1
|
Kjellbom A, Löndahl M, Danielsson M, Olsen H, Lindgren O. Urine-normetanephrine, a predictor of mortality risk in patients with adrenal adenomas. Sci Rep 2025; 15:11145. [PMID: 40169821 PMCID: PMC11961734 DOI: 10.1038/s41598-025-94951-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/18/2025] [Indexed: 04/03/2025] Open
Abstract
Urine-metanephrines are used in the screening for pheochromocytomas in patients with adrenal incidentalomas, but their potential as markers for mortality in patients with adrenal adenomas has not been studied. A retrospective cohort study was designed to investigate if urine-metanephrines were associated with mortality in patients with adrenal adenomas. Participants where consecutively included between 2005 and 2015 at two endocrine centres in southern Sweden and followed until December 31st, 2022. The exposures were 24 h-urine (tU) metanephrine and normetanephrine analysed at inclusion. The endpoint was all-cause mortality. Outcome data were obtained from the Cause of Death Register. 879 adult (≥ 18 years) patients with an incidentally discovered adrenal adenoma were included in the study and followed for a median of 9.9 years. Median age of patients was 66.7 years, and 59.6% were women. 278 patients died during follow-up. tU-normetanephrine was associated with increased mortality, adjusted hazard ratio (HR) 1.47 (95% CI, 1.27-1.69) (HR for an increase of 100 μmol/mol creatinine). There was no significant association between tU-metanephrine and mortality, HR 0.96 (0.64-1.43). tU-normetanephrine seems to be a predictor for mortality in patients with adrenal adenomas. This widely available diagnostic test may be helpful in further risk-stratifying patients with adrenal adenomas.
Collapse
Affiliation(s)
- Albin Kjellbom
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden.
- Department of Endocrinology, Central Hospital Kristianstad, J A Hedlunds Väg 5, 291 33, Kristianstad, Sweden.
| | - Magnus Löndahl
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Malin Danielsson
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Endocrinology, Skåne University Hospital, Lund, Sweden
| | - Henrik Olsen
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Endocrinology, Ängelholm Hospital, Ängelholm, Sweden
| | - Ola Lindgren
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Endocrinology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
2
|
Adrenergic and Glucocorticoid Receptors in the Pulmonary Health Effects of Air Pollution. TOXICS 2021; 9:toxics9060132. [PMID: 34200050 PMCID: PMC8226814 DOI: 10.3390/toxics9060132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023]
Abstract
Adrenergic receptors (ARs) and glucocorticoid receptors (GRs) are activated by circulating catecholamines and glucocorticoids, respectively. These receptors regulate the homeostasis of physiological processes with specificity via multiple receptor subtypes, wide tissue-specific distribution, and interactions with other receptors and signaling processes. Based on their physiological roles, ARs and GRs are widely manipulated therapeutically for chronic diseases. Although these receptors play key roles in inflammatory and cellular homeostatic processes, little research has addressed their involvement in the health effects of air pollution. We have recently demonstrated that ozone, a prototypic air pollutant, mediates pulmonary and systemic effects through the activation of these receptors. A single exposure to ozone induces the sympathetic–adrenal–medullary and hypothalamic–pituitary–adrenal axes, resulting in the release of epinephrine and corticosterone into the circulation. These hormones act as ligands for ARs and GRs. The roles of beta AR (βARs) and GRs in ozone-induced pulmonary injury and inflammation were confirmed in a number of studies using interventional approaches. Accordingly, the activation status of ARs and GRs is critical in mediating the health effects of inhaled irritants. In this paper, we review the cellular distribution and functions of ARs and GRs, their lung-specific localization, and their involvement in ozone-induced health effects, in order to capture attention for future research.
Collapse
|
3
|
Henriquez AR, Snow SJ, Schladweiler MC, Miller CN, Kodavanti UP. Independent roles of beta-adrenergic and glucocorticoid receptors in systemic and pulmonary effects of ozone. Inhal Toxicol 2020; 32:155-169. [PMID: 32366144 DOI: 10.1080/08958378.2020.1759736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background: The release of catecholamines is preceded by glucocorticoids during a stress response. We have shown that ozone-induced pulmonary responses are mediated through the activation of stress hormone receptors.Objective: To examine the interdependence of beta-adrenergic (βAR) and glucocorticoid receptors (GRs), we inhibited βAR while inducing GR or inhibited GR while inducing βAR and examined ozone-induced stress response.Methods: Twelve-week-old male Wistar-Kyoto rats were pretreated daily with saline or propranolol (PROP; βAR-antagonist; 10 mg/kg-i.p.; starting 7-d prior to exposure) followed-by saline or dexamethasone (DEX) sulfate (GR-agonist; 0.02 mg/kg-i.p.; starting 1-d prior to exposure) and exposed to air or 0.8 ppm ozone (4 h/d × 2-d). In a second experiment, rats were similarly pretreated with corn-oil or mifepristone (MIFE; GR-antagonist, 30 mg/kg-s.c.) followed by saline or clenbuterol (CLEN; β2AR-agonist; 0.02 mg/kg-i.p.) and exposed.Results: DEX and PROP + DEX decreased adrenal, spleen and thymus weights in all rats. DEX and MIFE decreased and increased corticosterone, respectively. Ozone-induced pulmonary protein leakage, inflammation and IL-6 increases were inhibited by PROP or PROP + DEX and exacerbated by CLEN or CLEN + MIFE. DEX and ozone-induced while MIFE reversed lymphopenia (MIFE > CLEN + MIFE). DEX exacerbated while PROP, MIFE, or CLEN + MIFE inhibited ozone-induced hyperglycemia and glucose intolerance. Ozone inhibited glucose-mediated insulin release.Conclusions: In summary, 1) activating βAR, even with GR inhibition, exacerbated and inhibiting βAR, even with GR activation, attenuated ozone-induced pulmonary effects; and 2) activating GR exacerbated ozone systemic effects, but with βAR inhibition, this exacerbation was less remarkable. These data suggest the independent roles of βAR in pulmonary and dependent roles of βAR and GR in systemic effects of ozone.
Collapse
Affiliation(s)
- Andres R Henriquez
- Department of Energy, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Colette N Miller
- Department of Energy, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
4
|
Byrne CJ, Khurana S, Kumar A, Tai TC. Inflammatory Signaling in Hypertension: Regulation of Adrenal Catecholamine Biosynthesis. Front Endocrinol (Lausanne) 2018; 9:343. [PMID: 30013513 PMCID: PMC6036303 DOI: 10.3389/fendo.2018.00343] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/07/2018] [Indexed: 12/24/2022] Open
Abstract
The immune system is increasingly recognized for its role in the genesis and progression of hypertension. The adrenal gland is a major site that coordinates the stress response via the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal system. Catecholamines released from the adrenal medulla function in the neuro-hormonal regulation of blood pressure and have a well-established link to hypertension. The immune system has an active role in the progression of hypertension and cytokines are powerful modulators of adrenal cell function. Adrenal medullary cells integrate neural, hormonal, and immune signals. Changes in adrenal cytokines during the progression of hypertension may promote blood pressure elevation by influencing catecholamine biosynthesis. This review highlights the potential interactions of cytokine signaling networks with those of catecholamine biosynthesis within the adrenal, and discusses the role of cytokines in the coordination of blood pressure regulation and the stress response.
Collapse
Affiliation(s)
- Collin J. Byrne
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Sandhya Khurana
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Aseem Kumar
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - T. C. Tai
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
5
|
Almanzar G, Mayerl C, Seitz JC, Höfner K, Brunner A, Wild V, Jahn D, Geier A, Fassnacht M, Prelog M. Expression of 11beta-hydroxysteroid-dehydrogenase type 2 in human thymus. Steroids 2016; 110:35-40. [PMID: 27025972 DOI: 10.1016/j.steroids.2016.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 01/10/2023]
Abstract
11beta-hydroxysteroid-dehydrogenase type 2 (11β-HSD2) is a high affinity dehydrogenase which rapidly inactivates physiologically-active glucocorticoids to protect key tissues. 11β-HSD2 expression has been described in peripheral cells of the innate and the adaptive immune system as well as in murine thymus. In absence of knowledge of 11β-HSD2 expression in human thymus, the study aimed to localize 11β-HSD2 in human thymic tissue. Thymic tissue was taken of six healthy, non-immunologically impaired male infants below 12months of age with congenital heart defects who had to undergo correction surgery. 11β-HSD2 protein expression was analyzed by immunohistochemistry and Western blot. Kidney tissue, peripheral blood mononuclear cells (PBMCs) and human umbilical vein endothelial cells (HUVEC) were taken as positive controls. Significant expression of 11β-HSD2 protein was found at single cell level in thymus parenchyma, at perivascular sites of capillaries and small vessels penetrating the thymus lobuli and within Hassall's bodies. The present study demonstrates that 11β-HSD2 is expressed in human thymus with predominant perivascular expression and also within Hassall's bodies. To our knowledge, this is the first report confirming 11β-HSD2 expression at the protein level in human thymic tissue underlining a potential role of this enzyme in regulating glucocorticoid function at the thymic level.
Collapse
Affiliation(s)
- Giovanni Almanzar
- Department of Pediatrics, University Hospital Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Christina Mayerl
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Jan-Christoph Seitz
- Department of Pediatrics, University Hospital Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Kerstin Höfner
- Department of Pediatrics, University Hospital Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Andrea Brunner
- Department of Pathology, Medical University Innsbruck, Muellerstr. 41, 6020 Innsbruck, Austria
| | - Vanessa Wild
- Institute of Pathology, University of Wuerzburg, and Comprehensive Cancer Center Mainfranken, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Daniel Jahn
- Department of Internal Medicine II, University Hospital Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Andreas Geier
- Department of Internal Medicine II, University Hospital Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I, University Hospital Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Martina Prelog
- Department of Pediatrics, University Hospital Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany.
| |
Collapse
|
6
|
De Lorenzo BHP, de Oliveira Marchioro L, Greco CR, Suchecki D. Sleep-deprivation reduces NK cell number and function mediated by β-adrenergic signalling. Psychoneuroendocrinology 2015; 57:134-43. [PMID: 25929826 DOI: 10.1016/j.psyneuen.2015.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 11/28/2022]
Abstract
Reduction of sleep time triggers a stress response, leading to augmented levels of glucocorticoids and adrenaline. These hormones regulate components of the innate immune system such as natural killer (NK) and NKT cells. In the present study, we sought to investigate whether and how stress hormones could alter the population and function of NK and NKT cells of mice submitted to different lengths of paradoxical sleep deprivation (PSD, from 24 to 72 h). Results showed that 72h of PSD decreased not only NK and NKT cell counts, but also their cytotoxic activity against B16F10 melanoma cells in vitro. Propranolol treatment during PSD reversed these effects, indicating a major inhibitory role of beta-adrenergic receptors (β-AR) on NK cells function. Moreover, both corticosterone plasma levels and expression of beta 2-adrenergic receptors (β2-AR) in NK cells increased by 48 h of PSD. In vitro incubation of NK cells with dexamethasone augmented the level of β2-AR in the cell surface, suggesting that glucocorticoids could induce β2-AR expression. In summary, we propose that reduction of NK and NKT cell number and cytotoxic activity appears to be mediated by glucocorticoids-induced increased expression of β2-AR in these cells.
Collapse
Affiliation(s)
- Beatriz H P De Lorenzo
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925 - 1° andar, Vila Clementino, 04024-002 São Paulo, SP, Brazil; Centro Universitário São Camilo, Avenida Nazaré, 1501, Ipiranga, 04263-200 São Paulo, SP, Brazil.
| | - Laís de Oliveira Marchioro
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925 - 1° andar, Vila Clementino, 04024-002 São Paulo, SP, Brazil
| | - Carollina Ribeiro Greco
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925 - 1° andar, Vila Clementino, 04024-002 São Paulo, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925 - 1° andar, Vila Clementino, 04024-002 São Paulo, SP, Brazil
| |
Collapse
|