1
|
Din GU, Wu C, Tariq Z, Hasham K, Amjad MN, Shen B, Yue L, Raza MA, Ashraf MA, Chen L, Hu Y. Unlocking influenza B: exploring molecular biology and reverse genetics for epidemic control and vaccine innovation. Virol J 2024; 21:196. [PMID: 39180083 PMCID: PMC11344405 DOI: 10.1186/s12985-024-02433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/26/2024] Open
Abstract
Influenza is a highly contagious acute viral illness that affects the respiratory system, posing a significant global public health concern. Influenza B virus (IBV) causes annual seasonal epidemics. The exploration of molecular biology and reverse genetics of IBV is pivotal for understanding its replication, pathogenesis, and evolution. Reverse genetics empowers us to purposefully alter the viral genome, engineer precise genetic modifications, and unveil the secrets of virulence and resistance mechanisms. It helps us in quickly analyzing new virus strains by viral genome manipulation and the development of innovative influenza vaccines. Reverse genetics has been employed to create mutant or reassortant influenza viruses for evaluating their virulence, pathogenicity, host range, and transmissibility. Without this technique, these tasks would be difficult or impossible, making it crucial for preparing for epidemics and protecting public health. Here, we bring together the latest information on how we can manipulate the genes of the influenza B virus using reverse genetics methods, most importantly helper virus-independent techniques.
Collapse
Affiliation(s)
- Ghayyas Ud Din
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, People's Republic of China
| | - Zahra Tariq
- Sundas Molecular Analysis Center, Sundas Foundation, Gujranwala, Punjab, Pakistan
| | - Kinza Hasham
- Sundas Molecular Analysis Center, Sundas Foundation, Gujranwala, Punjab, Pakistan
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
| | - Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingdie Chen
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Martinez-Gzegozewska Y, Rasmussen L, McKellip S, Manuvakhova A, Nebane NM, Reece AJ, Ruiz P, Sosa M, Bostwick R, Vinson P. High-Throughput cell-based immunofluorescence assays against influenza. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:66-76. [PMID: 37925159 DOI: 10.1016/j.slasd.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
A rapid drug discovery response to influenza outbreaks with the potential to reach pandemic status could help minimize the virus's impact by reducing the time to identify anti-influenza drugs. Although several anti-influenza strategies have been considered in the search for new drugs, only a few therapeutic agents are approved for clinical use. The cytopathic effect induced by the influenza virus in Madin Darby canine kidney (MDCK) cells has been widely used for high-throughput anti-influenza drug screening, but the fact that the MDCK cells are not human cells constitutes a disadvantage when searching for new therapeutic agents for human use. We have developed a highly sensitive cell-based imaging assay for the identification of inhibitors of influenza A and B virus that is high-throughput compatible using the A549 human cell line. The assay has also been optimized for the assessment of the neutralizing effect of anti-influenza antibodies in the absence of trypsin, which allows testing of purified antibodies and serum samples. This assay platform can be applied to full high-throughput screening campaigns or later stages requiring quantitative potency determinations for structure-activity relationships.
Collapse
Affiliation(s)
- Yohanka Martinez-Gzegozewska
- Scientific Platforms Division, Southern Research, High-Throughput Screening Center, Birmingham, Alabama, United States.
| | - Lynn Rasmussen
- Scientific Platforms Division, Southern Research, High-Throughput Screening Center, Birmingham, Alabama, United States
| | - Sara McKellip
- Scientific Platforms Division, Southern Research, High-Throughput Screening Center, Birmingham, Alabama, United States
| | - Anna Manuvakhova
- Scientific Platforms Division, Southern Research, High-Throughput Screening Center, Birmingham, Alabama, United States
| | - N Miranda Nebane
- Scientific Platforms Division, Southern Research, High-Throughput Screening Center, Birmingham, Alabama, United States
| | - Andrew J Reece
- Scientific Platforms Division, Southern Research, High-Throughput Screening Center, Birmingham, Alabama, United States
| | - Pedro Ruiz
- Scientific Platforms Division, Southern Research, High-Throughput Screening Center, Birmingham, Alabama, United States
| | - Melinda Sosa
- Scientific Platforms Division, Southern Research, High-Throughput Screening Center, Birmingham, Alabama, United States
| | - Robert Bostwick
- Scientific Platforms Division, Southern Research, High-Throughput Screening Center, Birmingham, Alabama, United States
| | - Paige Vinson
- Scientific Platforms Division, Southern Research, High-Throughput Screening Center, Birmingham, Alabama, United States
| |
Collapse
|
3
|
Xie E, Ahmad S, Smyth RP, Sieben C. Advanced fluorescence microscopy in respiratory virus cell biology. Adv Virus Res 2023; 116:123-172. [PMID: 37524480 DOI: 10.1016/bs.aivir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
Collapse
Affiliation(s)
- Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shazeb Ahmad
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany; Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
4
|
Kedia N, Banerjee S, Mondal A. A Comprehensive Roadmap Towards the Generation of an Influenza B Reporter Assay Using a Single DNA Polymerase-Based Cloning of the Reporter RNA Construct. Front Microbiol 2022; 13:868367. [PMID: 35694292 PMCID: PMC9174941 DOI: 10.3389/fmicb.2022.868367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
The mini-genome reporter assay is a key tool for conducting RNA virus research. However, procedural complications and the lack of adequate literature pose a major challenge in developing these assay systems. Here, we present a novel, yet generic and simple, cloning strategy for the construction of an influenza B virus reporter RNA template and describe an extensive standardization of the reporter RNP/polymerase activity assay for monitoring viral RNA synthesis in an infection-free setting. Using this assay system, we showed for the first time the effect of viral protein NS1 and host protein kinase C delta (PKCD) on influenza B virus RNA synthesis. In addition, the assay system showed promising results in evaluating the efficacy of antiviral drugs targeting viral RNA synthesis and virus propagation. Together, this work offers a detailed protocol for the standardization of the influenza virus minigenome assay and an excellent tool for screening of host factors and antivirals in a fast, user-friendly, and high-throughput manner.
Collapse
|
5
|
Harfoot R, Yung DBY, Anderson WA, Wild CEK, Coetzee N, Hernández LC, Lawley B, Pletzer D, Derraik JGB, Anderson YC, Quiñones-Mateu ME. Ultraviolet-C Irradiation, Heat, and Storage as Potential Methods of Inactivating SARS-CoV-2 and Bacterial Pathogens on Filtering Facepiece Respirators. Pathogens 2022; 11:83. [PMID: 35056031 PMCID: PMC8780977 DOI: 10.3390/pathogens11010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 02/01/2023] Open
Abstract
The arrival of SARS-CoV-2 to Aotearoa/New Zealand in February 2020 triggered a massive response at multiple levels. Procurement and sustainability of medical supplies to hospitals and clinics during the then upcoming COVID-19 pandemic was one of the top priorities. Continuing access to new personal protective equipment (PPE) was not guaranteed; thus, disinfecting and reusing PPE was considered as a potential alternative. Here, we describe part of a local program intended to test and implement a system to disinfect PPE for potential reuse in New Zealand. We used filtering facepiece respirator (FFR) coupons inoculated with SARS-CoV-2 or clinically relevant multidrug-resistant pathogens (Acinetobacter baumannii Ab5075, methicillin-resistant Staphylococcus aureus USA300 LAC and cystic-fibrosis isolate Pseudomonas aeruginosa LESB58), to evaluate the potential use of ultraviolet-C germicidal irradiation (UV-C) or dry heat treatment to disinfect PPE. An applied UV-C dose of 1000 mJ/cm2 was sufficient to completely inactivate high doses of SARS-CoV-2; however, irregularities in the FFR coupons hindered the efficacy of UV-C to fully inactivate the virus, even at higher UV-C doses (2000 mJ/cm2). Conversely, incubating contaminated FFR coupons at 65 °C for 30 min or 70 °C for 15 min, was sufficient to block SARS-CoV-2 replication, even in the presence of mucin or a soil load (mimicking salivary or respiratory secretions, respectively). Dry heat (90 min at 75 °C to 80 °C) effectively killed 106 planktonic bacteria; however, even extending the incubation time up to two hours at 80 °C did not completely kill bacteria when grown in colony biofilms. Importantly, we also showed that FFR material can harbor replication-competent SARS-CoV-2 for up to 35 days at room temperature in the presence of a soil load. We are currently using these findings to optimize and establish a robust process for decontaminating, reusing, and reducing wastage of PPE in New Zealand.
Collapse
Affiliation(s)
- Rhodri Harfoot
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (R.H.); (D.B.Y.Y.); (L.C.H.); (B.L.); (D.P.)
| | - Deborah B. Y. Yung
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (R.H.); (D.B.Y.Y.); (L.C.H.); (B.L.); (D.P.)
| | - William A. Anderson
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Cervantée E. K. Wild
- Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland 1010, New Zealand; (C.E.K.W.); (N.C.); (J.G.B.D.)
| | - Nicolene Coetzee
- Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland 1010, New Zealand; (C.E.K.W.); (N.C.); (J.G.B.D.)
| | - Leonor C. Hernández
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (R.H.); (D.B.Y.Y.); (L.C.H.); (B.L.); (D.P.)
| | - Blair Lawley
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (R.H.); (D.B.Y.Y.); (L.C.H.); (B.L.); (D.P.)
| | - Daniel Pletzer
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (R.H.); (D.B.Y.Y.); (L.C.H.); (B.L.); (D.P.)
| | - José G. B. Derraik
- Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland 1010, New Zealand; (C.E.K.W.); (N.C.); (J.G.B.D.)
| | - Yvonne C. Anderson
- Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland 1010, New Zealand; (C.E.K.W.); (N.C.); (J.G.B.D.)
| | - Miguel E. Quiñones-Mateu
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (R.H.); (D.B.Y.Y.); (L.C.H.); (B.L.); (D.P.)
- Webster Centre for Infectious Diseases, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
6
|
Dolskiy AA, Grishchenko IV, Yudkin DV. Cell Cultures for Virology: Usability, Advantages, and Prospects. Int J Mol Sci 2020; 21:ijms21217978. [PMID: 33121109 PMCID: PMC7662242 DOI: 10.3390/ijms21217978] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Virus detection in natural and clinical samples is a complicated problem in research and diagnostics. There are different approaches for virus isolation and identification, including PCR, CRISPR/Cas technology, NGS, immunoassays, and cell-based assays. Following the development of genetic engineering methods, approaches that utilize cell cultures have become useful and informative. Molecular biology methods allow increases in the sensitivity and specificity of cell cultures for certain viruses and can be used to generate reporter cell lines. These cell lines express specific reporter proteins (e.g., GFP, luciferase, and CAT) in response to virus infection that can be detected in a laboratory setting. The development of genome editing and synthetic biology methods has given rise to new perspectives regarding the design of virus reporter systems in cell cultures. This review is aimed at describing both virology methods in general and examples of the development of cell-based methods that exist today.
Collapse
|
7
|
Baccari A, Cooney M, Blevins TP, Morrison LA, Larson S, Skoberne M, Belshe RB, Flechtner JB, Long D. Development of a high-throughput β-Gal-based neutralization assay for quantitation of herpes simplex virus-neutralizing antibodies in human samples. Vaccine 2016; 34:3901-6. [DOI: 10.1016/j.vaccine.2016.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 01/21/2023]
|
8
|
Hudu SA, Alshrari AS, Syahida A, Sekawi Z. Cell Culture, Technology: Enhancing the Culture of Diagnosing Human Diseases. J Clin Diagn Res 2016; 10:DE01-5. [PMID: 27134874 DOI: 10.7860/jcdr/2016/15837.7460] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022]
Abstract
Cell culture involves a complex of processes of cell isolation from their natural environment (in vivo) and subsequent growth in a controlled environmental artificial condition (in vitro). Cells from specific tissues or organs are cultured as short term or established cell lines which are widely used for research and diagnosis, most specially in the aspect of viral infection, because pathogenic viral isolation depends on the availability of permissible cell cultures. Cell culture provides the required setting for the detection and identification of numerous pathogens of humans, which is achieved via virus isolation in the cell culture as the "gold standard" for virus discovery. In this review, we summarized the views of researchers on the current role of cell culture technology in the diagnosis of human diseases. The technological advancement of recent years, starting with monoclonal antibody development to molecular techniques, provides an important approach for detecting presence of viral infection. They are also used as a baseline for establishing rapid tests for newly discovered pathogens. A combination of virus isolation in cell culture and molecular methods is still critical in identifying viruses that were previously unrecognized. Therefore, cell culture should be considered as a fundamental procedure in identifying suspected infectious viral agent.
Collapse
Affiliation(s)
- Shuaibu Abdullahi Hudu
- Faculty, Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University , Sokoto, Sokoto State, Nigeria
| | - Ahmed Subeh Alshrari
- Faculty, Department of Basic Health Sciences, Faculty of Pharmacy, Northern Border Universiti , Rafha, Saudi Arabia
| | - Ahmad Syahida
- Professor, Department of Biochemistry, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia . UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Zamberi Sekawi
- Professor, Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia . UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
9
|
A dark-to-bright reporter cell for classical swine fever virus infection. Antiviral Res 2015; 117:44-51. [PMID: 25746332 DOI: 10.1016/j.antiviral.2015.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 02/02/2015] [Accepted: 02/24/2015] [Indexed: 11/23/2022]
Abstract
Current methods to quantitate classical swine fever virus (CSFV) infectivity in cell culture are time-consuming and labor-intensive. This study described the generation of a dark-to-bright fluorescent reporter cells to facilitate in vitro studies of CSFV infection and replication. This assay was based on a novel reporter cell stably expressing the enhanced green fluorescent protein (EGFP) fused in-frame to a quenching peptide via a special recognition sequence of the CSFV NS3 protease. Chromophore maturation of EGFP can be prevented by quenching peptide until the quenching peptide was specifically cleaved by NS3 protease during CSFV infection, making it a dark-to-bright reporter of CSFV infection. The result demonstrated that the CSFV-infected cells were clearly distinguishable from mock-infected cells and cells infected with other viruses. There was a strong correlation between the fluorescence intensity and viral RNA replication in CSFV-infected cells. The cell enabled rapid and sensitive detection of CSFV infection and viral replication in cell culture. The best time to examine the fluorescence in CSFV-infected cells was at 48h post-inoculation. These data suggested that the cells can be used as a reporter cell in CSFV infection assays. This reporter cell provides a sensitive method for the detection and isolation of CSFV and it will be useful for the screening of antiviral drugs or neutralizing antibody assays.
Collapse
|
10
|
Comparison of vRNA and cRNA based reporters for detection of influenza replication. Antiviral Res 2013; 98:76-84. [PMID: 23403209 DOI: 10.1016/j.antiviral.2013.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/04/2012] [Accepted: 01/06/2013] [Indexed: 11/24/2022]
Abstract
In this study, RNA polymerase I expressed replicons containing EGFP and luciferase reporter genes controlled by influenza vRNA or cRNA promoters were compared side-by-side in the ability to detect influenza RNA-dependent RNA polymerase activity as an indicator of influenza replication. Results showed the vRNA based Luc reporter was more sensitive to early detection of influenza virus at 6h post infection (p<0.05), and at 10-fold lower titer (MOI=0.001). Lower sensitivity of cRNA based Luc reporter constructs was due to its background expression, 2-fold lower expression, and around 4h delay in expression of luciferase. Despite these differences, both cRNA- and vRNA-based reporters demonstrated strong correlation between MOI and luciferase signal, and can be used for effective and early detection of influenza infection in vitro. Further, we demonstrated that these reporters can be used successfully to study the kinetics of antiviral drugs including siRNA. Our results also suggest that progeny vRNAs might participate not only in secondary transcription but also in secondary replication. The developed cRNA and vRNA reporters may help with further elucidation of the replication model of influenza A virus.
Collapse
|
11
|
Ozawa M, Victor ST, Taft AS, Yamada S, Li C, Hatta M, Das SC, Takashita E, Kakugawa S, Maher EA, Neumann G, Kawaoka Y. Replication-incompetent influenza A viruses that stably express a foreign gene. J Gen Virol 2011; 92:2879-2888. [PMID: 21880840 DOI: 10.1099/vir.0.037648-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A biologically contained influenza A virus that stably expresses a foreign gene can be effectively traced, used to generate a novel multivalent vaccine and have its replication easily assessed, all while satisfying safety concerns regarding pathogenicity or reversion. This study generated a PB2-knockout (PB2-KO) influenza virus that harboured the GFP reporter gene in the coding region of its PB2 viral RNA (vRNA). Replication of the PB2-KO virus was restricted to a cell line stably expressing the PB2 protein. The GFP gene-encoding PB2 vRNA was stably incorporated into progeny viruses during replication in PB2-expressing cells. The GFP gene was expressed in virus-infected cells with no evidence of recombination between the recombinant PB2 vRNA and the PB2 protein mRNA. Furthermore, other reporter genes and the haemagglutinin and neuraminidase genes of different virus strains were accommodated by the PB2-KO virus. Finally, the PB2-KO virus was used to establish an improved assay to screen neutralizing antibodies against influenza viruses by using reporter gene expression as an indicator of virus infection rather than by observing cytopathic effect. These results indicate that the PB2-KO virus has the potential to be a valuable tool for basic and applied influenza virus research.
Collapse
Affiliation(s)
- Makoto Ozawa
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Sylvia T Victor
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Andrew S Taft
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Chengjun Li
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Masato Hatta
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Subash C Das
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Emi Takashita
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Satoshi Kakugawa
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Eileen A Maher
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.,Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan.,ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| |
Collapse
|
12
|
Rimmelzwaan GF, Joyce Verburgh R, Nieuwkoop NJ, Bestebroer TM, Fouchier RA, Osterhaus AD. Use of GFP-expressing influenza viruses for the detection of influenza virus A/H5N1 neutralizing antibodies. Vaccine 2011; 29:3424-30. [DOI: 10.1016/j.vaccine.2011.02.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 02/16/2011] [Accepted: 02/24/2011] [Indexed: 11/29/2022]
|