1
|
Raghavan RT, Lisberger SG. Responses of Purkinje cells in the oculomotor vermis of monkeys during smooth pursuit eye movements and saccades: comparison with floccular complex. J Neurophysiol 2017; 118:986-1001. [PMID: 28515286 DOI: 10.1152/jn.00209.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/19/2017] [Accepted: 05/11/2017] [Indexed: 12/27/2022] Open
Abstract
We recorded the responses of Purkinje cells in the oculomotor vermis during smooth pursuit and saccadic eye movements. Our goal was to characterize the responses in the vermis using approaches that would allow direct comparisons with responses of Purkinje cells in another cerebellar area for pursuit, the floccular complex. Simple-spike firing of vermis Purkinje cells is direction selective during both pursuit and saccades, but the preferred directions are sufficiently independent so that downstream circuits could decode signals to drive pursuit and saccades separately. Complex spikes also were direction selective during pursuit, and almost all Purkinje cells showed a peak in the probability of complex spikes during the initiation of pursuit in at least one direction. Unlike the floccular complex, the preferred directions for simple spikes and complex spikes were not opposite. The kinematics of smooth eye movement described the simple-spike responses of vermis Purkinje cells well. Sensitivities were similar to those in the floccular complex for eye position and considerably lower for eye velocity and acceleration. The kinematic relations were quite different for saccades vs. pursuit, supporting the idea that the contributions from the vermis to each kind of movement could contribute independently in downstream areas. Finally, neither the complex-spike nor the simple-spike responses of vermis Purkinje cells were appropriate to support direction learning in pursuit. Complex spikes were not triggered reliably by an instructive change in target direction; simple-spike responses showed very small amounts of learning. We conclude that the vermis plays a different role in pursuit eye movements compared with the floccular complex.NEW & NOTEWORTHY The midline oculomotor cerebellum plays a different role in smooth pursuit eye movements compared with the lateral, floccular complex and appears to be much less involved in direction learning in pursuit. The output from the oculomotor vermis during pursuit lies along a null-axis for saccades and vice versa. Thus the vermis can play independent roles in the two kinds of eye movement.
Collapse
Affiliation(s)
- Ramanujan T Raghavan
- Department of Neurobiology, Duke University School of Medicine Durham, North Carolina
| | - Stephen G Lisberger
- Department of Neurobiology, Duke University School of Medicine Durham, North Carolina
| |
Collapse
|
2
|
Wolf AB, Lintz MJ, Costabile JD, Thompson JA, Stubblefield EA, Felsen G. An integrative role for the superior colliculus in selecting targets for movements. J Neurophysiol 2015. [PMID: 26203103 DOI: 10.1152/jn.00262.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A fundamental goal of systems neuroscience is to understand the neural mechanisms underlying decision making. The midbrain superior colliculus (SC) is known to be central to the selection of one among many potential spatial targets for movements, which represents an important form of decision making that is tractable to rigorous experimental investigation. In this review, we first discuss data from mammalian models-including primates, cats, and rodents-that inform our understanding of how neural activity in the SC underlies the selection of targets for movements. We then examine the anatomy and physiology of inputs to the SC from three key regions that are themselves implicated in motor decisions-the basal ganglia, parabrachial region, and neocortex-and discuss how they may influence SC activity related to target selection. Finally, we discuss the potential for methodological advances to further our understanding of the neural bases of target selection. Our overarching goal is to synthesize what is known about how the SC and its inputs act together to mediate the selection of targets for movements, to highlight open questions about this process, and to spur future studies addressing these questions.
Collapse
Affiliation(s)
- Andrew B Wolf
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Mario J Lintz
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Jamie D Costabile
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth A Stubblefield
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
3
|
Fukushima K, Ito N, Barnes GR, Onishi S, Kobayashi N, Takei H, Olley PM, Chiba S, Inoue K, Warabi T. Impaired smooth-pursuit in Parkinson's disease: normal cue-information memory, but dysfunction of extra-retinal mechanisms for pursuit preparation and execution. Physiol Rep 2015; 3:3/3/e12361. [PMID: 25825544 PMCID: PMC4393177 DOI: 10.14814/phy2.12361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
While retinal image motion is the primary input for smooth-pursuit, its efficiency depends on cognitive processes including prediction. Reports are conflicting on impaired prediction during pursuit in Parkinson's disease. By separating two major components of prediction (image motion direction memory and movement preparation) using a memory-based pursuit task, and by comparing tracking eye movements with those during a simple ramp-pursuit task that did not require visual memory, we examined smooth-pursuit in 25 patients with Parkinson's disease and compared the results with 14 age-matched controls. In the memory-based pursuit task, cue 1 indicated visual motion direction, whereas cue 2 instructed the subjects to prepare to pursue or not to pursue. Based on the cue-information memory, subjects were asked to pursue the correct spot from two oppositely moving spots or not to pursue. In 24/25 patients, the cue-information memory was normal, but movement preparation and execution were impaired. Specifically, unlike controls, most of the patients (18/24 = 75%) lacked initial pursuit during the memory task and started tracking the correct spot by saccades. Conversely, during simple ramp-pursuit, most patients (83%) exhibited initial pursuit. Popping-out of the correct spot motion during memory-based pursuit was ineffective for enhancing initial pursuit. The results were similar irrespective of levodopa/dopamine agonist medication. Our results indicate that the extra-retinal mechanisms of most patients are dysfunctional in initiating memory-based (not simple ramp) pursuit. A dysfunctional pursuit loop between frontal eye fields (FEF) and basal ganglia may contribute to the impairment of extra-retinal mechanisms, resulting in deficient pursuit commands from the FEF to brainstem.
Collapse
Affiliation(s)
- Kikuro Fukushima
- Department of Neurology, Sapporo Yamanoue Hospital, Sapporo, Japan
| | - Norie Ito
- Department of Neurology, Sapporo Yamanoue Hospital, Sapporo, Japan
| | - Graham R Barnes
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Sachiyo Onishi
- Department of Neurology, Sapporo Yamanoue Hospital, Sapporo, Japan
| | | | - Hidetoshi Takei
- Department of Radiology, Sapporo Yamanoue Hospital, Sapporo, Japan
| | - Peter M Olley
- Department of Neurology, Sapporo Yamanoue Hospital, Sapporo, Japan
| | - Susumu Chiba
- Department of Neurology, Sapporo Yamanoue Hospital, Sapporo, Japan
| | - Kiyoharu Inoue
- Department of Neurology, Sapporo Yamanoue Hospital, Sapporo, Japan
| | - Tateo Warabi
- Department of Neurology, Sapporo Yamanoue Hospital, Sapporo, Japan
| |
Collapse
|
4
|
Kurkin S, Akao T, Fukushima J, Shichinohe N, Kaneko CRS, Belton T, Fukushima K. No-go neurons in the cerebellar oculomotor vermis and caudal fastigial nuclei: planning tracking eye movements. Exp Brain Res 2013; 232:191-210. [PMID: 24129645 DOI: 10.1007/s00221-013-3731-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
The cerebellar dorsal vermis lobules VI-VII (oculomotor vermis) and its output region (caudal fastigial nuclei, cFN) are involved in tracking eye movements consisting of both smooth-pursuit and saccades, yet, the exact role of these regions in the control of tracking eye movements is still unclear. We compared the neuronal discharge of these cerebellar regions using a memory-based, smooth-pursuit task that distinguishes discharge related to movement preparation and execution from the discharge related to the processing of visual motion signals or their memory. Monkeys were required to pursue (i.e., go), or not pursue (i.e., no-go) in a cued direction, based on the memory of visual motion direction and go/no-go instructions. Most (>60 %) of task-related vermal Purkinje cells (P-cells) and cFN neurons discharged specifically during the memory period following no-go instructions; their discharge was correlated with memory of no-go instructions but was unrelated to eye movements per se during the action period of go trials. The latencies of no-go discharge of vermal P-cells and cFN neurons were similar, but were significantly longer than those of supplementary eye field (SEF) no-go neurons during an identical task. Movement-preparation signals were found in ~30 % of smooth-pursuit-related neurons in these cerebellar regions and some of them also carried visual memory signals. Our results suggest that no-go neurons are a newly revealed class of neurons, detected using the memory-based pursuit task, in the oculomotor vermis-cFN pathway and that this pathway contributes specifically to planning requiring the working memory of no-go instructions and preparation of tracking eye movements.
Collapse
Affiliation(s)
- Sergei Kurkin
- Department of Physiology, School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Ito N, Barnes GR, Fukushima J, Fukushima K, Warabi T. Cue-dependent memory-based smooth-pursuit in normal human subjects: importance of extra-retinal mechanisms for initial pursuit. Exp Brain Res 2013; 229:23-35. [PMID: 23736523 DOI: 10.1007/s00221-013-3586-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/19/2013] [Indexed: 10/26/2022]
Abstract
Using a cue-dependent memory-based smooth-pursuit task previously applied to monkeys, we examined the effects of visual motion-memory on smooth-pursuit eye movements in normal human subjects and compared the results with those of the trained monkeys. These results were also compared with those during simple ramp-pursuit that did not require visual motion-memory. During memory-based pursuit, all subjects exhibited virtually no errors in either pursuit-direction or go/no-go selection. Tracking eye movements of humans and monkeys were similar in the two tasks, but tracking eye movements were different between the two tasks; latencies of the pursuit and corrective saccades were prolonged, initial pursuit eye velocity and acceleration were lower, peak velocities were lower, and time to reach peak velocities lengthened during memory-based pursuit. These characteristics were similar to anticipatory pursuit initiated by extra-retinal components during the initial extinction task of Barnes and Collins (J Neurophysiol 100:1135-1146, 2008b). We suggest that the differences between the two tasks reflect differences between the contribution of extra-retinal and retinal components. This interpretation is supported by two further studies: (1) during popping out of the correct spot to enhance retinal image-motion inputs during memory-based pursuit, pursuit eye velocities approached those during simple ramp-pursuit, and (2) during initial blanking of spot motion during memory-based pursuit, pursuit components appeared in the correct direction. Our results showed the importance of extra-retinal mechanisms for initial pursuit during memory-based pursuit, which include priming effects and extra-retinal drive components. Comparison with monkey studies on neuronal responses and model analysis suggested possible pathways for the extra-retinal mechanisms.
Collapse
Affiliation(s)
- Norie Ito
- Clinical Brain Research Laboratory, Department of Neurology, Toyokura Memorial Hall, Sapporo Yamanoue Hospital, Yamanote 6-9-1-1, Nishiku, Sapporo 063-0006, Japan
| | | | | | | | | |
Collapse
|
6
|
Fukushima K, Fukushima J, Warabi T, Barnes GR. Cognitive processes involved in smooth pursuit eye movements: behavioral evidence, neural substrate and clinical correlation. Front Syst Neurosci 2013; 7:4. [PMID: 23515488 PMCID: PMC3601599 DOI: 10.3389/fnsys.2013.00004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/01/2013] [Indexed: 11/21/2022] Open
Abstract
Smooth-pursuit eye movements allow primates to track moving objects. Efficient pursuit requires appropriate target selection and predictive compensation for inherent processing delays. Prediction depends on expectation of future object motion, storage of motion information and use of extra-retinal mechanisms in addition to visual feedback. We present behavioral evidence of how cognitive processes are involved in predictive pursuit in normal humans and then describe neuronal responses in monkeys and behavioral responses in patients using a new technique to test these cognitive controls. The new technique examines the neural substrate of working memory and movement preparation for predictive pursuit by using a memory-based task in macaque monkeys trained to pursue (go) or not pursue (no-go) according to a go/no-go cue, in a direction based on memory of a previously presented visual motion display. Single-unit task-related neuronal activity was examined in medial superior temporal cortex (MST), supplementary eye fields (SEF), caudal frontal eye fields (FEF), cerebellar dorsal vermis lobules VI–VII, caudal fastigial nuclei (cFN), and floccular region. Neuronal activity reflecting working memory of visual motion direction and go/no-go selection was found predominantly in SEF, cerebellar dorsal vermis and cFN, whereas movement preparation related signals were found predominantly in caudal FEF and the same cerebellar areas. Chemical inactivation produced effects consistent with differences in signals represented in each area. When applied to patients with Parkinson's disease (PD), the task revealed deficits in movement preparation but not working memory. In contrast, patients with frontal cortical or cerebellar dysfunction had high error rates, suggesting impaired working memory. We show how neuronal activity may be explained by models of retinal and extra-retinal interaction in target selection and predictive control and thus aid understanding of underlying pathophysiology.
Collapse
Affiliation(s)
- Kikuro Fukushima
- Department of Neurology, Sapporo Yamanoue Hospital Sapporo, Japan ; Department of Physiology, Hokkaido University School of Medicine Sapporo, Japan
| | | | | | | |
Collapse
|
7
|
Fukushima K, Fukushima J, Warabi T. Vestibular-related frontal cortical areas and their roles in smooth-pursuit eye movements: representation of neck velocity, neck-vestibular interactions, and memory-based smooth-pursuit. Front Neurol 2011; 2:78. [PMID: 22174706 PMCID: PMC3237097 DOI: 10.3389/fneur.2011.00078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/20/2011] [Indexed: 11/13/2022] Open
Abstract
Smooth-pursuit eye movements are voluntary responses to small slow-moving objects in the fronto-parallel plane. They evolved in primates, who possess high-acuity foveae, to ensure clear vision about the moving target. The primate frontal cortex contains two smooth-pursuit related areas; the caudal part of the frontal eye fields (FEF) and the supplementary eye fields (SEF). Both areas receive vestibular inputs. We review functional differences between the two areas in smooth-pursuit. Most FEF pursuit neurons signal pursuit parameters such as eye velocity and gaze-velocity, and are involved in canceling the vestibulo-ocular reflex by linear addition of vestibular and smooth-pursuit responses. In contrast, gaze-velocity signals are rarely represented in the SEF. Most FEF pursuit neurons receive neck velocity inputs, while discharge modulation during pursuit and trunk-on-head rotation adds linearly. Linear addition also occurs between neck velocity responses and vestibular responses during head-on-trunk rotation in a task-dependent manner. During cross-axis pursuit-vestibular interactions, vestibular signals effectively initiate predictive pursuit eye movements. Most FEF pursuit neurons discharge during the interaction training after the onset of pursuit eye velocity, making their involvement unlikely in the initial stages of generating predictive pursuit. Comparison of representative signals in the two areas and the results of chemical inactivation during a memory-based smooth-pursuit task indicate they have different roles; the SEF plans smooth-pursuit including working memory of motion-direction, whereas the caudal FEF generates motor commands for pursuit eye movements. Patients with idiopathic Parkinson's disease were asked to perform this task, since impaired smooth-pursuit and visual working memory deficit during cognitive tasks have been reported in most patients. Preliminary results suggested specific roles of the basal ganglia in memory-based smooth-pursuit.
Collapse
|