Delayed-enhancement MRI of the stented coronary artery with BMS-753951 yielded a 3-fold higher contrast-to-noise-ratio when compared with the balloon-injured and control coronary artery (21±6 versus 7±3 versus 6±4; P<0.001). The area of enhancement correlated well with the area of remodeling obtained from histological data (R(2)=0.86, P<0.05). CONCLUSIONS We demonstrate the noninvasive detection and quantification of vascular remodeling in an animal model of coronary vessel wall injury using an elastin-specific MR contrast agent. This novel approach may be useful for the assessment of coronary vessel wall remodeling in patients with suspected coronary artery disease. Further studies in atherosclerotic animal models and degenerative ECM disease are now warranted.
Collapse
Affiliation(s)
- Christian von Bary
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Patterson AJ, Tang TY, Graves MJ, Müller KH, Gillard JH. In vivo carotid plaque MRI using quantitative T2* measurements with ultrasmall superparamagnetic iron oxide particles: a dose-response study to statin therapy. NMR IN BIOMEDICINE 2011; 24:89-95. [PMID: 21259368 DOI: 10.1002/nbm.1560] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 04/01/2010] [Accepted: 04/11/2010] [Indexed: 05/30/2023]
Abstract
This study investigates T(2)* quantification in carotid plaques before and after the administration of ultrasmall superparamagnetic iron oxide particles (USPIOs) in a cohort of patients receiving statin therapy. Phantom studies were performed using gels with varying concentrations of USPIOs. In the phantom study, 12 gels were prepared with a range of freely distributed concentrations of USPIO nanoparticles (0-0.05 mg/mL). Relative signal intensity measurements were obtained from a T(2)*-weighted sequence as well as quantitative T(2)* (qT(2)*) measurements. In the patient study, 40 patients with >40% carotid stenosis were randomised to low- and high-dose statin therapy (10 and 80 mg of atorvastatin). Pre- and post- (36 h) USPIO-enhanced MRI were performed at baseline, and at 6 and 12 weeks. A linear mixed-effects model was applied to account for the inherent correlation of multiple-plaque measurements from the same patient and to assess dose-response differences to statin therapy. In the phantom study, the T(2)*-weighted sequence demonstrated an initial increase (T(1) effect), followed by a decrease (T(2)* effect), in relative signal intensity with increasing concentrations of USPIO. The qT(2)* values decreased exponentially with increasing concentrations of USPIO. In the patient study, there was a highly significant difference in post-USPIO T(2)* measurements in plaques between the low- and high-dose statin groups. This was observed for both the difference in qT(2)* measurements (post-USPIO minus pre-USPIO) (p < 0.001) and for qT(2)* post-USPIO only (p < 0.001). The post-USPIO qT(2)* values were as follows: baseline: low dose, 13.6 ± 5.5 ms; high dose, 12.9 ± 6.2 ms; 6 weeks: low dose, 13.3 ± 6.7 ms; high dose, 14.3 ± 7.7 ms; 12 weeks: low dose, 14.0 ± 7.6 ms; high dose, 18.3 ± 11.2 ms. It can be concluded that qT(2)* measurements provide an alternative method of quantifying USPIO uptake. These results also demonstrate that changes in USPIO uptake can be measured using post-USPIO imaging only.
Collapse
Affiliation(s)
- Andrew J Patterson
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | | | | | | | | |
Collapse
|
32
|
Eandi M. Drug Therapy and Follow-Up. ATHEROSCLEROSIS DISEASE MANAGEMENT 2011:563-631. [DOI: 10.1007/978-1-4419-7222-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
33
|
Parmar JP, Rogers WJ, Mugler JP, Baskurt E, Altes TA, Nandalur KR, Stukenborg GJ, Phillips CD, Hagspiel KD, Matsumoto AH, Dake MD, Kramer CM. Magnetic resonance imaging of carotid atherosclerotic plaque in clinically suspected acute transient ischemic attack and acute ischemic stroke. Circulation 2010; 122:2031-8. [PMID: 21041694 DOI: 10.1161/circulationaha.109.866053] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Carotid atherosclerotic plaque rupture is thought to cause transient ischemic attack (TIA) and ischemic stroke (IS). Pathological hallmarks of these plaques have been identified through observational studies. Although generally accepted, the relationship between cerebral thromboembolism and in situ atherosclerotic plaque morphology has never been directly observed noninvasively in the acute setting. METHODS AND RESULTS Consecutive acutely symptomatic patients referred for stroke protocol magnetic resonance imaging/angiography underwent additional T1- and T2-weighted carotid bifurcation imaging with the use of a 3-dimensional technique with blood signal suppression. Two blinded reviewers performed plaque gradings according to the American Heart Association classification system. Discharge outcomes and brain magnetic resonance imaging results were obtained. Image quality for plaque characterization was adequate in 86 of 106 patients (81%). Eight TIA/IS patients with noncarotid pathogenesis were excluded, yielding 78 study patients (38 men and 40 women with a mean age of 64.3 years, SD 14.7) with 156 paired watershed vessel/cerebral hemisphere observations. Thirty-seven patients had 40 TIA/IS events. There was a significant association between type VI plaque (demonstrating cap rupture, hemorrhage, and/or thrombosis) and ipsilateral TIA/IS (P<0.001). A multiple logistic regression model including standard Framingham risk factors and type VI plaque was constructed. Type VI plaque was the dominant outcome-associated observation achieving significance (P<0.0001; odds ratio, 11.66; 95% confidence interval, 5.31 to 25.60). CONCLUSIONS In situ type VI carotid bifurcation region plaque identified by magnetic resonance imaging is associated with ipsilateral acute TIA/IS as an independent identifier of events, thereby supporting the dominant disease pathophysiology.
Collapse
Affiliation(s)
- Jaywant P Parmar
- Department of Radiology, University of Virginia Health System, Charlottesville, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Homagk AK, Umathum R, Korn M, Weber MA, Hallscheidt P, Semmler W, Bock M. An expandable catheter loop coil for intravascular MRI in larger blood vessels. Magn Reson Med 2010; 63:517-23. [PMID: 19918897 DOI: 10.1002/mrm.22228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study proposes a catheter system with an expandable coil etched on a polyimide foil. The catheter system combines the advantages of a small insertion diameter when the coil is rolled up in a protective carrier sheath with an increased signal-to-noise ratio (SNR) and penetration depth when the coil is pushed out. After imaging, the coil can be retracted into the sheath and folded back into the initial rolled-up configuration due to the tapered geometry of the carrier foil. The catheter system was tested on two healthy anesthetized pigs, including tracking and high-resolution intravascular imaging. To reduce artifacts in high-resolution images induced by catheter motion in the pulsatile blood flow, a motion-gating method was implemented that combines a flow-compensated two-dimensional fast low angle shot (FLASH) imaging sequence with the acquisition of projection data for retrospective gating. Using the projection data for motion detection, image SNR was increased by up to 500% over uncorrected images, and anatomic structures of 150 microm size could be differentiated in the aorta.
Collapse
Affiliation(s)
- Ann-Kathrin Homagk
- Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Watanabe Y, Nagayama M. MR plaque imaging of the carotid artery. Neuroradiology 2010; 52:253-74. [PMID: 20155353 DOI: 10.1007/s00234-010-0663-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 01/13/2010] [Indexed: 02/08/2023]
Abstract
Atherosclerotic carotid plaque represents a major cause of cerebral ischemia. The detection of vulnerable plaque is important for preventing future cardiovascular events. The key factors in advanced plaque that are most likely to lead to patient complications are the condition of the fibrous cap, the size of the necrotic core and hemorrhage, and the extent of inflammatory activity within the plaque. Magnetic resonance (MR) imaging has excellent soft tissue contrast and can allow for a more accurate and objective estimation of carotid wall morphology and plaque composition. Recent advances in MR imaging techniques have permitted serial monitoring of atherosclerotic disease evolution and the identification of intraplaque risk factors for accelerated progression. The purpose of this review article is to review the current state of techniques of carotid wall MR imaging and the characterization of plaque components and surface morphology with MR imaging, and to describe the clinical practice of carotid wall MR imaging for the determination of treatment plan.
Collapse
Affiliation(s)
- Yuji Watanabe
- Department of Radiology, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, 710-8602, Japan.
| | | |
Collapse
|
36
|
In Vitro Angioplasty of Atherosclerotic Human Femoral Arteries: Analysis of the Geometrical Changes in the Individual Tissues Using MRI and Image Processing. Ann Biomed Eng 2010; 38:1276-87. [DOI: 10.1007/s10439-010-9954-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 01/31/2010] [Indexed: 10/19/2022]
|
37
|
Atherosclerotic lesions rich in macrophages or smooth muscle cells discriminated in rabbit iliac arteries based on T1 relaxation time and lipid content. Acad Radiol 2010; 17:230-8. [PMID: 19910212 DOI: 10.1016/j.acra.2009.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 12/31/2022]
Abstract
RATIONALE AND OBJECTIVES Atherothrombosis usually occurs on macrophage- and lipid-rich unstable plaque, but rarely on smooth muscle cell (SMC)-rich stable plaque. Magnetic resonance imaging (MRI) has been extensively applied for noninvasive vascular imaging. We therefore investigated whether MRI provides valuable information about the characteristics of atherosclerotic vessels using rabbit models of macrophage-rich or SMC-rich atherosclerotic arteries. MATERIALS AND METHODS Rabbits were fed with a conventional (CD group, n = 3) or 0.5% cholesterol (ChD group, n = 3) diet for 1 week before and 3 weeks after balloon injury of the left iliac arteries. Three weeks later, these arteries were investigates by 1.5 T MRI and by conventional angiographic imaging, followed by histological and immunohistochemical analyses. RESULTS Three weeks after balloon injury, injured iliac arteries of both groups formed neointima with luminal stenosis. Conventional and MRI angiographic findings of the luminal diameter significantly and positively correlated. T1 relaxation time was significantly shorter and the lipid content was much higher in injured arteries from the ChD than from the CD group. The injured arteries from the ChD also contained more macrophages and less SMCs that those from the CD group. The T1 relaxation time and lipid content in injured arteries negatively and positively correlated with the degree of macrophage accumulation, respectively. CONCLUSION These results showed that MRI could provide valuable information about luminal stenosis and the characteristics of atherosclerotic vessels in rabbits.
Collapse
|
38
|
Hatsukami TS, Yuan C. MRI in the early identification and classification of high-risk atherosclerotic carotid plaques. IMAGING IN MEDICINE 2010; 2:63-75. [PMID: 20953294 PMCID: PMC2953811 DOI: 10.2217/iim.09.33] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stroke is a leading cause of mortality and long-term morbidity. As a means for stroke prevention, an estimated 99,000 carotid endarterectomy procedures were performed in the USA in 2006. Traditionally, the degree of luminal stenosis has been used as a marker of the stage of atherosclerosis and as an indication for surgical intervention. However, prospective clinical trials have shown that the majority of patients with a history of recent transient ischemic attack or stroke have mild-to-moderate carotid stenosis. Using stenosis criteria, many of these symptomatic individuals would be considered to have early-stage carotid atherosclerosis. It is evident that improved criteria are needed for identifying the high-risk carotid plaque across a range of stenoses. Histological studies have led to the hypothesis that plaques with larger lipid-rich necrotic cores, thin fibrous cap rupture, intraplaque hemorrhage, plaque neovasculature and vessel wall inflammation are characteristics of the high-risk, 'vulnerable plaque'. Despite the widespread consensus on the importance of these plaque features, testing the vulnerable plaque hypothesis in prospective clinical studies has been hindered by the lack of reliable imaging tools for in vivo plaque characterization. MRI has been shown to accurately identify key carotid plaque features, including the fibrous cap, lipid-rich necrotic core, intraplaque hemorrhage, neovasculature and vascular wall inflammation. Thus, MRI is a histologically validated technique that will permit prospective testing of the vulnerable plaque hypothesis. This article will provide a summary of the histological validation of carotid MRI, and highlight its application in prospective clinical studies aimed at early identification of the high-risk atherosclerotic carotid plaque.
Collapse
Affiliation(s)
- Thomas S Hatsukami
- Department of Surgery, Vascular Imaging Lab, University of Washington, 815 Mercer Street, Box 358050, Seattle, WA 98109, USA, Tel.: +1 206 543 3061, ,
| | | |
Collapse
|
39
|
Underhill HR, Hatsukami TS, Cai J, Yu W, DeMarco JK, Polissar NL, Ota H, Zhao X, Dong L, Oikawa M, Yuan C. A noninvasive imaging approach to assess plaque severity: the carotid atherosclerosis score. AJNR Am J Neuroradiol 2010; 31:1068-75. [PMID: 20093315 DOI: 10.3174/ajnr.a2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The presence of IPH and/or FCR in the carotid atherosclerotic plaque indicates a high-risk lesion. The aim of this multicenter cross-sectional study was to establish the characteristics of lesions that may precede IPH and/or FCR. We further sought to construct a CAS that stratifies carotid disease severity. MATERIALS AND METHODS Three hundred forty-four individuals from 4 imaging centers with 16%-99% carotid stenosis by duplex sonography underwent carotid MR imaging. In approximately 60% of the study sample (training group), multivariate analysis was used to determine factors associated with IPH and FCR. Statistically significant parameters identified during multivariate analysis were used to construct CAS. CAS was then applied to the remaining arteries (40%, test group), and the accuracy of classification for determining the presence versus absence of IPH or, separately, FCR was determined by ROC analysis and calculation of the AUC. RESULTS The maximum proportion of the arterial wall occupied by the LRNC was the strongest predictor of IPH (P < .001) and FCR (P < .001) during multivariate analysis of the training group. The subsequently derived CAS applied to the test group was an accurate classifier of IPH (AUC = 0.91) and FCR (AUC = 0.93). Compared with MRA stenosis, CAS was a stronger classifier of both IPH and FCR. CONCLUSIONS LRNC quantification may be an effective complementary strategy to stenosis for classifying carotid atherosclerotic disease severity. CAS forms the foundation for a simple imaging-based risk-stratification system in the carotid artery to classify severity of atherosclerotic disease.
Collapse
Affiliation(s)
- H R Underhill
- Department of Radiology, Vascular Imaging Lab, University of Washington, 815 Mercer Street, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Magnetic [corrected] resonance imaging [corrected] features of the disruption-prone and the disrupted carotid plaque. JACC Cardiovasc Imaging 2009; 2:883-96. [PMID: 19608140 DOI: 10.1016/j.jcmg.2009.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/19/2009] [Accepted: 03/28/2009] [Indexed: 01/08/2023]
Abstract
Stroke is a leading cause of long-term disability and is the third most common cause of death in the U.S. and western countries. Twenty percent of strokes are thought to arise from the carotid artery. Histopathological studies have suggested that plaque disruption is a key factor in the etiology of carotid-related ischemic events. Features associated with plaque disruption include intraplaque hemorrhage, large necrotic cores with thin overlying fibrous caps, plaque neovasculature, and inflammatory cell infiltrate. In vivo high-spatial-resolution, multicontrast-weighted cardiac magnetic resonance (CMR) has been extensively evaluated using histology as the gold standard, and has documented reliability in the identification of these key carotid plaque features. This pictorial essay illustrates the capability of CMR for identifying features of disruption-prone and disrupted atherosclerotic carotid plaques.
Collapse
|
41
|
Abstract
Inflammation is important at many stages of atherosclerotic plaque development. We highlight several imaging modalities that can quantify the degree of plaque inflammation noninvasively. Imaging of this type might allow testing of novel antiatherosclerosis drugs, identification of patients at risk of plaque rupture, and deeper insight into the biology of the disease. The imaging modalities are discussed in relation to their potential use in these areas.
Collapse
Affiliation(s)
- James H F Rudd
- Division of Cardiovascular Medicine, Cambridge University, UK.
| | | | | |
Collapse
|
42
|
|
43
|
Pan D, Senpan A, Caruthers SD, Williams TA, Scott MJ, Gaffney PJ, Wickline SA, Lanza GM. Sensitive and efficient detection of thrombus with fibrin-specific manganese nanocolloids. Chem Commun (Camb) 2009:3234-6. [PMID: 19587924 PMCID: PMC3065968 DOI: 10.1039/b902875g] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, we report novel fibrin targeted "soft-type" manganese-based contrast agents for MRI with the potential to noninvasively image intravascular thrombus which could warrant aggressive medical intervention to preclude subsequent myocardial infarction or stroke.
Collapse
Affiliation(s)
- Dipanjan Pan
- Division of Cardiology and C-TRAIN, Washington University School of Medicine, St. Louis, MO 63108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Raman SV, Winner MW, Tran T, Velayutham M, Simonetti OP, Baker PB, Olesik J, McCarthy B, Ferketich AK, Zweier JL. In vivo atherosclerotic plaque characterization using magnetic susceptibility distinguishes symptom-producing plaques. JACC Cardiovasc Imaging 2009; 1:49-57. [PMID: 19356405 DOI: 10.1016/j.jcmg.2007.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/18/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVES We investigated the role of iron deposition in atherosclerotic plaque instability using a novel approach of in vivo plaque characterization by a noninvasive, noncontrast magnetic resonance-based T2* measurement. This approach was validated using ex vivo plaque analyses to establish that T2* accurately reflects intraplaque iron composition. BACKGROUND Iron catalyzes free radical production, a key step for lipid peroxidation and atherosclerosis development. The parameter T2* measures tissue magnetic susceptibility, which historically has been used to quantify hepatic and myocardial iron. The T2* measurement has not been used for in vivo plaque characterization in patients with atherosclerosis. METHODS Thirty-nine patients referred for carotid endarterectomy were prospectively enrolled to undergo preoperative carotid magnetic resonance imaging (MRI) and postoperative analysis of the explanted plaque. Clinical history of any symptoms attributable to each carotid lesion was recorded. We could not complete MRI in 4 subjects because of their claustrophobia, and 3 patients scanned before the institution of a neck stabilizer had motion artifact, precluding quantification. RESULTS Symptomatic patients had significantly lower plaque T2* values (20.0 +/- 1.8 ms) compared with asymptomatic patients (34.4 +/- 2.7 ms, p < 0.001). Analytical methods demonstrated similar total iron (138.6 +/- 36.5 microg/g vs. 165.8 +/- 48.3 microg/g, p = NS) but less low molecular weight Fe(III) (7.3 +/- 3.8 microg/g vs. 17.7 +/- 4.0 microg/g, p < 0.05) in the explanted plaques of symptomatic versus asymptomatic patients, respectively, which is consistent with a shift in iron from Fe(III) to greater amounts of T2*-shortening forms of iron. Mass spectroscopy also showed significantly lower calcium (37.5 +/- 10.8 mg/g vs. 123.6 +/- 19.3 mg/g, p < 0.01) and greater copper (3.2 +/- 0.5 microg/g vs. 1.7 +/- 0.1 microg/g, p < 0.01) in plaques from symptomatic patients. CONCLUSIONS In vivo measurement of intraplaque T2* using MRI is feasible and distinguishes symptom-producing from non-symptom-producing plaques in patients with carotid artery atherosclerosis. Symptom-producing plaques demonstrated characteristic changes in iron forms by ex vivo analysis, supporting the dynamic presence of iron in the microenvironment of atherosclerotic plaque.
Collapse
Affiliation(s)
- Subha V Raman
- Davis Heart and Lung Research Institute and Heart Center, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lobbes MBI, Miserus RJJHM, Heeneman S, Passos VL, Mutsaers PHA, Debernardi N, Misselwitz B, Post M, Daemen MJAP, van Engelshoven JMA, Leiner T, Kooi ME. Atherosclerosis: contrast-enhanced MR imaging of vessel wall in rabbit model--comparison of gadofosveset and gadopentetate dimeglumine. Radiology 2009; 250:682-91. [PMID: 19244042 DOI: 10.1148/radiol.2503080875] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate the potential of gadofosveset for contrast material-enhanced magnetic resonance (MR) imaging of plaque in a rabbit model of atherosclerosis. MATERIALS AND METHODS All experiments were approved by the animal ethics committee. Thirty-one New Zealand White rabbits were included in one of four study groups: animals with atherosclerosis imaged with gadofosveset (n = 10) or gadopentetate dimeglumine (n = 7) and control animals imaged with gadofosveset (n = 7) or gadopentetate dimeglumine (n = 7). Aortic atherosclerosis was induced through endothelial denudation combined with a cholesterol-enriched diet. Control rabbits underwent a sham surgical procedure and received a regular diet. After 8 weeks, pre- and postcontrast T1-weighted MR images of the aortic vessel wall were acquired. Relative signal enhancement was determined with dedicated software. Statistical analysis was performed by using a generalized linear mixed model. Immunohistochemical staining with CD31 and albumin was used to assess microvessel density and the albumin content of the vascular wall. Group differences were analyzed by using a chi(2) test. Gadofosveset spatial distribution and content within the vessel wall were determined with proton-induced x-ray emission (PIXE) analysis. RESULTS Postcontrast signal enhancement was significantly greater for atherosclerotic than for control animals imaged with gadofosveset (P = .022). Gadopentetate dimeglumine could not enable discrimination between normal and atherosclerotic vessel walls (P = .428). PIXE analysis showed higher amounts of gadopentetate dimeglumine than gadofosveset in both atherosclerotic and normal rabbit aortas. Immunohistochemical staining revealed the presence of albumin and increased microvessel density in the vascular walls of atherosclerotic rabbits. CONCLUSION These results suggest that gadofosveset can be used to differentiate between atherosclerotic and normal rabbit vessel walls. SUPPLEMENTAL MATERIAL http://radiology.rsnajnls.org/cgi/content/full/250/3/682/DC1.
Collapse
Affiliation(s)
- Marc B I Lobbes
- Department of Radiology, Cardiovascular Research Institute Maastricht, Maastricht University Hospital, P. Debyeplein 25, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rosero EB, Peshock RM, Khera A, Clagett GP, Lo H, Timaran C. Agreement between methods of measurement of mean aortic wall thickness by MRI. J Magn Reson Imaging 2009; 29:576-82. [DOI: 10.1002/jmri.21697] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
Gao T, Zhang Z, Yu W, Zhang Z, Wang Y. Atherosclerotic carotid vulnerable plaque and subsequent stroke: a high-resolution MRI study. Cerebrovasc Dis 2009; 27:345-52. [PMID: 19218800 DOI: 10.1159/000202011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 11/03/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND High-resolution contrast-enhanced magnetic resonance imaging (CEMRI) has been proven to be an effective tool for the identification of carotid atherosclerotic vulnerable plaque, such as a large lipid core and thin fibrous cap. The aim of this study was to evaluate the relationship between carotid plaque characteristics and the types of stroke in patients who had carotid artery (CA) stenosis > or =50%. METHODS 102 consecutive subjects (mean age 67.2 +/- 10.2 years; 73 males) who initially had ischemic stroke or asymptomatic CA stenosis from 50 to 100% diagnosed by ultrasound were included in this study. Carotid CEMRI, brain MRI and magnetic resonance angiography were performed to understand the infarct patterns and to exclude intracranial artery stenosis. The modified American Heart Association (AHA) plaque classification was used in our study. RESULTS Our study demonstrated that 45 patients had CA stroke, and 55 patients had lacunar and asymptomatic lesions. The majority of patients had AHA classification type IV-V and VI which presented as vulnerable plaques. Of 63 patients with mild to moderate stenosis (< or =70%), 44 (69.8%) had type IV-V vulnerable plaques, which was significantly higher than those of patients with severe stenosis (>70%; p < 0.001). In CA stroke, the number of patients with a thin or ruptured fibrous cap was twice that of those with a thick and intact fibrous cap. CONCLUSIONS CEMRI may have important applications in clinical risk evaluations in CA atherosclerosis. Physicians ought to recognize that different types of stroke should be identified by brain MRI detection before invasive therapies.
Collapse
Affiliation(s)
- Tianli Gao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
48
|
Chow TY, Cheung JS, Wu Y, Guo H, Chan KC, Hui ES, Wu EX. Measurement of common carotid artery lumen dynamics during the cardiac cycle using magnetic resonance TrueFISP cine imaging. J Magn Reson Imaging 2009; 28:1527-32. [PMID: 19025960 DOI: 10.1002/jmri.21527] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To demonstrate magnetic resonance (MR) measurements of vascular lumen dynamics in common carotid arteries by using true fast imaging with steady-state precession (TrueFISP) cine imaging with an aim to provide additional physiologic information on the vessels. MATERIALS AND METHODS The left and right common carotid arteries were studied in normal young men (N = 6; age = 21-24 years; body weight = 130-175 lbs) using electrocardiogram (ECG)-triggered TrueFISP cine imaging at 20 frames per cardiac cycle. Lumen area waveforms were characterized with specific time and amplitude ratios. Distension values were quantified. RESULTS Distension values were measured at 25.92 +/- 2.58% and 27.58 +/- 4.44% for the left and right common carotid arteries, respectively. These findings are consistent with those previously documented using ultrasound imaging in a similar age group. Consistent lumen area waveform characteristics were found among the subjects studied. CONCLUSION These findings demonstrate for the first time that the use of TrueFISP cine imaging is a robust, rapid technique for quantifying carotid lumen area dynamics and distension, which may be valuable in characterizing and diagnosing cardiovascular diseases.
Collapse
Affiliation(s)
- Tracy Y Chow
- Laboratory of Biomedical Imaging and Signal Processing, University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
49
|
Rodriguez Granillo GA. Non-invasive assessment of vulnerable plaque. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2009; 3:53-66. [PMID: 23495963 DOI: 10.1517/17530050802607357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Sudden cardiac death or unheralded acute coronary syndromes are common initial manifestations of coronary atherosclerosis and most such events occur at sites of non-flow limiting coronary atherosclerosis. OBJECTIVE Non-invasive detection of high-risk plaques might provide a means to improve risk stratification in primary and secondary prevention settings. METHODS This review is focused on the potential of multidetector computed tomography coronary angiography (MDCT-CA) to provide the opportunity to identify different aspects of plaque vulnerability throughout the coronary tree in an accurate, fast, safe and non-invasive manner. CONCLUSION Coronary artery calcium scoring, on top of established risk stratification, could potentially be a cost-effective strategy for primary prevention. MDCT-CA allows a non-invasive evaluation of several features commonly seen in vulnerable plaques and has demonstrated an independent prognostic value on a patient basis. The value of the technique itself might result, potentially, in a better estimation of the relative risk of an invidual plaque to rupture.
Collapse
Affiliation(s)
- Gastón A Rodriguez Granillo
- Otamendi Hospital, Clínica La Sagrada Familia, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Department of Cardiovascular Imaging, Azcuenaga 870, Buenos Aires, Argentina +54 11 49648740 ; +54 11 49648740 ;
| |
Collapse
|
50
|
Eida S, Ohki M, Sumi M, Yamada T, Nakamura T. MR factor analysis: improved technology for the assessment of 2D dynamic structures of benign and malignant salivary gland tumors. J Magn Reson Imaging 2008; 27:1256-62. [PMID: 18504743 DOI: 10.1002/jmri.21349] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To establish an MR factor analysis technique for two-dimensional (2D) MR dynamic structures of benign and malignant salivary gland tumors. MATERIALS AND METHODS Dynamic contrast-enhanced MRI using a surface coil was performed on 36 patients with benign (N = 24) or malignant (N = 12) salivary gland tumors. Signal intensity kinetics in each pixel of the tumors after contrast medium injections were semiautomatically categorized into four patterns (slow uptake, rapid uptake with high washout, rapid uptake with low washout, and flat). The 2D distributions of the kinetic patterns in the tumors were compared with the histological features of the corresponding parts of the excised tumors and with overall kinetics obtained by a conventional analysis. RESULTS The MR factor analysis technique allowed the pixel-to-pixel evaluation of the contrast enhancement kinetics of the salivary gland tumors. The 2D distributions of the time-intensity curve (TIC) patterns correlated well with the histological features of the salivary gland tumors and allowed more detailed dynamic structures of the tumors compared with the results obtained by the conventional dynamic study analysis. CONCLUSION The proposed MR factor analysis would be clinically feasible to diagnose salivary gland tumors and tumor-like lesions.
Collapse
Affiliation(s)
- Sato Eida
- Department of Radiology and Cancer Biology, Nagasaki University School of Dentistry, Nagasaki, Japan
| | | | | | | | | |
Collapse
|