1
|
Kim D, Gagolewicz P, McQueen S, Latour H, Tresidder K, Jarvis CR, Andrew RD. Simulated ischemia in live cerebral slices is mimicked by opening the Na +/K + pump: clues to the generation of spreading depolarization. J Neurophysiol 2025; 133:1649-1664. [PMID: 40331905 DOI: 10.1152/jn.00429.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/30/2024] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
The gray matter of the higher brain undergoes spreading depolarization (SD) in response to the increased metabolic demand of ischemia, promoting acute neuronal injury and death following stroke, traumatic brain injury, or sudden cardiac arrest. The mechanism linking ischemic failure of the Na+/K+ ATPase (NKA) pump to the immediate onset of a large inward current driving SD has remained a mystery because blockade of conventional ion channels does not prevent SD nor ischemic neuron death. The marine poison palytoxin (PLTX) specifically binds the NKA at picomolar concentrations, converting this transporter to an open cationic channel, causing sudden neuronal Na+ influx and K+ efflux. This pump failure, together with induction of a strong inward current, should evoke SD-like activity in gray matter. Indeed, 1-10 nM PLTX applied to live coronal brain slices of rodents induces a propagating depolarization remarkably like SD induced by oxygen/glucose deprivation (OGD). This PLTX depolarization (PD) mimicked other effects of OGD. In the neocortex, as an elevated light transmittance (LT) front passed by an extracellular pipette, a distinct negative DC shift indicated mass cell depolarization, whether induced by bath OGD or PLTX. Either treatment induced strong SD-like responses in the same higher or lower brain regions. Furthermore, we imaged identical real-time OGD-SD or PD effects upon live pyramidal neurons using 2-photon microscopy. Taken together, these findings support our proposal that an endogenous PLTX-like molecule may open the NKA to conduct Na+ influx/K+ efflux, thereby driving SD and, in its wake, ensuing neuronal damage.NEW & NOTEWORTHY With stroke, traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug to aid brain recovery. Within 2 min of severe ischemia, a wave of spreading depolarization (SD) propagates through affected gray matter. More SDs arise over hours, expanding the injury. This period represents a therapeutic window to inhibit recurring SD and reduce neuronal damage, but we do not understand the underlying molecular sequence. Here, we argue for a novel molecule to target.
Collapse
Affiliation(s)
- Danielle Kim
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Peter Gagolewicz
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sydney McQueen
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Hannah Latour
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kaitlyn Tresidder
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Cathryn R Jarvis
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - R David Andrew
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
Dimitrov AG. Resting membrane state as an interplay of electrogenic transporters with various pumps. Pflugers Arch 2023; 475:1113-1128. [PMID: 37468808 DOI: 10.1007/s00424-023-02838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
In this study, a new idea that electrogenic transporters determine cell resting state is presented. The previous assumption was that pumps, especially the sodium one, determine it. The latter meets difficulties, because it violates the law of conservation of energy; also a significant deficit of pump activity is reported. The amount of energy carried by a single ATP molecule reflects the potential of the inner mitochondrial membrane, which is about -200 mV. If pumps enforce a resting membrane potential that is more than twice smaller, then the majority of energy stored in ATP would be dissipated by each pump turning. However, this problem could be solved if control is transferred from pumps to something else, e.g., electrogenic transporters. Then pumps would transfer the energy to the ionic gradient without losses, while the cell surface membrane potential would be associated with the reversal potential of some electrogenic transporters. A minimal scheme of this type would include a sodium-calcium exchanger as well as sodium and calcium pumps. However, note that calcium channels and pumps are positioned along both intracellular organelles and the surface membrane. Therefore, the above-mentioned scheme would involve them as well as possible intercellular communications. Such schemes where various kinds of pumps are assumed to work in parallel may explain, to a great extent, the slow turning rate of the individual members. Interaction of pumps and transporters positioned at distant biological membranes with various forms of energy transfer between them may thus result in hypoxic/reperfusion injury, different kinds of muscle fatigue, and nerve-glia interactions.
Collapse
Affiliation(s)
- A G Dimitrov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113, Sofia, Bulgaria.
| |
Collapse
|
3
|
Tillinghast J, Drury S, Bowser D, Benn A, Lee KPK. Structural mechanisms for gating and ion selectivity of the human polyamine transporter ATP13A2. Mol Cell 2021; 81:4650-4662.e4. [PMID: 34715014 DOI: 10.1016/j.molcel.2021.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/01/2021] [Accepted: 10/02/2021] [Indexed: 11/17/2022]
Abstract
Mutations in ATP13A2, also known as PARK9, cause a rare monogenic form of juvenile-onset Parkinson's disease named Kufor-Rakeb syndrome and other neurodegenerative diseases. ATP13A2 encodes a neuroprotective P5B P-type ATPase highly enriched in the brain that mediates selective import of spermine ions from lysosomes into the cytosol via an unknown mechanism. Here we present three structures of human ATP13A2 bound to an ATP analog or to spermine in the presence of phosphomimetics determined by cryoelectron microscopy. ATP13A2 autophosphorylation opens a lysosome luminal gate to reveal a narrow lumen access channel that holds a spermine ion in its entrance. ATP13A2's architecture suggests physical principles underlying selective polyamine transport and anticipates a "pump-channel" intermediate that could function as a counter-cation conduit to facilitate lysosome acidification. Our findings establish a firm foundation to understand ATP13A2 mutations associated with disease and bring us closer to realizing ATP13A2's potential in neuroprotective therapy.
Collapse
Affiliation(s)
- Jordan Tillinghast
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Sydney Drury
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Darren Bowser
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Alana Benn
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Kenneth Pak Kin Lee
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA.
| |
Collapse
|
4
|
Vilallonga G, Riesco D, de Almeida ACG, Rodrigues AM, Campos SVA. In Silico Laboratory Experiments Using Statistical Model Checking: A New Model of the Palytoxin-Induced Pump Channel as Case Study. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2816-2822. [PMID: 33017286 DOI: 10.1109/tcbb.2020.3028776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Studying biological systems is a difficult but important task. Traditional methods include laboratory experimentation and computer simulations. However, often researchers need to explore important but potentially rare events that are not easily observed or simulated. We use UPPAAL-SMC, a formal verification tool to support a methodology that allows us to model biological systems, specify events and conditions that we want to analyze, and to explore system executions using controlled simulations. We also describe an efficient way to reproduce laboratory experiments in silico. Unlike traditional simulations, we are able to guide the experiment to explore special events and conditions by expressing these conditions in temporal logic formulas. We have applied this methodology to create a more detailed model of Palytoxin-induced Na +/K + pump channels than was previously possible. Moreover, we have reproduced experimental protocols and their associated electrophysiological recordings, which has not been done in previous works. As a consequence, we have been able to propose a new diprotomeric model for the PTX-pump complex and study its behaviour. The use of our methodology has enabled us to reduce the effort and time to perform this research. It can be used to model and analyze other complex biological systems, potentially increasing the productivity of such studies.
Collapse
|
5
|
Sen A, Hsieh WC, Hanna CB, Hsu CC, Pearson M, Tao WA, Aguilar RC. The Na + pump Ena1 is a yeast epsin-specific cargo requiring its ubiquitylation and phosphorylation sites for internalization. J Cell Sci 2020; 133:jcs245415. [PMID: 32694166 DOI: 10.1242/jcs.245415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
It is well known that in addition to its classical role in protein turnover, ubiquitylation is required for a variety of membrane protein sorting events. However, and despite substantial progress in the field, a long-standing question remains: given that all ubiquitin units are identical, how do different elements of the sorting machinery recognize their specific cargoes? Our results indicate that the yeast Na+ pump Ena1 is an epsin (Ent1 and Ent2 in yeast)-specific cargo and that its internalization requires K1090, which likely undergoes Art3-dependent ubiquitylation. In addition, an Ena1 serine and threonine (ST)-rich patch, proposed to be targeted for phosphorylation by casein kinases, was also required for its uptake. Interestingly, our data suggest that this phosphorylation was not needed for cargo ubiquitylation. Furthermore, epsin-mediated internalization of Ena1 required a specific spatial organization of the ST patch with respect to K1090 within the cytoplasmic tail of the pump. We hypothesize that ubiquitylation and phosphorylation of Ena1 are required for epsin-mediated internalization.
Collapse
Affiliation(s)
- Arpita Sen
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wen-Chieh Hsieh
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Claudia B Hanna
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - McKeith Pearson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - R Claudio Aguilar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Vilallonga GD, de Almeida ACG, Ribeiro KT, Campos SVA, Rodrigues AM. Hypothesized diprotomeric enzyme complex supported by stochastic modelling of palytoxin-induced Na/K pump channels. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172155. [PMID: 29657808 PMCID: PMC5882732 DOI: 10.1098/rsos.172155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
The sodium-potassium pump (Na+/K+ pump) is crucial for cell physiology. Despite great advances in the understanding of this ionic pumping system, its mechanism is not completely understood. We propose the use of a statistical model checker to investigate palytoxin (PTX)-induced Na+/K+ pump channels. We modelled a system of reactions representing transitions between the conformational substates of the channel with parameters, concentrations of the substates and reaction rates extracted from simulations reported in the literature, based on electrophysiological recordings in a whole-cell configuration. The model was implemented using the UPPAAL-SMC platform. Comparing simulations and probabilistic queries from stochastic system semantics with experimental data, it was possible to propose additional reactions to reproduce the single-channel dynamic. The probabilistic analyses and simulations suggest that the PTX-induced Na+/K+ pump channel functions as a diprotomeric complex in which protein-protein interactions increase the affinity of the Na+/K+ pump for PTX.
Collapse
Affiliation(s)
- Gabriel D. Vilallonga
- Department of Computer Science, Universidad Nacional de San Luis, San Luis, Argentina
| | - Antônio-Carlos G. de Almeida
- Department of Biosystems Engineering, Federal University of São João del Rei, São João del Rei, Minas Gerais, Brazil
| | - Kelison T. Ribeiro
- Department of Biosystems Engineering, Federal University of São João del Rei, São João del Rei, Minas Gerais, Brazil
| | - Sergio V. A. Campos
- Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Antônio M. Rodrigues
- Department of Biosystems Engineering, Federal University of São João del Rei, São João del Rei, Minas Gerais, Brazil
| |
Collapse
|
7
|
Zhang Z, Li P, Kong XY, Xie G, Qian Y, Wang Z, Tian Y, Wen L, Jiang L. Bioinspired Heterogeneous Ion Pump Membranes: Unidirectional Selective Pumping and Controllable Gating Properties Stemming from Asymmetric Ionic Group Distribution. J Am Chem Soc 2018; 140:1083-1090. [DOI: 10.1021/jacs.7b11472] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Zhang
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pei Li
- Key
Laboratory of Bio-inspired Smart Interfacial Science and Technology
of Ministry of Education School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
| | - Xiang-Yu Kong
- Key
Laboratory of Bio-inspired Materials and Interfacial Science, Technical
Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ganhua Xie
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yongchao Qian
- Key
Laboratory of Bio-inspired Materials and Interfacial Science, Technical
Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ziqi Wang
- Key
Laboratory of Bio-inspired Materials and Interfacial Science, Technical
Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ye Tian
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Liping Wen
- Key
Laboratory of Bio-inspired Materials and Interfacial Science, Technical
Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key
Laboratory of Bio-inspired Smart Interfacial Science and Technology
of Ministry of Education School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- Key
Laboratory of Bio-inspired Materials and Interfacial Science, Technical
Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key
Laboratory of Bio-inspired Smart Interfacial Science and Technology
of Ministry of Education School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Li R, Kou X, Geng H, Xie J, Yang Z, Zhang Y, Cai Z, Dong C. Effect of Ambient PM2.5 on Lung Mitochondrial Damage and Fusion/Fission Gene Expression in Rats. Chem Res Toxicol 2015; 28:408-18. [DOI: 10.1021/tx5003723] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruijin Li
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Xiaojing Kou
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Hong Geng
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Jingfang Xie
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Zhenhua Yang
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Yuexia Zhang
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Zongwei Cai
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chuan Dong
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
9
|
Braz FAF, Cruz JS, Faria-Campos AC, Campos SVA. Probabilistic model checking analysis of palytoxin effects on cell energy reactions of the Na+/K+-ATPase. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013; 10:1530-1541. [PMID: 24407310 DOI: 10.1109/tcbb.2013.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Probabilistic model checking (PMC) is a technique used for the specification and analysis of complex systems. It can be applied directly to biological systems which present these characteristics, including cell transport systems. These systems are structures responsible for exchanging ions through the plasma membrane. Their correct behavior is essential for animal cells, since changes on those are responsible for diseases. In this work, PMC is used to model and analyze the effects of the palytoxin toxin (PTX) interactions with one of these systems. Our model suggests that ATP could inhibit PTX action. Therefore, individuals with ATP deficiencies, such as in brain disorders, may be more susceptible to the toxin. We have also used heat maps to enhance the kinetic model, which is used to describe the system reactions. The map reveals unexpected situations, such as a frequent reaction between unlikely pump states, and hot spots such as likely states and reactions. This type of analysis provides a better understanding on how transmembrane ionic transport systems behave and may lead to the discovery and development of new drugs to treat diseases associated to their incorrect behavior.
Collapse
Affiliation(s)
| | - Jader S Cruz
- Universidade Federal de Minas Gerais, Belo Horizonte
| | | | | |
Collapse
|
10
|
van der Heyden J, van der Meer P, Birnie E, de Coo IFM, Castro Cabezas M, Ozcan B, Veeze H, Visser GH, Aanstoot HJ, Blok JH. Decreased excitability of the distal motor nerve of young patients with type 1 diabetes mellitus. Pediatr Diabetes 2013; 14:519-25. [PMID: 23710907 DOI: 10.1111/pedi.12048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/27/2013] [Accepted: 04/04/2013] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE The compound muscle action potential (CMAP) scan is a novel neurophysiological technique that appears more sensitive in detecting peripheral motor neuropathy than conventional methods. This study explores the value of the CMAP scan for the detection of subclinical diabetic peripheral motor neuropathy. METHODS In this cross-sectional pilot study, CMAP scanning of the peroneal nerve was performed in (i) 13 well-controlled patients (8-25 yr old) with type 1 diabetes mellitus (T1DM) duration between 2.5 and 5 yr; (ii) 17 patients (10-25 yr old) with a duration of T1DM of at least 10 yr, poorly controlled and/or with microvascular complications and (iii) 13 adults with T1DM and established clinical diabetic peripheral neuropathy (DPN). Various CMAP scan variables, including measures of axonal excitability and axonal loss and reinnervation, were compared between patients and healthy controls. RESULTS Axonal excitability was significantly decreased in the young patient groups as compared to their controls. The CMAP scan measures of axonal loss and reinnervation differed only between patients with clinical DPN and their controls. CONCLUSIONS Motor nerve axonal excitability seems to be reduced early in T1DM, even in well-controlled young patients, and probably before (irreversible) axonal damage occurs. These changes can be measured by the CMAP scan, which makes this a promising tool for detecting nerve dysfunction in T1DM.
Collapse
Affiliation(s)
- Jc van der Heyden
- Diabeter, Center for Pediatric and Adolescent Diabetes Care and Research, Rotterdam, The Netherlands; Department of Pediatric Endocrinology, Sophia Children's Hospital, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Del Favero G, Beltramo D, Sciancalepore M, Lorenzon P, Coslovich T, Poli M, Testai E, Sosa S, Tubaro A. Toxicity of palytoxin after repeated oral exposure in mice and in vitro effects on cardiomyocytes. Toxicon 2013; 75:3-15. [PMID: 23770425 DOI: 10.1016/j.toxicon.2013.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 11/16/2022]
Abstract
Palytoxin (PLTX) is a highly toxic hydrophilic polyether detected in several edible marine organisms from intra-tropical areas, where seafood poisoning were reported. Symptoms usually start with gastro-intestinal malaise, often accompanied by myalgia, muscular cramps, dyspnea and, sometimes, arrhythmias. Monitoring programs in the Mediterranean Sea have detected PLTX-like molecules in edible mollusks and echinoderms. Despite the potential exposure of the human population and its high toxic potential, the toxicological profile of the molecule is still an issue. Thus, the effects of repeated oral administration of PLTX in mice were investigated. Seven days of PLTX administration caused lethality and toxic effects at doses ≥ 30 μg/kg/day. A NOAEL was estimated equal to 3 μg/kg/day, indicating a quite steep dose-response curve. This value, due to the limited number of animal tested, is provisional, although represents a sound basis for further testing. Macroscopic alterations at gastrointestinal level (gastric ulcers and intestinal fluid accumulation) were observed in mice dead during the treatment period. Histological analysis highlighted severe inflammation, locally associated with necrosis, at pulmonary level, as well as hyper-eosinophilia and fiber separation in myocardium. A cardiac damage was supported by the in vitro effect of the toxin on cardiomyocytes, indicating a severe and irreversible impairment of their electrical properties: electrophysiological recordings detected a progressive cell depolarization, arrest of action potentials and beating.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Del Favero G, Florio C, Codan B, Sosa S, Poli M, Sbaizero O, Molgó J, Tubaro A, Lorenzon P. The Stretch-Activated Channel Blocker Gd3+ Reduces Palytoxin Toxicity in Primary Cultures of Skeletal Muscle Cells. Chem Res Toxicol 2012; 25:1912-20. [DOI: 10.1021/tx300203x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Mark Poli
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21701-5011, United States
| | | | - Jordi Molgó
- Institut Fédératif de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie
et Développement, CNRS UPR 3294, 91198 Gif sur Yvette cedex,
France
| | | | | |
Collapse
|
13
|
Tavares B, Dias PN, Domingos P, Moura TF, Feijó JA, Bicho A. Calcium-regulated anion channels in the plasma membrane of Lilium longiflorum pollen protoplasts. THE NEW PHYTOLOGIST 2011; 192:45-60. [PMID: 21668885 DOI: 10.1111/j.1469-8137.2011.03780.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
• Currents through anion channels in the plasma membrane of Lilium longiflorum pollen grain protoplasts were studied under conditions of symmetrical anionic concentrations by means of patch-clamp whole-cell configuration. • With Cl(-) -based intra- and extracellular solutions, three outward-rectifying anion conductances, I(Cl1) , I(Cl2) and I(Cl3) , were identified. These three activities were discriminated by differential rundown behaviour and sensitivity to 5-nitro-2-(phenylpropylamino)-benzoate (NPPB), which could not be attributed to one or more channel types. All shared strong outward rectification, activated instantaneously and displayed a slow time-dependent activation for positive potentials. All showed modulation by intracellular calcium ([Ca(2+) ](in) ), increasing intensity from 6.04 nM up to 0.5 mM (I(Cl1) ), or reaching a maximum value with 8.50 μM (I(Cl2) and I(Cl3) ). • After rundown, the anionic currents measured using NO(3) (-) -based solutions were indistinguishable, indicating that the permeabilities of the channels for Cl(-) and NO(3) (-) are similar. Additionally, unitary anionic currents were measured from outside-out excised patches, confirming the presence of individual anionic channels. • This study shows for the first time the presence of a large anionic conductance across the membrane of pollen protoplasts, resulting from the presence of Ca(2+) -regulated channels. A similar conductance was also found in germinated pollen. We hypothesize that these putative channels may be responsible for the large anionic fluxes previously detected by means of self-referencing vibrating probes.
Collapse
Affiliation(s)
- Bárbara Tavares
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156 Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, 1749-016 Lisboa, Portugal
| | - Pedro Nuno Dias
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156 Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, 1749-016 Lisboa, Portugal
| | - Patrícia Domingos
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156 Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, 1749-016 Lisboa, Portugal
| | - Teresa Fonseca Moura
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José Alberto Feijó
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156 Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, 1749-016 Lisboa, Portugal
| | - Ana Bicho
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156 Oeiras, Portugal
| |
Collapse
|
14
|
Forrest LR, Rudnick G. The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology (Bethesda) 2010; 24:377-86. [PMID: 19996368 DOI: 10.1152/physiol.00030.2009] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Crystal structures of the bacterial amino acid transporter LeuT have provided the basis for understanding the conformational changes associated with substrate translocation by a multitude of transport proteins with the same fold. Biochemical and modeling studies led to a "rocking bundle" mechanism for LeuT that was validated by subsequent transporter structures. These advances suggest how coupled solute transport might be defined by the internal symmetry of proteins containing inverted structural repeats.
Collapse
Affiliation(s)
- Lucy R Forrest
- Computational Structural Biology, Max Planck Institute for Biophysics, Frankfurt, Germany
| | | |
Collapse
|
15
|
Huang F, Rabson D, Chen W. Distribution of the NA/K pumps' turnover rates as a function of membrane potential, temperature, and ion concentration gradients and effect of fluctuations. J Phys Chem B 2009; 113:8096-102. [PMID: 19441863 DOI: 10.1021/jp8054153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of structural independence of the Na/K pump molecules, the pumping rates of individual pumps may not be the same, instead showing some sort of distribution. Detailed information about the distribution has not previously been reported. The pumping rate of Na/K pumps depends on many parameters, such as membrane potential, temperature, and ion concentration gradients across the cell membrane. Fluctuation of any of the variables will change the pumping rate, resulting in a distribution. On the basis of a simplified six-state model, a steady-state pumping flux and therefore the pumping rate were obtained. Parameters were determined based on previous experimental results on amphibian skeletal muscle and theoretical work. Gaussian fluctuations of all the variables were considered to determine the changes in the pumping rate. These variable fluctuations may be totally independent or correlated to each other. The results showed that the pumping rates of the Na/K pumps are distributed in an asymmetric profile, which has a higher probability at the lower pumping rate. We present a model distribution of pumping rates as a function of temperature, membrane potential, and ion concentration.
Collapse
Affiliation(s)
- Feiran Huang
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | | | | |
Collapse
|
16
|
Rodrigues AM, Infantosi AFC, de Almeida ACG. Palytoxin and the sodium/potassium pump—phosphorylation and potassium interaction. Phys Biol 2009; 6:036010. [DOI: 10.1088/1478-3975/6/3/036010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Gadsby DC. Ion channels versus ion pumps: the principal difference, in principle. Nat Rev Mol Cell Biol 2009; 10:344-52. [PMID: 19339978 DOI: 10.1038/nrm2668] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incessant traffic of ions across cell membranes is controlled by two kinds of border guards: ion channels and ion pumps. Open channels let selected ions diffuse rapidly down electrical and concentration gradients, whereas ion pumps labour tirelessly to maintain the gradients by consuming energy to slowly move ions thermodynamically uphill. Because of the diametrically opposed tasks and the divergent speeds of channels and pumps, they have traditionally been viewed as completely different entities, as alike as chalk and cheese. But new structural and mechanistic information about both of these classes of molecular machines challenges this comfortable separation and forces its re-evaluation.
Collapse
Affiliation(s)
- David C Gadsby
- Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, 1230 York Avenue, New York, New York 10065-6399, USA.
| |
Collapse
|
18
|
Gadsby DC, Takeuchi A, Artigas P, Reyes N. Review. Peering into an ATPase ion pump with single-channel recordings. Philos Trans R Soc Lond B Biol Sci 2009; 364:229-38. [PMID: 18986966 DOI: 10.1098/rstb.2008.0243] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In principle, an ion channel needs no more than a single gate, but a pump requires at least two gates that open and close alternately to allow ion access from only one side of the membrane at a time. In the Na+,K+-ATPase pump, this alternating gating effects outward transport of three Na+ ions and inward transport of two K+ ions, for each ATP hydrolysed, up to a hundred times per second, generating a measurable current if assayed in millions of pumps. Under these assay conditions, voltage jumps elicit brief charge movements, consistent with displacement of ions along the ion pathway while one gate is open but the other closed. Binding of the marine toxin, palytoxin, to the Na+,K+-ATPase uncouples the two gates, so that although each gate still responds to its physiological ligand they are no longer constrained to open and close alternately, and the Na+,K+-ATPase is transformed into a gated cation channel. Millions of Na+ or K+ ions per second flow through such an open pump-channel, permitting assay of single molecules and allowing unprecedented access to the ion transport pathway through the Na+,K+-ATPase. Use of variously charged small hydrophilic thiol-specific reagents to probe cysteine targets introduced throughout the pump's transmembrane segments allows mapping and characterization of the route traversed by transported ions.
Collapse
Affiliation(s)
- David C Gadsby
- Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
19
|
Investigating the potassium interactions with the palytoxin induced channels in Na+/K+ pump. Comput Biol Chem 2009; 33:14-21. [DOI: 10.1016/j.compbiolchem.2008.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 07/03/2008] [Accepted: 07/06/2008] [Indexed: 11/18/2022]
|
20
|
Computer simulation of synchronization of Na/K pump molecules. J Bioenerg Biomembr 2008; 40:337-45. [PMID: 18679778 DOI: 10.1007/s10863-008-9152-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 06/28/2008] [Indexed: 10/21/2022]
|
21
|
Rodrigues AM, Almeida ACG, Infantosi AFC. Effect of palytoxin on the sodium–potassium pump: model and simulation. Phys Biol 2008; 5:036005. [DOI: 10.1088/1478-3975/5/3/036005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Abstract
CLC-0 and cystic fibrosis transmembrane conductance regulator (CFTR) Cl−channels play important roles in Cl−transport across cell membranes. These two proteins belong to, respectively, the CLC and ABC transport protein families whose members encompass both ion channels and transporters. Defective function of members in these two protein families causes various hereditary human diseases. Ion channels and transporters were traditionally viewed as distinct entities in membrane transport physiology, but recent discoveries have blurred the line between these two classes of membrane transport proteins. CLC-0 and CFTR can be considered operationally as ligand-gated channels, though binding of the activating ligands appears to be coupled to an irreversible gating cycle driven by an input of free energy. High-resolution crystallographic structures of bacterial CLC proteins and ABC transporters have led us to a better understanding of the gating properties for CLC and CFTR Cl−channels. Furthermore, the joined force between structural and functional studies of these two protein families has offered a unique opportunity to peek into the evolutionary link between ion channels and transporters. A promising byproduct of this exercise is a deeper mechanistic insight into how different transport proteins work at a fundamental level.
Collapse
|
23
|
Rodrigues AM, Almeida ACG, Infantosi AFC, Teixeira HZ, Duarte MA. Model and simulation of Na+/K+ pump phosphorylation in the presence of palytoxin. Comput Biol Chem 2008; 32:5-16. [PMID: 17897885 DOI: 10.1016/j.compbiolchem.2007.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 08/10/2007] [Indexed: 10/22/2022]
Abstract
The ATP hydrolysis reactions responsible for the Na(+)/K(+)-ATPase phosphorylation, according to recent experimental evidences, also occur for the PTX-Na(+)/K(+) pump complex. Moreover, it has been demonstrated that PTX interferes with the enzymes phosphorylation status. However, the reactions involved in the PTX-Na(+)/K(+) pump complex phosphorylation are not very well established yet. This work aims at proposing a reaction model for PTX-Na(+)/K(+) pump complex, with similar structure to the Albers-Post model, to contribute to elucidate the PTX effect over Na(+)/K(+)-ATPase phosphorylation and dephosphorylation. Computational simulations with the proposed model support several hypotheses and also suggest: (i) phosphorylation promotes an increase of the open probability of induced channels; (ii) PTX reduces the Na(+)/K(+) pump phosphorylation rate; (iii) PTX may cause conformational changes to substates where the Na(+)/K(+)-ATPase may not be phosphorylated; (iv) PTX can bind to substates of the two principal states E1 and E2, with highest affinity to phosphorylated enzymes and with ATP bound to its low-affinity sites. The proposed model also allows previewing the behavior of the PTX-pump complex substates for different levels of intracellular ATP concentrations.
Collapse
Affiliation(s)
- Antônio M Rodrigues
- Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
24
|
Gagnon DG, Frindel C, Lapointe JY. Voltage-clamp fluorometry in the local environment of the C255-C511 disulfide bridge of the Na+/glucose cotransporter. Biophys J 2007; 92:2403-11. [PMID: 17208964 PMCID: PMC1864846 DOI: 10.1529/biophysj.106.097964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We recently identified a functionally important disulfide bridge between C255 and C511 of the human Na+/glucose cotransporter SGLT1. In this study, voltage-clamp fluorometry was used to characterize the fluorescence of four different dyes attached to C255 and C511 under various ionic and substrate/inhibitor conditions. State-dependent fluorescence changes (DeltaF) were observed when TMR5M or TMR6M dyes were attached to C255 and C511 or when Alexa488 was bound to C511. TMR5M-C511 was extremely sensitive to membrane potential (Vm) and to external Na+ and alphaMG (a nonmetabolizable glucose analog) concentrations. A progressive increase in alphaMG concentration drastically changed the maximal voltage-dependent DeltaF and produced a positive shift in the midpoint of the DeltaF-Vm curve. By determining specific fluorescence intensity for each state of the cotransporter, our steady-state fluorescence data could be reproduced using the rate constants previously proposed for a five-state kinetic model exclusively derived from electrophysiological measurements. Our results bring an independent support to the proposed kinetic model and show that the binding of alphaMG substrate significantly modifies the environment of C255 and C511.
Collapse
Affiliation(s)
- Dominique G Gagnon
- Groupe d'étude des protéines membranaires (GEPROM), Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
25
|
Chen W. Voltage dependence of the carrier-mediated ion transport. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:021902. [PMID: 16605357 DOI: 10.1103/physreve.73.021902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 10/26/2005] [Indexed: 05/08/2023]
Abstract
With regards to the common features of carrier-mediated transport, voltage dependence was studied, using an asymmetric, six-state model. Our study shows that for an ion exchanger, transporting one kind of ion via exchange with another kind, the ion flux as a function of the membrane potential shows a sigmoidal curve with a shallow slope, saturation behavior, and possibly a negative slope. These features are mainly due to the transport of ions with charges of the same sign in the opposite direction. Membrane potential depolarization can facilitate only one transport and hinder another. As a result, the ion flux cannot increase dramatically and has an upper limitation because the exchanging rate depends on competition of the two inversely voltage-dependent transport processes. In contrast, for unidirectional ion transporters, the ion flux will monotonically increase as a function of the membrane potential. Both the maximum ion flux and the voltage sensitivity are much higher than those of the ion exchanger.
Collapse
Affiliation(s)
- Wei Chen
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA.
| |
Collapse
|
26
|
Abstract
The CLC family comprises a group of integral membrane proteins whose major action is to translocate chloride (Cl-) ions across the cell membranes. Recently, the structures of CLC orthologues from two bacterial species, Salmonella typhimurium and Escherichia coli, were solved, providing the first framework for understanding the operating mechanisms of these molecules. However, most of the previous mechanistic understanding of CLC channels came from electrophysiological studies of a branch of the channel family, the muscle-type CLC channels in vertebrate species. These vertebrate CLC channels were predicted to contain two identical but independent pores, and this hypothesis was confirmed by the solved bacterial CLC structures. The opening and closing of the vertebrate CLC channels are also known to couple to the permeant ions via their binding sites in the ion-permeation pathway. The bacterial CLC structures can probably serve as a structural model to explain the gating-permeation coupling mechanism. However, the CLC-ec1 protein in E. coli was most recently shown to be a Cl- -H+ antiporter, but not an ion channel. The molecular basis to explain the difference between vertebrate and bacterial CLCs, especially the distinction between an ion channel and a transporter, remains a challenge in the structure/function studies for the CLC family.
Collapse
Affiliation(s)
- Tsung-Yu Chen
- Center for Neuroscience and Department of Neurology, University of California, Davis, California 95616, USA.
| |
Collapse
|